Journal of Organometallic Chemistry 874 (2018) 74–82

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Trichlorostannyl complexes of Ruthenium(II): Synthesis, structure, reactivity and computational studies

Nuria Álvarez-Pazos ^a, Gabriele Albertin ^b, Stefano Antoniutti ^b, Jorge Bravo ^a, Soledad García-Fontán ^{a, *}, J.M. Hermida-Ramón ^c, Gianluigi Zanardo ^b

^a Departamento de Química Inorgánica, Universidade de Vigo, Campus Universitario, E-36310, Vigo, Spain

^b Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30172, Mestre Venezia, Italy

^c Departamento de Química Física, Universidade de Vigo, Campus Universitario, E-36310, Vigo, Spain

ARTICLE INFO

Article history: Received 22 March 2018 Received in revised form 20 August 2018 Accepted 21 August 2018 Available online 23 August 2018

Keywords: Ruthenium complexes Trichlorostannyl ligand Diphosphinite ligand DFT NBO

ABSTRACT

Trichlorostannyl complexes [Ru(SnCl₃) (Cp')L] (**2a-c**) were prepared by treatment of optically active halfsandwich chlorocomplexes [RuCl(Cp')L] (**1a-c**) with an excess of SnCl₂.2H₂O in ethanol. Treatment of trichlorostannyl complexes **2a-c** with NaBH₄ afforded trihydridostannyl derivatives [Ru(SnH₃) (Cp')L] (**3a-c**) in moderated yields. Treatment of **2a-c** with MgBrMe gave the trimethylstannyl complexes Ru(SnMe₃) (Cp')L (**4a-c**). Alkynylstannyl derivatives [Ru{Sn(C=CPh)₃}(Cp')L] (**5a-c**) were prepared by treatment of trichlorostannyl compounds **2a-c** with an excess of LiC=CPh in thf. All the complexes present optical activity. The complexes were characterized spectroscopically and by X-ray crystal structure determination of [RuCl(η^5 -C₅Me₅)L] (**1b**), [Ru(SnCl₃) (η^5 -C₅Me₅)L] (**2b**), and [Ru(SnCl₃) (η^5 -C₉H₇)L] (**2c**). The influence of different ligands on the Ru–P interaction in several complexes **1a-c**, **2a-c** and **3a-c** was evaluated by DFT calculations. These calculations indicate that [SnCl₃]⁻ has a stronger stabilization effect than [Cl]⁻ and the same occurs between $-C_9H_7$ and $-C_5Me_5$. These relative stabilities combined with the distortion energies of the fragments produce a stabilizing effect in the Ru–P bonds of complex **2c** that is twice as strong as in the **1b** complex.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Although transition-metal complexes containing stannyl ligands have been known for a long time [1], a renewed interest has been growing in the recent decades [2] even extending to the actinides [3]. It is known that the introduction of a stannyl ligand may improve the catalytic properties of metal complexes [4]. Compounds containing trihalogen (SnX₃) offer the possibility of substituting the halogen (X) by H, OH, alkyl, ...thus allowing us to obtain new ligands that can further modify the properties of the complexes. When the transition metal complexes display optical activity, their potential use in enantioselective catalysis poses an added value to the study of these compounds. Here we report the results of the studies on the synthesis, characterization and reactivity of chiral chloro-, and trichlorostannyl complexes of ruthenium stabilized by the half-sandwich fragments η^5 -C₅H₅, η^5 -C₅Me₅, and η^5 -C₉H₇. In addition, the reactivity of the trichlorostannyl compounds with NaBH₄, methylmagnesium bromide and lithium phenylacetylide is also reported. The chiral environment was achieved using the auxiliary chiral diphosphinite ligand 1,2-[bis(diphenyl)phosphanyloxy]-1,2-diphenylethane (L) to complete the coordination sphere around the ruthenium atom. Metal complexes bearing chiral diphosphinite ligands have proved to be active in asymmetric catalysis [5]. Vicinal diphosphinites deserve special attention because of the similarities of their coordination to a metal center with the efficient DIOP ligand [6] We also report computational studies of the [RuX (Cp')L] X = Cl, SnCl₃, SnH₃; Cp' = η^5 -C₅H₅, η^5 -C₅Me₅, η^5 -C₉H₇.

2. Results and discussion

The reaction diphenylchlorophosphine with enantiomerically pure diol (R,R)-(+)-hydrobenzoine in the presence of ⁿBuLi, following procedure reported in the literature [7], led to formation of the optically active chelating ligand (R,R)-(+)-1,2-[bis(diphenyl) phosphanyloxy]-1,2-diphenylethane (**L**) as a white solid. The compound can be stored under Ar at room temperature for four

Corresponding author.
 E-mail address: sgarcia@uvigo.es (S. García-Fontán).

Scheme 1. Synthesis of the complexes [RuCl(Cp')L] (1) and [Ru(SnCl₃) (Cp')L] (2).

weeks. After that its ³¹P NMR spectrum shows small signals at $\delta \approx 20-40$ ppm corresponding to oxidation products.

The ¹H NMR spectrum in CDCl₃ shows multiplets at 6.85-7.80 ppm, corresponding to the phenyl groups and a multiplet at 5.08 ppm corresponding to the methylenic protons. The ³¹P {¹H} NMR spectrum shows a singlet at 109.7 ppm, indicating the magnetic equivalence of the two phosphorus nuclei of diphosphinite ligand.

Synthesis and characterization of the half-sandwich chloro- and trichlorostannylcomplexes [RuCl(Cp')L] (1) and [Ru(SnCl₃) (Cp')L] (2) Cp' = η^{5} -C₅H₅ (a), η^{5} -C₅Me₅ (b), η^{5} -C₉H₇ (c).

Optically active half-sandwich chlorocomplexes [RuCl(Cp')L] Cp' = η^5 -C₅H₅ (**1a**), η^5 -C₅Me₅ (**1b**), η^5 -C₉H₇ (**1c**), were prepared by thermal displacement of PPh₃ from [(RuCl(Cp') (PPh₃)₂] complex by L in refluxing toluene, as shown in Scheme 1.

The new compounds are yellow **1a-b** or red-orange **1c** solids that are air-stable at room temperature and soluble in common organic solvents. Analytical and NMR spectroscopic data of compounds **1a-c** support the proposed formulation. Thus, the phosphorus nuclei of the bidentate ligand **L** are inequivalent and hence a two-doublet pattern corresponding to an AB spin system is observed in the ³¹P{¹H} NMR spectra. The ¹H NMR spectra display, in addition to the characteristic signals of the carbocyclic ligands, a collapsed doublet of doublets and a doublets of doublets corresponding to the diastereotopic methylene protons of L (see Experimental).

Insertion of $SnCl_2$ into the Ru–Cl bond of complexes **1a-c** gave the trichlorostannyl complexes [Ru(SnCl₃) (Cp')L] (**2a-c**) in

Tuble I	
$^{31}\text{P}\{^{1}\text{H}\}$ and $^{119}\text{Sn}\{^{1}\text{H}\}$ NMR data for compounds $\boldsymbol{1}$ a	and

Table 1

moderate yields (50–58%) (Scheme 1). The new stannyl complexes were isolated as air and moisture stable crystalline yellow (2a,b) or orange (2c) solids. Analytical and NMR spectroscopy data support this formulation. Therefore, the ³¹P NMR spectra of **2a-c** derivatives show two doublets (an AB system signal in the case of compound **2a**) with the characteristic satellites, due to coupling with the ¹¹⁹Sn and ¹¹⁷Sn nuclei of SnCl₃ ligand (Table 1). The ¹¹⁹Sn NMR spectra also display a doublet of doublets (at -36.7 ppm for **2c**) or broad triplets (arising from the collapsed doublet of doublets with very similar coupling constants) at -7.4 ppm for **2a** and at -20.3 ppm for **2b**. The comparison of the ³¹P NMR data of compounds **1** and **2** shows that the insertion of SnCl₂ has little or no influence on one of the P nuclei but produces a low field displacement on the other. This dissimilar behavior has already been reported for other complexes. So, in the case of $[Ru(C_5H_5)Cl (dippe)]$ and $[Ru(C_5Me_5)Cl$ (dippe)] the insertion of SnCl₂ does not affect the ³¹P chemical shift [8c]; however for $[Ru(C_5H_5)Cl (prophos)]$ [8f] and for $[Ru(C_5H_5)]$ Cl(PPh₃)₂] [8g] high and low field displacements were respectively observed. As expected, compounds 2a-c present optical activity (see Experimental).

2.1. X-ray structures of 1 b, 2 b and 2c

The structure of compounds **1b**, **2b** and **2c** was determined by Xray diffraction studies. ORTEP drawings of these structures (Figs. 1–3) and selected bond lengths and angles (Table 2) are shown. The ruthenium atom is in a formally six-coordinate environment coordinated by the corresponding carbocyclic ligand, two

Ft HJ allu Slit HJ N		
	³¹ P{ ¹ H} NMR	¹¹⁹ Sn{ ¹ H} NMR
Comp	(δ/ppm; J/Hz)	(δ/ppm; J/Hz)
1a	$\delta_{\rm A}$ 158.5, $\delta_{\rm B}$ 153.1, $^2 J_{\rm AB} = 77.1$	
1b	$\delta_{\rm A}$ 160.4, $\delta_{\rm B}$ 156.6, 2 J _{AB} = 73.8	
1c	δ_A 160.5, δ_B 157.5, ${}^2J_{AB} = 72.0$	
2a	δ _A 159.7	-7.4 cdd ^a ,
	${}^{2}I_{P}^{31}-{}^{119}S_{n} \approx 468, {}^{2}I_{P}^{31}-{}^{117}S_{n} \approx 448$	${}^{2}I^{119}{}_{Sn} - {}^{31}{}_{P} \approx 458$
	δ _B 158.7	
	${}^{2}\bar{1}^{31}_{P}-{}^{119}_{Sn} \approx 444, {}^{2}1{}^{31}_{P}-{}^{117}_{Sn} \approx 423$	
	${}^{2}I_{AB} = 54.5$	
2b	170.5 d	-20.3 cdd^{a} ,
	${}^{2}I_{P}^{31}-{}^{119}S_{n} \approx 427, {}^{2}I_{P}^{31}-{}^{117}S_{n} \approx 406$	${}^{2}I^{119}s_{n} - {}^{31}P \approx 421$
	156.5 d	• • •
	${}^{2}I_{P}^{31}-{}^{119}S_{P} \approx 422, {}^{2}I_{P}^{31}-{}^{117}S_{P} \approx 403$	
	2 J _{PP} = 55.1	
2c	163.6 d	-36.7 dd,
	${}^{2}I_{p}^{31}-{}^{119}s_{p}=428.0, {}^{2}I_{p}^{31}-{}^{117}s_{p}=416.3,$	${}^{2}I^{119}{}_{5n} - {}^{31}{}_{P} = 430.8, {}^{2}I^{119}{}_{5n} - {}^{31}{}_{P} = 365.2$
	159.1 d	
	${}^{2}I_{P}^{31}-{}^{119}s_{p}=363.1, {}^{2}I_{P}^{31}-{}^{117}s_{p}=349.1$	
	${}^{2}I_{PP} = 50.8$	
	JPP = 50.8	

In CD₂Cl₂ at 25 °C. ^a collapsed doublet of doublets.

Fig. 1. ORTEP view (50% probability level) of compound 1b. Hydrogen atoms and the phenyl groups are omitted for clarity.

phosphorous atoms from the bidentate ligand and a chloro (1b), or a trichlorostannyl (2b, 2c) groups. All molecules have a "threelegged piano stool" geometry with values near 90° for P (1)-Ru-P (2), P(1)–Ru–Sn and P(2)–Ru–Sn bond angles for compounds **2b** and **2c** and for P(1)–Ru–P(2), P(1)–Ru–Cl and P(2)–Ru–Cl for **1b**. The centroids of the carbocyclic ligands are situated at 1.884 (4) (**1b**) 1.905 (4) (**2b**) and 1.921 (2) Å (**2c**) from the ruthenium atom and the Ru–C, Ru–P, Ru–Cl and Ru–Sn bond lengths are similar to those observed for analog complexes [8]. It is worth mentioning that, in the case of compounds **1b** and **2b** both distances Ru-P(1)(2.242 Å (1b), 2.299 Å (2b)) and Ru–P (2) (2.255 Å (1b), 2.283 Å (2b)) are almost identical, but for compound 2c they are significantly different (Ru–P(1) 2.283 Å, Ru–P(2) 2.237 Å), probably due to steric effects attributed to the asymmetry of the indenyl ligand. In fact the non-bonding distance between the center of the sixmember ring of the indenyl group and P (1) (4.243 Å) is significantly shorter than for P (2) (5.302 Å) implying a stronger steric interaction of this group with the phenyl groups attached to the P (1) than with those attached to the P(2). The geometry around the center of Sn (II) is pyramidal trigonal with an average value for Sn-Cl bond distance of 2.3963 Å (2b) and 2.4045 Å (2c) and an average Cl-Sn-Cl angle of 92.61° (2b) and 95.38° (2c). These values are similar to those found in the analogous compounds in the literature [2b,8g].

Fig. 2. ORTEP view (50% probability level) of compounds **2b**. Hydrogen atoms and the phenyl groups are omitted for clarity.

Fig. 3. ORTEP view (50% probability level) of compounds 2c. Hydrogen atoms and the phenyl groups are omitted for clarity.

2.2. Reactivity of trichlorostannylcomplexes 2a-c

Treatment of compounds [Ru(SnCl₃) (Cp')L] 2a-c with NaBH₄ in ethanol at room temperature permits substitution of the three chlorides in the SnCl₃ group with H⁻, affording the trihydridostannyl derivatives [Ru(SnH₃) (Cp')L] [Cp' = η^5 -C₅H₅ (**3a**), η^5 - C_5Me_5 (**3b**), η^5 - C_9H_7 (**3c**)] in moderate yields (52–66%). It is worthy to mention that these compounds, together with those published by the Albertin group, are the only transition metal trihydridostannyl complexes published to date [2b,c,e,f]. The compounds are vellow, stable in air for a few days and unstable in solutions of halogenated solvents. The IR spectra show a medium intensity band at about 1700 cm⁻¹ attributed to the v_{Sn-H} of the trihydridostannyl ligand [2d]. The ¹H NMR spectra confirm the presence of the SnH_3 ligand, showing a singlet at 4.28 ppm (**3a**), 4.45 ppm (**3b**), and 4.09 ppm (**3c**), with the characteristic satellites due to coupling with ¹¹⁹Sn and ¹¹⁷Sn nuclei. The values of these coupling constants are similar to those observed for similar complexes [2b,d]. The ³¹P NMR spectra of compounds **3a-c** display signals corresponding to an AB spin system with the satellites due to coupling with the ¹¹⁹Sn and ¹¹⁷Sn nuclei of SnH₃ ligand. It was not possible to record the ¹¹⁹Sn NMR spectra of compounds **3a-c** because of the aforementioned unstability of their solutions. Optical activity of these compounds is also observed.

Compounds [Ru(SnCl₃) (Cp')L] 2a-c react with nucleophiles like methylmagnesium bromide and lithium phenylacetylide to give new chiral triorganostannyl derivatives (Scheme 2). The reactions proceeded with the substitution of all the chlorides in SnCl₃. Thus, reaction of **2a-c** with an excess of MeMgBr in diethyl ether at room temperature gave the trimethylstannyl compounds [Ru(SnMe₃) (Cp')L], [Cp' = η^5 -C₅H₅ (**4a**), η^5 -C₅Me₅ (**4b**), η^5 -C₉H₇ (**4c**)] in moderate yields (52-65%). On the other hand, treatment of compounds **2a-c** with an excess of LiC=CPh gave the tris(phenylacetylenide) stannyl compounds [Ru{Sn(C=CPh)₃}(Cp')L], [Cp' = η^5 -C₅H₅ (**5a**), η^{5} -C₅Me₅ (**5b**), η^{5} -C₉H₇ (**5c**)] in moderate yields (60–70%). Compounds 4a-c and 5a-c were obtained as air-stable yellow solids and their formulation was supported by analytical and spectroscopic (IR and NMR) data. The ¹H NMR spectra of compounds **4a-c** display, in addition to the expected signals for the diphosphinite and carbocyclic ligands, a singlet at 0.63 ppm (4a), 0.30 ppm (4b), and -0.09 ppm (**4c**), with the characteristic ¹¹⁹Sn and ¹¹⁷Sn satellites, integrating by nine protons, which can be attributed to the methyl groups bonded to Sn atom. The ¹³C{¹H} NMR spectra show a singlet at -1.4 ppm ($J^{13}c^{-119}s_n = 80.6 \text{ Hz}$) (**4a**), 1.4 ppm ($J^{13}c^{-119}s_n = 37.2 \text{ Hz}$) (**4b**), and -2.0 ppm ($J^{13}c^{-119}s_n = 91.1 \text{ Hz}$) (**4c**),

Table 2	
Selected bond lengths (Å) and angles (°) for 1b, 2	2b and 2c.

1b		2b		2c	
Ru–P (1)	2.242 (3)	Ru–P (1)	2.2990 (11)	Ru–P (1)	2.2830 (7)
Ru–P (2)	2.255 (3)	Ru–P (2)	2.2835 (10)	Ru–P (2)	2.2378 (7)
Ru–C (1)	2.219 (4)	Ru–C (1)	2.271 (4)	Ru–C (1)	2.240 (3)
Ru–C (2)	2.277 (4)	Ru–C (2)	2.269 (4)	Ru–C (2)	2.215 (3)
Ru–C (3)	2.266 (4)	Ru–C (3)	2.255 (4)	Ru–C (3)	2.206 (3)
Ru–C (4)	2.235 (4)	Ru–C (4)	2.265 (4)	Ru–C (4)	2.349 (3)
Ru–C (5)	2.239 (4)	Ru–C (5)	2.254 (4)	Ru-C (9)	2.350 (3)
Ru-CT	1.884 (4)	Ru-CT	1.905 (4)	Ru-CT	1.921 (2)
Ru-Cl	2.433 (3)	Ru—Sn	2.5655 (4)	Ru—Sn	2.5871 (3)
		Sn-Cl (1)	2.3991 (11)	Sn-Cl (1)	2.4041 (7)
		Sn-Cl (2)	2.3936 (11)	Sn-Cl (2)	2.4003 (7)
		Sn-Cl (3)	2.3963 (12)	Sn-Cl (3)	2.4091 (7)
CT-Ru-P(1)	129.68 (6)	CT-Ru-P(1)	128.4 (2)	CT'-Ru-P(1)	127.22 (2)
CT-Ru-P(2)	128.95 (6)	CT-Ru-P(2)	125.57 (15)	CT'-Ru-P(2)	123.65 (2)
P(1)-Ru-P(2)	88.75 (7)	P(1)-Ru-P(2)	90.04 (4)	P(1)-Ru-P(2)	90.93 (2)
CT-Ru-Cl	116.87 (14)	CT-Ru-Sn	119.22 (10)	CT'-Ru-Sn	114.818 (10)
P(1)–Ru–Cl	92.67 (7)	P(1)-Ru-Sn	92.84 (3)	P(1)-Ru-Sn	100.73 (2)
P(2)–Ru–Cl	88.24 (5)	P (2)–Ru–Sn	90.49 (3)	P (2)–Ru–Sn	91.83 (2)
		Cl (3)–Sn–Cl (1)	95.08 (5)	Cl (3)–Sn–Cl (1)	97.57 (3)
		Cl (3)–Sn–Cl (2)	93.32 (4)	Cl (3)–Sn–Cl (2)	92.50 (3)
		Cl (2)–Sn–Cl (1)	89.44 (4)	Cl (2)–Sn–Cl (1)	96.07 (3)

CT: centroid at Cp*; CT': centroid at the five-member ring of C₉H₇.

Scheme 2. Synthesis of the complexes $[Ru(SnH_3) (Cp')L]$ (3); $[Ru(SnMe_3) (Cp')L]$ (4); $[Ru\{Sn(C\equiv CPh)_3\}(Cp')L]$ (5).

correlating, in a HSQC experiment, with the corresponding, abovementioned, proton singlet. The proton-coupled ¹¹⁹Sn NMR spectrum of compound **4c** shows a triplet of multiplets arising from the coupling with the two P nuclei of the bidentate ligand and the nine protons of the three methyl groups.

The IR spectra of compounds **5** present a medium-intensity broad band at 2124 cm⁻¹ (**5a**) 2127 cm⁻¹ (**5b**) and 2125 cm⁻¹ (**5c**) that can be attributed to the $v_{C\equiv C}$ of the Sn(C \equiv CPh)₃ group [8]. Besides, the presence of the acetylide group bonded to the tin atom can be confirmed by the ¹³C{¹H} and ¹¹⁹Sn{¹H} NMR spectra. Thus, the ¹³C{¹H} NMR spectra display, in addition to the characteristic signals of the supporting ligands, two singlets [$\delta = 107.5$ and $\delta = 100.7$ ppm (**5a**), $\delta = 107.2$ and $\delta = 103.3$ ppm (**5b**), and $\delta = 107.2$ and $\delta = 99.6$ (**5c**)], attributed to C_β and C_α, respectively, of the Sn(C_α \equiv C_βPh)₃ group. The ¹¹⁹Sn{¹H} NMR spectra shows a collapsed doublet of doublets at $\delta = -248.5$ ppm (**5a**) and a doublet of doublets at $\delta = -233.2$ ppm (**5b**) and at $\delta = -267.0$ ppm (**5c**), due to the coupling of the tin nucleus with the two non-equivalent P atoms of the chiral ligand.

³¹P NMR data for compounds **3–5** are very similar suggesting that the modification of the groups attached to the Sn atom has little influence on the P atoms of the diphosphinite ligand.

Bimetallic compounds Ru-SnR₃ (R = H, Me, C \equiv CPh) **3–5** are the first to contain a chiral phosphinite bidentate ligand.

2.3. Computational studies

Full optimizations at B3LYP/cc-pVDZ (–PP) [9] level of theory were performed in ground state for complexes **1a-c**, **2a-c** and **3a-c**, for the phosphinite ligand (**L**) and for the moieties resulting from removing the phosphinite from the different complexes. Frequency and force constants were obtained at the same level of theory and

the minimum nature of each geometry was established. Next, a natural bond orbital (NBO) analysis [10] was done together with obtaining the Wiberg bond indices (WBI) [11] and performing a natural population analysis (NPA) [12]. The most relevant distances of the studied compounds are listed in Table 3 along with the NPA charges, Wiberg bond indices, NBO populations and NBO energies.

The distances in Table 3 show that the η^5 -C₉H₇ moiety breaks to a certain extent the equivalence of the two Ru–P bonds in complexes 1c, 2c and 3c. This is confirmed by the Wiberg bond indices and the values of the NPA charges. In complexes with the η^5 -C₅Me₅ or the η^5 -C₅H₅ moiety the differences between the two phosphorus atoms are very small, suggesting a similar strength and nature of the two Ru-P interactions of each compound. The obtained value of the Wiberg bond indices for the Ru–P bonds goes from 0.79 to 0.90, which points to a covalent nature of these bonds in all cases. The calculated NPA charges reveal that the Ru–P bonds are highly polarized for all complexes, with charges from 1.53 a. u. to 1.64 a. u. on the phosphorus atoms and from -0.73 a. u to -1.30 a. u on the ruthenium atom. The substitution of chloride by the SnCl₃ or the SnH₃ moieties increases the charge on the ruthenium atom in about -0.4 a. u, which leads to a further polarization of the Ru-P bonds. NBO isosurfaces displayed in the Supporting Information do not show significant differences in size or shape between the complexes. As can be seen in Table 3, the occupancy of all compounds is rather alike, but the combined effect of the chloride or of the SnH₃ and η^5 -C₉H₇ ligands breaks the equivalence of Ru–P bonds in complexes 1c and 3c. These compounds have, in general, the bigger differences between Ru–P bonds for all studied properties, i. e WBI, NPA charges, NBO populations and NBO energies. It is not clear if the asymmetry plays any role in it, but complex 1c has also the most stable Ru–P bonds according to the NBO energies.

By analyzing the distortion and the interaction energies in the complexes, we can perform an estimation of how the ligands modify the Ru–P interactions. In order to carry out this analysis a fragment-based approach is used in which a decomposition of the total energy of the complex (ΔE_{tot}) is performed. This energy is divided in two terms, i.e. the interaction energy between two fragments (ΔE_{int}) and the energy associated with distorting these fragments from their initial equilibrium structures (ΔE_{dist}). Thus, $\Delta E_{tot} = \Delta E_{int} + \Delta E_{dist}$. The calculated results are given in Table 4 together with the Basis Set Superposition Error (BSSE) [13]. The fragments selected for our study were, on the one hand, the phosphinite ligand (L) and on the other, the remaining [RuCl(Cp')], [Ru(SnCl₃) (Cp')] and [Ru(SnH₃) (Cp')] for the complexes **1a-c, 2a-c** and **3a-c**, respectively. A further explanation of how those energies have been obtained is given in the Supporting Information.

The values of the interaction energy are very stabilizing, with energies of one Ru–P interaction from about –40 kcal/mol up to approximately –55 kcal/mol, considering that both Ru–P bonds of the same complex have roughly the same energy. Like in the NBO

Table 4

B3LYP/cc-pVDZ (–PP) distortion (ΔE_{dist}), BSSE, interaction (ΔE_{int}) and total (ΔE_{tot}) energies (kcal/mol) computed for compounds **1–3**.

	ΔE_{int}	BSSE	$\Delta E_{\rm dist}$ (L)	$\Delta E_{dist} [Ru(X) (Cp)]^*$	ΔE_{dist} (total)	ΔE_{tot}
1a	-90.21	6.36	12.38	23.13	35.51	-54.70
1b	-83.50	7.40	12.86	28.71	41.57	-41.93
1c	-98.20	6.83	13.08	27.19	40.27	-57.93
2a	-105.81	7.80	11.88	9.69	21.57	-84.23
2b	-94.35	8.82	13.82	17.04	30.86	-63.49
2c	-109.10	8.26	12.80	12.52	25.32	-83.78
3a	-99.61	5.78	10.95	10.21	21.16	-78.45
3b	-92.79	6.95	13.35	16.62	29.97	-62.81
3c	-103.95	6.11	11.39	12.22	23.61	-80.34

 $[Ru(X)(Cp')]^*X = Cl; SnCl_3; SnH_3.$

analysis, the compound $[RuCl(\eta^5-C_5Me_5)L]$ (1b) has the less stable interactions. Yet, in contrast with NBO results the complex with the most stable interactions is the $[Ru(SnCl_3) (\eta^5-C_9H_7)L]$ (2c). Differences in the BSSE values are not enough to produce any significant change in the relative stabilities between complexes. The values of ΔE_{dist} are large, which reduces notably the stabilization of the complexes with respect to the interaction energies. The energy required for the geometrical distortion of L is rather similar for all complexes but large differences are found when the distortion energy of the [RuCl(Cp')] or [Ru(SnCl₃) (Cp')] fragment is considered. Thus, this energy for $[RuCl(\eta^5-C_5Me_5)L]$ (1b) and $[RuCl(\eta^5 C_9H_7$)L] (1c) is almost three times as big as that for [Ru(SnCl₃) (η^5 - C_5H_5]L] (**2a**), which produces a much larger destabilization of the two former complexes. In $[RuCl(\eta^5-C_5Me_5)L]$ (1b), the large distortion energy of the [RuCl(η^5 -C₅Me₅)] moiety is mainly due to the distortion of the Ru-Cl bond. In the equilibrium geometry of the fragment, this bond is collinear with the axis defined by the apothem of the η^5 -C₅Me₅ and the ruthenium atom, but in the complex **1b** it is placed forming an angle of around 61° with this axis. This effect, combined with a rotation of the Ru-Cl bond around the symmetry axis, is responsible for the large distortion energy in $[RuCl(\eta^5-C_9H_7)L]$ (1c).

When a comparison of the total energies is performed, we can establish the following correlation of ligands regarding the stability of the Ru–P interactions, from less stable Ru–P bonds to more stable bonds: $\eta^5-C_5Me_5 < \eta^5-C_5H_5 \approx \eta^5-C_9H_7$ and $[Cl]^- \ll [SnH_3]^- < [SnCl_3]^-$. Thus, the relatively low stabilization of the Ru–P interactions in the complex $[RuCl(\eta^5-C_5Me_5)L]$ (**1b**) is the combination of several effects: a1) the lower stabilization effect of the $\eta^5-C_5Me_5$ with respect to $\eta^5-C_9H_7$ and $\eta^5-C_5H_5$; a2) the lower stabilization effect of the chloride ligand with respect to the stannyl ligands; b1) the lower distortion energy of $\eta^5-C_9H_7$ and $\eta^5-C_5H_5$; regarding $\eta^5-C_5Me_5$; b2) the lower distortion energy of the stannyl ligands regarding the chloride ligand. The energy results suggest that less polarized Ru–P bonds together with large distortions will

T-1-1-	2
Table	3

Selected bond lengths (Angstroms), Wiberg bond indices, NPA atomic charges (atomic units) and NBO energies (eV) and populations (atomic units) for compounds 1-3.

	1a	1 b	1c	2a	2 b	2c	3a	3 b	3c
r _{Ru-P1}	2.300	2.323	2.269	2.326	2.363	2.299	2.286	2.310	2.267
r _{Ru-P2}	2.309	2.341	2.314	2.329	2.372	2.343	2.288	2.313	2.300
$WBI_{Ru}-P1$	0.86	0.82	0.89	0.84	0.79	0.86	0.89	0.85	0.90
WBI _{Ru} —P2	0.85	0.81	0.82	0.84	0.79	0.80	0.88	0.85	0.84
\mathbf{q}_{Ru}	-0.84	-0.73	-0.74	-1.30	-1.16	-1.15	-1.27	-1.14	-1.11
\mathbf{q}_{P1}	1.60	1.55	1.64	1.59	1.54	1.62	1.60	1.55	1.62
\mathbf{q}_{P2}	1.61	1.56	1.56	1.60	1.53	1.55	1.60	1.55	1.56
E _{Ru-P1}	-12.72	-12.06	-13.52	-13.05	-12.70	-12.21	-12.13	-12.78	-12.00
E _{Ru-P2}	-12.36	-12.40	-13.00	-12.86	-12.77	-12.33	-12.92	-12.55	-13.03
Pop _{Ru-P1}	1.92	1.89	1.93	1.92	1.92	1.90	1.85	1.92	1.90
Pop _{Ru-P2}	1.92	1.92	1.84	1.92	1.92	1.88	1.82	1.92	1.84

produce lower stabilizations. As has also been pointed out above, the inclusion of the BSSE in the total energies will not change the outcome of the discussion.

3. Conclusions

In this work, we reported that cyclopentadienyl, pentamethylcyclopentadienyl and indenyl ligands in fragment [RuCp'L] (L = phosphinite) can stabilize trichlorostannyl ([Ru]–SnCl₃), trihydridostannyl ([Ru]–SnH₃) and organostannyl derivatives ([Ru]-SnMe₃) and ([Ru]–Sn(C≡CPh)₃).

The calculated NPA charges reveal highly polarized Ru–P bonds. The substitution of the chlorine by a [SnCl₃]⁻ or a [SnH₃]⁻ moiety increases the negative charge on the ruthenium atom. The influence of the ligands on the Ru–P interactions was further evaluated by means of a distortion/interaction analysis. The ΔE_{int} values show that the stabilization trends are η^5 -C₅Me₅ < η^5 -C₅H₅ $\approx \eta^5$ -C₉H₇ and [Cl]⁻ « [SnH₃]⁻ < [SnCl₃]⁻.

4. Experimental section

4.1. General considerations

All experiments were carried out under an atmosphere of argon by Schlenk techniques. Solvents were dried by the usual procedures [14] and, prior use, distilled under argon. The starting materials $[RuCl(\eta^5-C_5H_5) (PPh_3)_2]$ [15], $[RuCl(\eta^5-C_5Me_5) (PPh_3)_2]$ [16] and $[RuCl(\eta^5-C_9H_7) (PPh_3)_3]$ [17] were prepared as described in the literature. All reagents were obtained from commercial sources. NMR spectra were recorded at room temperature on Bruker ARX-400, Bruker DPX-600 instrument, with resonating frequencies 400 MHz (¹H), 161 MHz (³¹P{¹H}), 100 MHz (¹³C{¹H}), and 223 MHz (¹¹⁹Sn and ¹¹⁹Sn{¹H}) using the solvents as the internal lock. ¹H and $^{13}C{^{1}H}$ signals are referred to internal TMS, those of $^{31}P{^{1}H}$ to 85% H₃PO₄ and ¹¹⁹Sn shifts with respect to Sn(CH₃)₄; downfield shifts (expressed in ppm) are considered positive. ¹H and ¹³C{¹H} NMR signal assignments were confirmed by {¹H, ¹H} COSY, {¹H, ¹³C} HSQC and DEPT experiments. Coupling constants are given in hertz. Infrared spectra were run on a Jasco FT/IR (ATR) spectrometer. C, H analyses were carried out with a Carlo Erba 1108 analyzer. Optical rotation values were recorded on a Jasco P-2000 polarimeter.

4.2. Preparation of $Ph_2POCHPhCHPhOPPh_2$ (L).⁷

A round-bottom flask was charged with a mixture of (R,R)-(+)-hydrobenzoin (1.00 g, 4.71 mmol) and 10 mL of THF. The solution was cooled to 0 °C and 3.8 mL of ⁿBuLi (9.42 mmol, 2.5 M solution in hexane) were added dropwise. Then, 1.8 mL of Ph₂PCI (9.42 mmol) were slowly added. The reaction mixture was allowed to reach room temperature, filtered with a cannula, and the filtrate was concentrated under reduced pressure to produce a white oil. The oil obtained was stirred with ethanol (20 mL) resulting in a white solid which was filtered, washed with ethanol (10 mL) and dried under reduced pressure.

Yield: 56%. Anal. Calc for $C_{38}H_{32}O_2P_2$ (582.62): C, 78.34; H, 5.54. Found: C, 78.68; H, 5.23.¹H NMR (CHCl₃- d_1 , 25 °C) δ : 7.80–6.85 (m, 30H, Ph), 5.08 (m, 2H, C<u>H</u> L) ppm. ³¹P{¹H} NMR (CHCl₃- d_1 , 25 °C) δ : 109.7 (s) ppm. [α] $_{D}^{27}$: 25.7 (*c* 0.06, CHCl₃).

4.3. Synthesis of complexes

4.3.1. [*RuCl*(*Cp*')*L*] [*Cp*' = η^5 -*C*₅*H*₅ (**1a**), η^5 -*C*₅*Me*₅ (**1b**), η^5 -*C*₉*H*₇ (**1c**)]

An excess of $Ph_2POCHPhCHPhOPPh_2$ (L) (0.70 mmol) was added to a solution of [(RuCl(Cp') (PPh_3)_2] (0.64 mmol) in toluene

(30-40 mL). The reaction mixture was refluxed for 3 h and allowed to cool to room temperature. The solvent was removed under vacuum, and the residue was treated with ethanol (3 mL), affording products that yellow (**1a**, **1b**) or red-orange (**1c**) that were filtered and crystallized from CH₂Cl₂ and ethanol (2:5).

(1a) Yield: 79%. Anal. Calc. for $C_{43}H_{37}ClO_2P_2Ru$ (784.24): C, 65.86; H, 4.76. Found: C, 65.92; H, 4.65.¹H NMR (CH₂Cl₂-d₂ (25 °C) δ : 7.70–6.70 (m, 30H, Ph), 6.03 (dd, ³J_{H-H} = 7.6 Hz, ³J_{H-P} = 14.2 Hz, 1H, CH L), 5.16 (cdd, ³J_{H-H} = 7.6 Hz, 1H, CH L), 4.51 (s, 5H, C₅H₅) ppm. ³¹P {¹H} NMR (CH₂Cl₂-d₂, 25 °C) δ : AB system, δ_A 158.5, δ_B 153.1 (²J_{AB} = 77.1 Hz) ppm. [α]_D²³: 120.2 (*c* 0.20, C₆H₆).

(1b) Yield: 70%. Anal. Calc. for $C_{48}H_{47}ClO_2P_2Ru$ (854.17): C, 67.43; H, 5.55. Found: C, 67.76; H, 5.42.¹H NMR ($CH_2Cl_2-d_2$, 25 °C) δ : 7.75–6.45 (m, 30H, Ph), 5.78 (dd, ${}^{3}J_{H-P} = 13.4$ Hz, ${}^{3}J_{H-H} = 7.9$ Hz, 1H, C<u>H</u> L), 4.98 (dd, ${}^{3}J_{H-H} = 7.9$ Hz, ${}^{3}J_{H-P} = 2.8$ Hz, 1H, C<u>H</u> L), 1.23 (s, 15H, C₅<u>Me</u>₅) ppm. ${}^{31}P{}^{1}H$ NMR ($CH_2Cl_2-d_2$, 25 °C) δ : AB system, δ_A 160.4, δ_B 156.6 (${}^{2}J_{AB} = 73.8$ Hz) ppm. [α] ${}^{27}_{D}$: -40.3 (c 0.19, CHCl₃).

(1c) Yield: 78% Anal. Calc. for $C_{47}H_{39}ClO_2P_2Ru$ (834.30): C, 67.66; H, 4.71. Found: C, 67.32; H, 4.80.¹H NMR (400 MHz, CH₂Cl₂-*d*₂, 25 °C): δ 7.86–6.47 (m, 30H, Ph, C₉H₇), 5.91 (dd, ³J_{H-P} = 13.1 Hz, ³J_{H-H} = 8.2 Hz, CH L), 5.15 (m, 1H, CH L), 4.68 (m, 1H, H₂, C₉H₇), 4.21 (s, 1H, H_{1,3}, C₉H₇), 4.10 (s, 1H, H_{1,3}, C₉H₇). ³¹P{¹H} NMR (161 MHz, CH₂Cl₂-*d*₂, 25 °C) δ : AB system, δ_A 160.5, δ_B 157.5 (²J_{AB} = 72 Hz). ¹³C {¹H} NMR (CH₂Cl₂-*d*₂, 25 °C) δ : 146.9–127.4 (m, Ph + C₅₋₈ C₉H₇), 117.5 (d, ²J_{C-P} = 5.1 Hz, C_{4,9} C₉H₇), 109.2 (d, ²J_{C-P} = 7.3 Hz, C_{4,9} C₉H₇), 89.3 (s, C₂ C₉H₇), 85.2 (dd, ²J_{C-P} = 8.7 Hz, ³J_{C-P} = 1.8 Hz, CH L), 80.8 (d, ²J_{C-P} = 2.4 Hz, C_{1,3} C₉H₇), 70.4 (d, ²J_{C-P} = 14.2 Hz, CH L), 64.8 (s, C_{1,3} C₉H₇) ppm. [α]²^D²: -141.1 (*c* 0.08, CHCl₃).

4.3.2. Preparation of [Ru(SnCl₃) (Cp')L] [Cp' = η^5 -C₅H₅ (**2a**), η^5 -C₅Me₅ (**2b**), η^5 -C₉H₇ (**2c**)]

A Schlenk tube was charged with 0.25 mmol of [RuCl(Cp')L] (**1a-c**) and SnCl₂.2H₂O (0.95 mmol) in 20 mL of ethanol. The reaction mixture was refluxed for 2 h and then the solvent was removed under reduce pressure to give a residue was treated with hexane (2 mL), affording products that yellow (**2a**, **2b**) or orange (**2c**) that were filtered and washed with hexane and dried under vacuum.

(2a) Yield: 58%. Anal. Calc. for $C_{43}H_{37}Cl_3O_2P_2RuSn (973.83)$: C, 53.04; H, 3.83. Found: C, 52.89; H, 3.92. ¹H NMR (CH₂Cl₂-d₂, 25 °C): δ 7.78–6.85 (m, 30H, Ph), 5.93 (dd, ³J_{H-H} = 8.0 Hz, ³J_{H-P} = 11.6 Hz, 1H, C<u>H</u> L), 5.02 (cdd, ³J_{H-H} = ³J_{H-P} = 8.0 Hz, 1H, C<u>H</u> L), 4.87 (s, 5H, C₅H₅) ppm. ³¹P{¹H} NMR (CH₂Cl₂-d₂, 25 °C): δ AB, δ_A 159.7 (²J_P^{1P}_{5n} ≈ 468 Hz, ²J_P^{1P}_{5n} ≈ 448 Hz), δ_B 158.7 (²J_P^{1P}_{5n} ≈ 444 Hz, ²J_P^{1P}_{5n} ≈ 423 Hz) (²J_{AB} = 54.5 Hz) ppm. ¹¹⁹Sn{¹H} NMR (CH₂Cl₂-d₂, 25 °C): δ -7.4 (cdd, ²J_{Sn-P} ≈ 458 Hz). [α]_D²⁷: 125.6 (c 0.20, CH₂Cl₂).

(2b) Yield: 56%. Anal. Calc. for $C_{48}H_{47}Cl_3O_2P_2RuSn (1044.01)$: C, 55.17; H, 4.54. Found: C, 55.10; H, 4.55%. ¹H NMR (CH₂Cl₂-d₂, 25 °C): δ 7.82–6.70 (m, 30H, Ph), 5.94 (dd, ³J_{H-P} = 11.8 Hz, ³J_{H-H} = 7.8 Hz, 1H, C<u>H</u> L), 4.77 (dd, ³J_{H-P} = 9.5 Hz, ³J_{H-H} = 7.8 Hz, 1H, C<u>H</u> L), 1.41 (s, 15H, C₅Me₅) ppm. ³¹P{¹H} NMR (CH₂Cl₂-d₂, 25 °C): δ 170.5 (d, ²J_{PP} = 55.1 Hz, ²J_{P-119Sn} \approx 422 Hz, ²J_{P-117Sn} \approx 406 Hz), 156.5 (d, ²J_{PP} = 55.1 Hz, ²J_{P-119Sn} \approx 422 Hz, ²J_{P-117Sn} \approx 403 Hz) ppm. ¹³C{¹H} NMR (CH₂Cl₂-d₂, 25 °C): δ 170.5 (d, ²J_{C-P} = 8.7 Hz, CH L), 83.2 (d, ²J_{C-P} = 6.6 Hz, CH L), 10.1 (s, C₅Me₅) ppm. ¹¹⁹Sn{¹H} NMR (CH₂Cl₂-d₂, 25 °C): δ –20.3 (cdd, ²J_{Sn-P} \approx 421 Hz) ppm. [α]_D²⁷: 27.3 (c 0.20, CHCl₃).

(2c) Yield: 50%. Anal. Calc. for $C_{47}H_{39}Cl_3O_2P_2RuSn (1023.95)$: C, 55.08; H, 3.84. Found: C, 55.06; H, 3.90%. ¹H NMR (CH₂Cl₂-*d*₂, 25 °C): δ 8.30–6.15 (34H, Ph + H₅₋₇ C₉H₇), 5.68 (dd, ³J_{H-P} = 12.1 Hz, ³J_{H-H} = 8.1 Hz, 1H, C<u>H</u> L), 5.22 (br d, ³J_{H-H} = 2.5 Hz, 1H, H₂ C₉H₇), 5.07 (br s, 1H, H_{1,3} C₉H₇), 4.94 (dd, ³J_{H-P} = 9.2 Hz, ³J_{H-H} = 8.1 Hz, 1H, C<u>H</u> L), 4.59 (br s, 1H, H_{1,3} C₉H₇) ppm. ¹³C{¹H} NMR (CH₂Cl₂-*d*₂, 25 °C): δ 146.2–124.1 (Ph + C₅₋₈ C₉H₇), 110.0 (d, ²J_{C-P} = 2.7 Hz, C_{4,9} C₉H₇), 104.2 (d, ²J_{C-P} = 3.7 Hz, C_{4,9} C₉H₇), 88.7 (br s, C₂ C₉H₇), 86.7 (dd, ²J_{C-P} = 9.8 Hz, ³J_{C-P} = 1.1 Hz, CH L), 82.7 (br d, ²J_{C-P} = 5.7 Hz, CH L), 73.5

(s, C_{1,3} C₉H₇), 69.2 (br d, ${}^{2}J_{C-P} = 6.5$ Hz, C_{1,3} C₉H₇) ppm. ${}^{31}P{}^{1}H$ } NMR (CH₂Cl₂-d₂, 25 °C) δ : 163.6 (d, ${}^{2}J_{PP} = 50.8$ Hz, ${}^{2}J_{P-Sn}^{119} = 428.0$ Hz, ${}^{2}J_{P-Sn}^{119} = 416.3$ Hz), 159.1 (d, ${}^{2}J_{PP} = 50.8$, ${}^{2}J_{P-Sn}^{119} = 363.1$ Hz, ${}^{2}J_{P-Sn}^{119} = 349.1$ Hz) ppm. ${}^{119}Sn{}^{1}H$ } NMR (CH₂Cl₂-d₂, 25 °C): δ -36.7 (dd, ${}^{2}J_{Sn-P} = 430.8$ Hz, ${}^{2}J_{Sn-P} = 365.2$ Hz) ppm. [α] ${}^{2}D{}^{-7}$: -170.6 (c 0.19, CHCl₃).

4.3.3. $[Ru(SnH_3)(Cp')L][Cp' = \eta^5 - C_5H_5(\mathbf{3a}), \eta^5 - C_5Me_5(\mathbf{3b}), \eta^5 - C_9H_7(\mathbf{3c})]$

An excess of NaBH₄ (1.00 mmol) in 20 mL of ethanol was added to a suspension of [Ru(SnCl₃) (Cp')L] (**2a-c**) (0.05 mmol) in ethanol. The reaction mixture was stirred at room temperature for 1 h and then the solvent was removed under vacuum giving a yellow solid. The complex was extracted from this solid with 15 mL of toluene using a celite[®] column for filtration. Extracts were evaporated to dryness to give an orange oil that was treated with ethanol (3 mL) giving a yellow product that was filtered out and dried under vacuum.

(3b) Yield: 57%. Anal. Calc. for $C_{48}H_{50}O_2P_2RuSn$ (942.13): C, 61.14; H, 5.35. Found: C, 61.62; H, 5.60%. FT-IR (ATR): ν_{Sn-H} 1698 (m) cm^{-1.1}H NMR (C_6H_6 - d_6 , 25 °C): δ 8.12–6.45 (m, 30H, Ph), 6.08 (dd, $^3J_{H-P}$ = 12.4 Hz, $^3J_{H-H}$ = 7.9 Hz, 1H, CH L), 5.16 (dd, $^3J_{H-H}$ = 7.9 Hz, $^3J_{H-P}$ = 6.4 Hz, 1H, CH L), 4.45 (s, J_{H-Sn}^{119} = 1204.0 Hz, J_{H-Sn}^{117} = 1152.1 Hz, 3H, SnH₃), 1.43 (br s, 15H, C_5Me_5) ppm. $^{31}P_1^{11}H$ NMR (C_6H_6 - d_6 , 25 °C) δ : AB system, δ_A 165.7, δ_B 163.8 ($^2J_{AB}$ = 60.2 Hz) ppm. [αI_D^{27} : -58.5 (c 0.20, Toluene).

(3c) Yield: 66%. Anal. Calc. for $C_{47}H_{42}O_2P_2RuSn$ (922.07): C, 61.17; H, 4.59. Found: C, 59.41; H, 4.45%. FT-IR (ATR): v_{Sn-H} 1738 (m) cm^{-1.1}H NMR (C₆H₆-d₆, 25 °C): δ 8.20–6.25 (m, 34H, Ph + H₅₋₇ C₉H₇), 5.85 (dd, ³J_{H-P} = 12.2 Hz, ³J_{H-H} = 8.0 Hz, 1H, C<u>H</u> L), 5.21 (t, ³J_{H-H} = 2.6 Hz, 1H, H₂ C₉H₇), 5.04 (cdd, ³J_{H-P} = ³J_{H-H} = 7.2 Hz, 1H, C<u>H</u> L), 4.70 (s, 1H, H_{1,3} C₉H₇), 4.60 (s, 1H, H_{1,3} C₉H₇), 4.09 (s, J_{H-Sn}^{1H} = 1316 Hz, J_{H-Sn}^{1H} = 1256 Hz, 3H, SnH₃) ppm. ³¹P{¹H} NMR (C₆H₆-d₆, 25 °C) δ : AB system, δ_A 165.3 (²J_P^{1H}_{Sn} ≈ 266.0 Hz, ²J_{P-Sn}^{1H} ≈ 256.0 Hz), δ_B 163.8 (²J_P^{1H}_{Sn} ≈ 288.0 Hz, ²J_P^{1H}_{Sn} ≈ 276.0 Hz) (²J_{AB} = 55.9 Hz) ppm. [α]_P²⁷: -123.3 (c 0.20, C₆H₆).

4.3.4. [Ru(SnMe₃) (Cp')L][Cp' = η^5 -C₅H₅ (**4a**), η^5 -C₅Me₅ (**4b**), η^5 -C₉H₇ (**4c**)]

An excess of MgBrMe (0.60 mmol, 0.2 mL of 3 M solution in diethyl ether) was added to a suspension of 0.10 mmol of the corresponding trichlorostannyl complexes [Ru(SnCl₃) (Cp')L] (**2a-c**) in 20 mL of diethyl ether cooled to $-196 \degree$ C. The reaction mixture was allowed to reach room temperature and stirred for 6 h. The solvent was removed under vacuum, and the brown residue was dissolved in toluene (10 mL) and filtered through celite[®]. The solvent was removed under vacuum, and the brown residue was treated with ethanol (2 mL), affording a yellow product that was filtered, washed with ethanol (2 × 3 mL) and dried under reduced pressure.

(4a) Yield: 52%. Anal. Calc. for $C_{46}H_{46}O_2P_2RuSn$ (912.58): C, 60.54; H, 5.08. Found: C, 60.72; H, 5.19%. ¹H NMR ($C_6H_6-d_6$, 25 °C) δ : 8.10–6.80 (m, 30H, Ph), 5.72 (dd, ³J_{H-P} = 13.2 Hz, ³J_{H-H} = 9.2 Hz, 1H, C<u>H</u> L), 5.19 (cdd, ³J_{H-P} = ³J_{H-H} = 9.2 Hz, 1H, C<u>H</u> L), 4.70 (s, 5H, C5<u>H</u>5), 0.63 (s, ²J_{H-119Sn} = 35.2 Hz, 9H, SnMe₃) ppm. ³¹P{¹H} NMR ($C_6H_6-d_6$, 25 °C) δ : AB system, δ_A 164.5, δ_B 163.7 (²J_{AB} = 58.3 Hz) ppm. ¹³C{¹H}

 $\begin{array}{l} \mbox{NMR } (C_{6}H_{6}\mbox{-}d_{6},\,25\ ^{\circ}\mbox{C})\ \delta:\ 151.1\mbox{-}127.4\ (Ph),\,85.4\ (br\ t,\ ^{2}J_{C\mbox{-}P}=3.0\ Hz,\\ \underline{C}H\ L),\,82.8\ (s,\ \underline{C}H\ L),\,82.4\ (s,\ \underline{C}_{5}H_{5}),\,-1.4\ (s,\ J_{Sn\mbox{-}C}=80.6\ Hz,\ SnMe_{3})\\ ppm.\ ^{119}Sn\{^{T}H\}\ \ NMR\ \ (C_{6}H_{6}\mbox{-}d_{6},\ 25\ ^{\circ}\mbox{C})\ \delta:\ 23.6\ (cdd,\ ^{2}J^{119}{}_{Sn\mbox{-}P}\approx260\ Hz)\ ppm.\ [\alpha]_{D}^{24}:\ -60.1\ (c\ 0.10,\ Toluene). \end{array}$

(4b) Yield: 65%. Anal. Calc. for $C_{51}H_{56}O_2P_2RuSn$ (982.71): C, 62.33; H, 5.74. Found: C: 62.55; H: 5.80%. ¹H NMR ($C_6H_6-d_6$, 25 °C): δ 7.85–6.68 (m, 30H, Ph), 5.90 (dd, ³J_{H-P} = 11.2 Hz, ³J_{H-H} = 7.9 Hz, 1H, C<u>H</u> L), 4.98 (dd, ³J_{H-P} = 9.7 Hz, ³J_{H-H} = 7.9 Hz, 1H, C<u>H</u> L), 1.40 (s, 15H, C_5Me_5), 0.30 (s, ²J_{H-119Sn} ≈ 17 Hz, 9H, SnMe_3) ppm. ³¹P{¹H} NMR ($C_6H_6-d_6$, 25 °C) δ : 172.2 (d, ²J_{PP} = 59.7 Hz, ²J_{P-119Sn} = 293.5 Hz, ²J_{P-17Sn} = 282.5 Hz) ppm. ¹³C{¹H} NMR ($C_6H_6-d_6$, 25 °C): δ 147.1–127.3 (Ph), 93.7 (s, C_5Me_5), 85.4 (d, ²J_{C-P} = 10.1 Hz, CH L), 83.3 (d, ²J_{C-P} = 6.1 Hz, CH L), 10.4 (s, C_5Me_5), 1.4 (s, J_{C-}^{119}s_n = 37.2 Hz, SnMe_3) ppm. ¹¹⁹Sn NMR ($C_6H_6-d_6$, 25 °C): δ 304.5 (cdd, ²J₁₁₉ s_n - ≈ 292 Hz) ppm. [α] 2 ⁴: 163.8 (c 0.20, Toluene).

(4c) Yield: 55%. Anal. Calc. for: $C_{50}H_{48}O_2P_2RuSn$ (962.64): C, 62.39; H, 5.03%. Found: C, 62.44; H, 5.20%. ¹H NMR (CH₂Cl₂-d₂, 25 °C) δ : 7.70–6.20 (m, 34H, Ph + H₅₋₇ ind.), 5.71 (s, 1H, H₂ C₉H₇), 5.05 (s, 1H, H₁₃ C₉H₇), 5.01 (dd, ³J_{H-P} = 10.7 Hz, ³J_{H-H} = 7.8 Hz, 1H, C<u>H</u> L), 4.64 (s, 1H, H₁₃ C₉H₇), 4.40 (dd, ³J_{H-P} = 10.5 Hz, ³J_{H-H} = 7.8 Hz, 1H, C<u>H</u> L), -0.09 (s, ²J_H¹⁹S_n = 62.8 Hz, ²J_H¹⁷S_n = 19.04 Hz, 9H, CH₃) ppm. ³¹P{¹H} NMR (CH₂Cl₂-d₂, 25 °C) δ : AB system, δ_A 168.0 (²J_H¹⁹S_n = 290.0 Hz, ²J_H¹⁷S_n = 276.1 Hz), δ_B 166.1 (²J_H¹⁹S_n = 207.0 Hz, ²J_H¹⁷S_n = 199.2 Hz) (²J_{AB} = 56.5 Hz) ppm. ¹³C{¹H} NMR (CH₂Cl₂-d₂, 25 °C): δ 149.8–120.5 (Ph + C₅₋₈ C₉H₇), 113.1 (br s, C_{4,9} C₉H₇), 106.4 (br s, C_{4,9} C₉H₇), 91.5 (d, ²J_{C-P} = 4.3 Hz, C₂ C₉H₇), 84.8 (d, ²J_{C-P} = 9.3 Hz, CH L), 83.1 (d, ²J_{C-P} = 6.6 Hz, CH L), 70.7 (d, ²J_{C-P} = 9.8 Hz, C_{1,3} C₉H₇), 67.3 (d, ²J_{C-P} = 10.6 Hz, C_{1,3} C₉H₇), -2.0 (s, J_L¹¹⁹S_n = 91.1 Hz, CH₃) ppm. ¹¹⁹Sn{¹H} NMR (CH₂Cl₂-d₂, 25 °C) δ : ABM system (M = ¹¹⁹Sn) 48.6 (²J_{MA} = 290.0 Hz, ²J_{MB} = 207.0 Hz) ppm. [α]_D²⁷: 646.9 (c 0.23, CHCl₃).

4.3.5. $[Ru{Sn(C \equiv CPh)_3}(Cp')L][Cp' = \eta^5 - C_5H_5 (5a), \eta^5 - C_5Me_5 (5b), \eta^5 - C_9H_7 (5c)]$

An excess of lithium phenylacetylide (1.70 mmol, 1.70 mL of a 1 M THF solution) was added to a suspension of 0.17 mmol of the corresponding trichlorostannyl complexes [Ru(SnCl₃) (Cp')L] (**2a-c**) in 15 mL diethyl ether cooled to $-196 \degree$ C. The mixture was warmed to room temperature and stirred for 3 h. The solvent was removed under vacuum, and the yellow residue was dissolved in toluene (20 mL) and filtered through celite[®]. The solvent was removed under vacuum affording an oil that was treated with ethanol (3 mL). The yellow solid obtained was filtered, washed with ethanol (2 × 3 mL) and dried under vacuum.

Table 5

Crystal data and structure refinement details for the 1b, 2b and 2c compounds.

	1 b	2 b·2CHCl ₃	2c · CHCl₃
Empirical formula	C48H47ClO2P2Ru	C ₅₀ H ₄₉ Cl ₉ O ₂ P ₂ RuSn	C48H40Cl6O2P2RuSn
Formula weight	854.32	1282.64	1143.20
Temperature (K)	293 (2)	293 (2)	100 (2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Tetragonal	Orthorhombic
Space group Unit cell dimensions	P21	P41	P2 ₁ 2 ₁ 2 ₁
a (Å)	17.28 (2)	15.3139 (5)	13.3511 (5)
b (Å)	11.666 (14)	15.3139 (5)	18.2904 (8)
c (Å)	20.74 (3)	23.1267 (10)	19.3411 (7)
β	102.21 (3)°	90 °	90 °
Volume (Å ³)	4086 (9)	5423.6 (3)	4723.0 (3)
Z	4	4	4
Density (calculated) (Mg/m ³)	1.389	1.571	1.608
Absorption coefficient (mm ⁻¹)	0.566	1.279	1.294
F (000)	1768	2568	2280
Crystal size (mm)	$0.21 \times 0.09 \times 0.06$	$0.18 \times 0.11 \times 0.09$	$0.28 \times 0.07 \times 0.06$
θ range for data collection (°)	2.24-26.47	2.58-28.32	2.38-28.33
Index ranges	$-21 \le h \le 19$	$-15 \leq h \leq 19$	$-17 \leq h \leq 17$
	$-14 \leq k \leq 14$	$-20 \leq k \leq 13$	$-24 \le k \le 23$
	$-25 \le l \le 25$	$-30 \le l \le 30$	$-25 \le l \le 25$
Reflections collected	57446	43324	42456
Independent reflections	16732 [R (int) = 0.0446]	13359 [R (int) = 0.0400]	11711 [R (int) = 0.0347]
Data completeness	0.995	0.999	0.996
Abs. Correc.	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.7454 and 0.5166	0.7457 and 0.6182	0.9229 and 0.7093
Refinement method	Full-matrix least-squares on F2	Full-matrix least-squares on F2	Full-matrix least-squares on F2
Data/restraints/parameters	16732/1/960	13359/1/591	11711/0/541
Goodness-of-fit on F ²	0.686	1.022	1.033
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0319$	$R_1 = 0.0399$	$R_1 = 0.0277$
	$wR_2 = 0.0889$	$wR_2 = 0.0776$	$wR_2 = 0.0536$
R indices (all data)	$R_1 = 0.0378$	$R_1 = 0.0520$	$R_1 = 0.0333$
	$wR_2 = 0.0963$	$wR_2 = 0.0831$	$wR_2 = 0.0555$
Absolute structure parameter	0.027 (15)	-0.030 (16)	-0.022 (13)
Largest diff. peak and hole, e.Å $^{-3}$	0.588 and -0.965	1.105 and -1.142	0.630 and -0.590

C₅Me₅) ppm. ¹¹⁹Sn{¹H} NMR (CH₂Cl₂- d_2 , 25 °C): δ –233.2 (dd, ²J¹¹⁹_{Sn-PA=}369.6 Hz, ²J¹¹⁹_{Sn-PB=}395.0 Hz) ppm. [α]²⁷_D: 134.5 (c 0.12, CHCl₃).

(5c) Yield: 70%. Anal. Calc. for $C_{71}H_{54}O_2P_2RuSn$ (1220.92): C, 69.85; H, 4.46. Found: C, 70.32; H, 4.21%. FT-IR (ATR): $v_{C \equiv C}$ 2125 (m) cm^{-1.1}H NMR (CH₂Cl₂-d₂, 25 °C) δ: 7.51–6.21 (m, 49H, Ph + H₅₋₇ C₉H₇), 5.86 (s, 1H, H₂ C₉H₇), 5.72 (dd, ³J_{H-P} = 11.4 Hz, ³J_{H-H} = 8.0 Hz, 1H, C<u>H</u> L), 5.06 (s, 1H, H_{1,3} C₉H₇), 5.03 (s, 1H, H_{1,3} C₉H₇), 4.63 (cdd, ³J_{H-P} = ³J_{H-H} = 8.0 Hz, 1H, C<u>H</u> L) ppm. ³¹P{¹H} NMR (CH₂Cl₂-d₂, 25 °C): δ AB, δ_A 166.6 (²J_P¹⁹S_n = 409.0 Hz, ²J_P¹⁷S_n = 392.0 Hz), δ_B 162.7 (²J_P¹⁹S_n = 343.0 Hz, ²J_P¹⁷S_n = 331.0 Hz) (²J_{AB} = 52.8 Hz) ppm. ¹³C{¹H} NMR (CH₂Cl₂-d₂, 25 °C): δ 148.3–122.5 (Ph + C₅₋₈ C₉H₇), 109.0 (s, C_{4,9} C₉H₇), 107.2 (s, C_β acetylide, J_C¹⁹S_n = 51.3 Hz), 105.2 (s, C_{4,9} C₉H₇), 99.6 (s, C_α acetylide, J_C¹⁹S_n = 258.9 Hz), 92.7 (d, ²J_{C-P} = 3.4 Hz, C₂ C₉H₇), 85.4 (d, ²J_{C-P} = 9.5 Hz, CH L), 83.0 (d, ²J_{C-P} = 6.0 Hz, CH L), 71.2 (d, ²J_{C-P} = 5.8 Hz, C_{1,3} C₉H₇), 69.7 (d, ²J_{C-P} = 6.8 Hz, C_{1,3} C₉H₇) ppm. ¹¹⁹Sn{¹H} NMR (CH₂Cl₂-d₂, 25 °C): δ – 267.0 (dd, ²J¹¹⁹S_n P_A = 409.0 Hz, ²J¹¹⁹S_{n-PB} = 343.0 Hz) ppm. [α]_D²⁷: 425.5 (c 0.19, CHCl₃).

4.3.6. Crystal structure determination of $[RuCl(\eta^5-C_5Me_5)L]$ (**1b**), $[Ru(SnCl_3) (\eta^5-C_5Me_5)L]$ (**2b**), and $[Ru(SnCl_3) (\eta^5-C_9H_7)L]$ (**2c**)]

Crystallographic data were collected on Bruker D8 Venture diffractometer at CACTI (Universidade de Vigo) with graphite monochromated Mo K α radiation (λ = 0.71073 Å) and were corrected for Lorentz and polarization effects. APEX 3 software was used for collecting data frames, indexing reflections, and determining lattice parameters, SAINT [18] for integration of intensity of reflections and scaling, and SADABS [19] for empirical absorption correction. The crystallographic treatment of the compounds **1b**, **2b** and **2c** was performed with the SHELXL97 program [20]. The

structures were solved by direct methods and refine by a fullmatrix-least-squares based of F^2 . Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were included in idealized positions and refined with isotropic displacement parameters. Details of crystal data and structural refinement are given in Table 5.

4.4. Computational details

DFT calculations were carried out with the Gaussian09 package [21]. X-Ray geometries were taken as starting points to perform DFT optimizations at the B3LYP/cc-pVDZ level. Heavy atoms, Ru and Sn, were described using the cc-pVDZ-PP basis set, which includes small-core relativistic pseudopotentials that account also for relativistic effects [9] Analytical vibrational frequency calculations were carried out to establish the minimum nature of each conformation. Later, NBO analysis [10] and calculation of Wiberg bond indices [11] were performed at the B3LYP6/cc-pVDZ (-PP) level.

Acknowledgements

Financial support from Xunta de Galicia (Spain) (research Project ED431D 2017/0) is gratefully acknowledged. We thank the Structural Determination Service of the Universidade de Vigo – CACTI for X-ray diffraction measurements and the collections of NMR data.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jorganchem.2018.08.017.

82

[1] (a) X. Miao, A. Blokhin, A. Pasynskii, S. Nefedov, S.N. Osipov, T. Roisnel, C. Bruneau, P.H. Dixneuf, Organometallics 29 (2010) 5257–5262:

- (b) M.P. Mingos, R.H. Crabtree (Eds.), Comprehensive Organometallic Chemistry, Elsevier, Amsterdam, 2007;
 - (c) W.R. Roper, L.J. Wright, Organometallics 25 (2006) 4704-4718:

(d) B. Eguillor, M. Esteruelas, M. Oliván, E. Oñate, Organometallics 24 (2005) 1428-1438

(e) A.G. Davies, Organotin Chemistry, Wiley-VCH, Weinheim, Germany, 2004; (f) F.G.A. Stone, E.W. Abel, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, New York, 1995;

- (g) M.F. Lappert, R.S. Rowe, Coord. Chem. Rev. 100 (1990) 267-292;
- (h) M.S. Holt, W.L. Wilson, J.H. Nelson, Chem. Rev. 89 (1989) 11-49.
- [2] (a) M. Novák, M. Bouška, L. Dostál, M. Lutter, K. Jurkschat, J. Turek, F. De Proft, Z. Růžičková, R. Jambor, Eur. J. Inorg. Chem. (2017) 1292–1300;

(b) G. Albertin, S. Antoniutti, J. Castro, S. Da Lio, Organometallics 32 (2013) 3651-3661:

(c) G. Albertin, S. Antoniutti, J. Castro, Organometallics 29 (2010) 3808-3816; (d) G. Albertin, S. Antoniutti, S. García-Fontán, G. Zanardo, Organometallics 27 (2008) 2789-2794:

(e) G. Albertin, S. Antoniutti, A. Bacchi, G. Pelizzi, G. Zanardo, Organometallics 27 (2008) 4407-4418:

- (f) G. Albertin, S. Antoniutti, J. Castro, S. García-Fontán, M. Noe, Dalton Trans. (2007) 5441-5452:
- (g) H. Braunschweig, H. Bera, B. Geibel, R. Dörfler, D. Götz, F. Seeler, T. Kupfer, K. Radacki, Eur. J. Inorg. Chem. (2007) 3416-3424;

(h) M.M. Möhlen, C.E.F. Rickard, W.R. Roper, G.R. Whittell, L.J. Wright, Inorg. Chim. Acta. 360 (2007) 1287-1297;

- (i) W.R. Roper, L.J. Wright, Organometallics 25 (2006) 4704-4718.
- [3] (a) M.S. Winston, E.R. Batista, P. Yang, A.M. Tondreau, J.M. Boncella, Inorg. Chem. 55 (2016) 5534-5539.
- [4] (a) P.A. Robles-Dutenhefner, E.M. Moura, G.J. Gama, H.G.L. Siebald, E.V. Gusevskaya, J. Mol. Catal. Chem. 164 (2000) 39-47;
 - (b) B.A.C. Silva, A.P. Guimaraes de Sousa, J.D. Ardinsson, H.G.L. Siebald, E. Moura, E.N. Santos, N.S. Mohallem, R. Montero Lago, Mater. Res. 6 (2003) 137-144.
- [5] (a) A. Fuerte, M. Iglesias, F. Sánchez, J. Organomet. Chem. 588 (1999) 186–194;

(b) V.I. Tararov, R. Kadyrov, T.H. Riermeier, J. Holz, A. Börner, Tetrahedron Asymmetry 10 (1999) 4009-4015;

(c) G. Zhu, X. Zhang, J. Org. Chem. 63 (1998) 3133-3136;

(d) R.K. Sharma, A.G. Samuelson, Tetrahedron Asymmetry 18 (2007) 2387-2393;

(e) R.K. Sharma, M. Nethaji, A.G. Samuelson, Tetrahedron Asymmetry 19 2008) 655-663.

- [6] P. Bergamini, V. Bertolasi, M. Cattabriga, V. Ferretti, U. Loprieno, N. Mantovani, L. Marvelli, Eur. J. Inorg. Chem. (2003) 918–925.
- [7] M. Kawashima, R. Hirata, Jpn. Kokai Tokkyo Koho (1994). JP 06345789 A 19941220.
- [8] (a) R.P. Nair, K. Tae Ho, B.J. Frost, Organometallics 28 (2009) 4681-4688; (b) M.I. Bruce, B.G. Ellis, B.W. Skelton, A.H. White, Organometallics 22 (2003)

3184-3198;

- (c) I. De los Ríos, M. Jimenez Tenorio, J. Padilla, M.C. Puerta, P. Valerga, J. Chem. Soc., Dalton Trans. (1996) 377-381;
- (d) J.R. Torres-Lubián, M.E. Sánchez-Castro, P. Juárez-Saavedra, J. Hernández-Martínez, B. Gordillo-Román, M.A. Paz-Sandoval, J. Organomet. Chem. 663

(2002) 127-133; (e) S.A. Serron, L. Luo, E.D. Stevens, S.P. Nolan, Organometallics 15 (1996) 5209-5215;

(f) G. Consiglio, F. Morandini, G. Ciani, A. Sirone, M. Kretschmer, J. Am. Chem. Soc. 105 (1983) 1391–1392;

(g) E. Moura, H.G.L. Siebald, G.M. De Lima, Polyhedron 21 (2002) 2323–2331. [9] (a) T.H. Dunning Jr., J. Chem. Phys. 90 (1989) 1007–1023;

- (b) D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98 (1993) 1358-1371;
- (c) K.A. Peterson, J. Chem. Phys. 119 (2003) 11099-11112;
- (d) K.A. Peterson, D. Figgen, M. Dolg, H. Stoll, J. Chem. Phys. 126 (2007), 124101-1 - 124101-12.
- [10] (a) J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102 (1980) 7211–7218;
 (b) F. Weinhold, J. Comput. Chem. 33 (2012) 2363–2379 (and references) wherein). (c) C.R. Landis, F. Weinhold, in: G. Frenking, S. Shaik (Eds.), The Chemical
 - Bond: Fundamental Aspects of Chemical Bonding, Wiley-VCH, Weinheim, 2014
- [11] K.B. Wiberg, Tetrahedron 24 (1968) 1083–1096.
- [12] A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735-746.
- [13] (a) G. Chalasinski, M.M. Szczesniak, Chem. Rev. 100 (2000) 4227–4252;
 (b) N. Kobko, J.J. Dannenberg, J. Phys. Chem. 105 (2001) 1944–1950.
- [14] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, third ed., Butterworth/Heinemann, London/Oxford, 1998.
- [15] M.I. Bruce, C. Hameister, A.G. Swincer, R.C. Wallis, Inorg. Synth. 21 (1982) 78.
- [16] M.S. Chinn, D.M. Heinekey, J. Am. Chem. Soc. 112 (1990) 5166–5175.
- [17] L.A. Oro, M.A. Ciriano, M. Campo, C. Foces Foces, F.H. Cano, J. Organomet.
- Chem. 289 (1985) 117-131. [18] SAINT Version 6.01, Data Integration Software Package, Bruker Analytical X-
- Ray Systems Inc., Madison, Wisconsin, USA, 1997. [19] G.M. Sheldrick, SADABS. A Computer Program for Absorption Corrections, University of Göttingen, Germany, 1996.
- [20] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112–122.
 [21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase - Gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Broth-ers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghava-Chari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, V. Fox, Gaussian 09, Revision A01, Gaussian, Inc., Wallingford, CT, USA, 2009.