
CIL to Java-bytecode Translation for Static Analysis Leveraging

Pietro Ferrara

Julia SRL, Italy

pietro.ferrara@juliaso�.com

Agostino Cortesi

Università Ca’ Foscari Venezia, Italy

cortesi@unive.it

Fausto Spoto

Università di Verona, Italy

spoto@univr.it

ABSTRACT
A formal translation of CIL (i.e., .Net) bytecode into Java bytecode is

introduced and proved sound with respect to the language seman-

tics. �e resulting code is then analyzed with Julia, an industrial

static analyzer of Java bytecode. �e overall process of translation

and analysis is fast, scales up to industrial programs, and introduces

a negligible number of false alarms. �e main result of this work is

to leverage existing, mature, and sound analyzers for Java bytecode

by applying them to the (translated) CIL bytecode.

KEYWORDS
Static Analysis, bytecode, JVM, .Net, CIL.

1 INTRODUCTION
Static analysis infers, at compile-time, properties about the runtime

behavior of computer programs. It allows one to verify, for instance,

the absence of runtime errors or security breaches. Static analysis

applies also to compiled code in assembly or bytecode format. �is

is particularly interesting for applications distributed on the Inter-

net, or downloaded from public (and possibly unsafe) application

repositories (e.g., the Google Play Store), when the source code is

not available, but the user would like to statically check some safety

or security properties.

�e analysis of Java bytecode for the Java Virtual Machine (from

now on, JB) has a long research tradition and many analyzers

exist [24]. Some analyses build on formal mathematical roots, such

as abstract interpretation [13, 20, 23]. Moreover, JB makes the

design of static analysis easier by requiring bytecode to be type-

checkable [19] and without unsafe operations such as free pointer

operations. On the contrary, CIL bytecode, that is, the compiled

bytecode used for the .Net platform (from now on, just CIL) , has

not received much a�ention from the static analysis community yet.

Moreover, CIL can be used in an unsafe way, that is, allowing free

pointer operations, which makes its static analysis harder. However,

these operations are very o�en used in very controlled contexts,

hence, in most cases, a static analyzer could possibly capture their

actual behavior anyway.

Despite clear di�erences, JB and CIL share strong similarities,

being both low-level object-oriented languages where objects are

stored and shared in the heap. Hence, it is tempting to leverage

mature existing static analyses and tools for JB by translating CIL

into equivalent JB and running the tools on the la�er. Obviously, this

introduces issues about the exact meaning of equivalence between

CIL and its translation into JB. Moreover, the translation should

not introduce code artifacts that confuse the analyzer and should

work on industrial-size CIL applications, supporting as many unsafe

pointer operations as possible.

�e main contribution of this work is the introduction of a trans-

lation of CIL to JB that is (i) theoretically sound, and (ii) e�ective in

practice, so that an industrial static analyzer for JB can be applied to

.Net (and in particular C#) programs. More languages compile into

JB (e.g., Scala) and CIL (e.g., VB.Net and F#), with distinct features

and code structures. Here, we focus on Java and C#, that have

similar structure and compile into comparable bytecode.

We start by formalizing the concrete semantics of a representa-

tive subset of CIL and JB, and the translation of CIL into JB. �en,

we prove this translation sound, that is, the concrete semantics

of the initial CIL program is equivalent to that of the translated

JB program. �is guarantees that, if we prove a property of the

JB program, then such property holds also for the original CIL

program. �en we present a deep experimental evaluation over

industrial-size open source popular programs, by applying the Julia

static analyzer [23] to the translated JB.

We focus on three main research issues about scalability, preci-

sion, and coverage of the overall approach:

Research�estion 1 (Scalability). Does the CIL to JB trans-
lation scale up, that is, (i) can it deal with libraries of industrial
size (100KLOCs) in a few minutes, and (ii) is its computational time
comparable to that required by the static analysis phase?

Research�estion 2 (Precision). Does the CIL to JB transla-
tion introduce less than 10% of the false alarms produced by the static
analyzer?

Research �estion 3 (Libraries). Despite supporting only a
subset of CIL, does the CIL to JB translation succeed on at least 95%
of the system libraries?

Notice that it is crucial that a static analyzer understands the be-

haviour of system libraries, as otherwise it could only rely on

manual annotations or on (possibly unsound) assumptions on their

execution. System libraries need to access memory through unsafe

pointer. Java allows such behaviour through native methods (writ-

ten in languages other than Java and bound through the Java Native

Interface), while .Net allows unsafe pointers in its code. In these

cases, our translation produces Java native methods. We ensure

that the e�ort of manually annotating .Net libraries is comparable

to that needed for Java.

1.1 Related Work
Few a�empts have been made in the past to translate CIL to JB.

Grasshopper is probably the most popular one. However, it is

not available any more
1
. As far as we can see, it was abandoned

about a decade ago, and we cannot make any comparison with

our translation. A similar tool was CLR2JVM [2]: it translates

CIL to an intermediate XMLCLR representation, that can be then

translated into XML JVM , and �nally to JB. As far as we can see
2
,

1
We were unable to access the website h�p://dev.mainso�.com, that seems to be the

website of the tool from past forum discussions (h�p://stackover�ow.com/questions/

95163/di�erences-between-msil-and-java-bytecode)

2
h�p://xmlvm.org/documentation/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' Foscari

https://core.ac.uk/display/223181289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dev.mainsoft.com
http://stackoverflow.com/questions/95163/differences-between-msil-and-java-bytecode
http://stackoverflow.com/questions/95163/differences-between-msil-and-java-bytecode
http://xmlvm.org/documentation/

the tool should read .NET executables, but it failed parsing all the

executable �les of our experiments (see Sec. 5 for the complete list).

�is probably happened because CLR2JVM is not maintained any

more (the last commit to the repository h�ps://sourceforge.net/p/

xmlvm/code/HEAD/tree/trunk/xmlvm/src/clr2jvm/ was more than

six years ago), and it does not support the last CIL versions. Neither

Grasshopper nor CLR2JVM has any documentation or discussion

about how the translation is performed (in particular, how they

handle instructions that are di�erent from CIL to JB such as direct

references). �erefore, as far as we can see our translation from

CIL to JB is the only one that (i) works on recent releases of CIL

and JB, and (ii) is formalized and proved sound.

Other translations between low-level languages exist, justi�ed

by the need of applying veri�cation tools that work on a speci�c

language only. For instance, [9] de�nes a translation from Boogie

into WhyML and proves it sound, as we have done from CIL to JB.

Similar translations work also at runtime, in particular inside a just-

in-time compiler, as in [12]. However, we did not �nd any literature

on the translation of CIL into JB for industrial-size so�ware.

Many other static analysis tools for the .Net platform exist, in

particular for C# code. �ere are tools that verify compliance to

some guideline, such as Fxcop [22] and Coverity Prevent [15]. Other

tools, such as NDepend [5] and CodeMetrics [6], provide metrics

about the code under analysis. ReSharper [18] applies syntactical

code inspections, �nds code smells and guarantees compliance to

coding standards. As far as we can see, there exist only two main

fundamental tools with scienti�c base: (i) Spec# [11], an extension

of C# with static checking of various kinds of manual speci�cations,

and (ii) CodeContracts [21], an abstract interpretation-based static

analyzer for CIL. In the Java world, the number of static analyzers

based on syntactic reasoning, such as Checkstyle [1], FindBugs [4]

and PMD [7], is comparable to that for .Net. However, Java a�racted

much more a�ention from the scienti�c community, and more se-

mantic analyzers have been introduced during the last decade, such

as CodeSonar [3], �readSafe [10] and Julia [23]. Few semantic an-

alyzers, such as WALA [8], have been applied to various languages

(e.g., Java and JavaScript), but with ad-hoc source translations.

Our approach lets us apply all the Java analyzers on .Net pro-

grams (almost) for free, that is, by translating CIL into JB and using

the analyzers as they are (we expect that few manual annotations

are needed to improve the precision of the analysis, in particular

when dealing with library calls). We have also studied performance

and results with Julia. As far as we know, our work is the �rst

translation of CIL into JB for static analysis that is proven to be

sound and comes with evidence that this translation applies to

industrial-size so�ware with results that are comparable in terms of

precision and e�ciency to those obtained on JB.

2 BACKGROUND
We provide here a basic introduction to CIL and JB, with a running

example and discussion on the architecture of the Julia static ana-

lyzer. For an exhaustive de�nition of JB and CIL, see [19] and [16],

respectively.

2.1 CIL and JB
Bytecode is a machine-independent low-level programming lan-

guage, used as target of the compilation of high-level languages,

JB CIL
iadd

add (arith. op.)
ladd
iload i ldloc i

(local vars)

lload i stloc i
aload i ldarg i
istore i
lstore i
astore i
invokevirtual call

(meth. call)
invokestatic
new T newobj T(· · ·)

(objects)getfield f ldfld f
putfield f stfld f
if icmpgt bgt (cond. branch)
dup dup

(stack)
dup2

ldloca i
(pointers)stind

ldind

Figure 1: JB and CIL minimal bytecode languages.

that hence becomes machine-independent. Bytecode languages are

interpreted by their corresponding virtual machine, speci�c to each

execution architecture. Both .Net and Java compile into bytecode.

However, they use distinct instructions and virtual machines. .Net

compiles into CIL, while Java compiles into JB. �ese have strong

similarities: both use an operand stack for temporary values and an

array of local variables standing for source code variables; both are

object-oriented, with instructions for object creation, �eld access

and virtual method dispatch. Despite these undeniable similarities,

CIL and JB di�er for the way of performing parameter passing (CIL

uses a speci�c array of variables for the formal parameters, while

JB merges them into the array of local variables); they handle object

creation di�erently (CIL creates and initializes the object at the

same time, while these are distinct operations in JB); they allocate

memory slots di�erently (in CIL each value uses a slot, while JB

uses 1 or 2 slots per 32- or 64- bit values, respectively); �nally, CIL

uses pointers explicitly, also in type-unsafe ways, while JB has no

notion of pointer.

We focus our formalization on a minimal representative subset

of JB and CIL, as de�ned in Fig. 1. �at �gure presents bytecode

instructions for:

arithmetic: JB has type-speci�c operations, such as iadd and

ladd to add two integer or long values, respectively. Instead, CIL

has generic operations, such as add to add two numerical values

of the same type;

local variables access: JB has a single array of variables for both

local variables and method arguments, and reads and writes values

from this array through xload and xstore, where x is i for

integer values, l for long values and a for references, respectively.

In this array, 64 bits values use two subsequent slots. CIL, instead,

uses two arrays: one for method’s arguments (ldarg i loads the

value of the i-th argument) and one for local variables (ldloc i
and stloc i read and write the i-th local variable, respectively).

In addition, it uses one slot both for 32- and 64-bit variables;

method call: JB has several kinds of method call instructions, such

as invokevirtual and invokestatic. Instead, CIL has a

unique call instruction;

2

https://sourceforge.net/p/xmlvm/code/HEAD/tree/trunk/xmlvm/src/clr2jvm/
https://sourceforge.net/p/xmlvm/code/HEAD/tree/trunk/xmlvm/src/clr2jvm/

object manipulation: in JB, instructions new, getfield, and

putfield allocate a new object, read, and write its �elds, respec-

tively. CIL has similar instructions newobj, that also calls the

constructor, ldfld and stfld;

conditional branch: JB has type-speci�c conditional branch in-

structions such as if icmpgt (to branch if the greater than oper-

ator returns true on the topmost two integer values of the operand

stack); CIL has generic instructions such as bgt;

stack: CIL duplicates the top value of the stack through the dup
instruction. JB does the same with dup for 32 bits values and dup2
for 64 bits values;

pointers: CIL contains some instructions to load the address of a

local variable (ldloca i), and to store and load a value into the

memory cell pointed by a reference (stind and ldind, respec-

tively). Instead, JB has no direct pointer manipulation.

In the rest of this article, StCIL and StJB denote CIL and JB instruc-

tions or statements, respectively. A method (both in CIL and JB) is

represented by (i) a sequence of (possibly conditional and branch-

ing) statements, and (ii) the number and static types of arguments

and local variables.

2.2 Running Example
Fig. 2 shows the running example that Sec. 3 and 4 use to clarify the

formalization. �e C# code in Fig. 2a de�nes a class Wrapper that

wraps an integer value, and a static methodWrappersCollection
that, given an integer n, returns a collection of n wrappers con-

taining values from 0 to n − 1. Fig. 2b presents the (simpli�ed) CIL

obtained from its compilation: as usual with CIL, code is unstruc-

tured (e.g., there are branches at lines 7 and 20), and each source

code statement could be translated into many bytecode statements

(e.g., line 7 in Fig. 2a compiles into lines 3 and 4 in Fig. 2b). Fig. 2c

presents the results of our translation of CIL into JB. Next sections

explain the steps of the translation. First of all, notice some of the

di�erences highlighted in Sec. 2.1. Namely, the type-generic CIL

statement stloc.1 at line 6 of Fig. 2b is translated into the type-

speci�c istore 2 at line 7 of Fig. 2c. Similarly, newobj (line 11)

is translated into multiple JB statements (line 12-16). �e running

example contains few instructions that are not part of the minimal

language de�ned in Sec. 2.1, and in particular (i) ldc and i const
that load constant (integer) values, (ii) blt and if icmplt for

conditional branching when an (integer) value is strictly less than

another, (iii) invokespecial to invoke a speci�c method in JB,

and (iv) ret and areturn to return a (reference) value.

2.2.1 Example with Direct References. Safe C# code adopts

direct pointers only for out and ref method parameters. �ese

parameters can be assigned (and read as well in case of ref) inside

the method, and “any change to the parameter in the called method

is re�ected in the calling method”
3
. In our translation, we build up

wrapper objects to soundly represent their semantics.

Consider for instance the C# code in Fig. 3a. Method init
receives a ref parameter and it increments it by one. �is is

compiled (Fig. 3b) into a method reading the value pointed by the

direct reference (line 5), and writing it (line 8). Our goal is to

translate this code into the Java code in Fig. 3c: we simulate the

direct reference by constructing a wrapper object (line 7), assigning

3
h�ps://msdn.microso�.com/en-us/library/14akc2c7.aspx

Figure 4: Julia’s architecture.

the value of the local variable to �eld value of the wrapper (line

8), and then propagating back the results of the call to init (line

9) by assigning the value of the local variable with the one stored

in the wrapper (line 10). In addition, the ref parameter is replaced

by the type of the wrapper object.

2.3 Julia
Julia [23] is a static analyzer for JB, based on abstract interpreta-

tion [14]. It transforms JB to basic blocks of code, that analyzes

through a �xpoint algorithm. Analyses are constraint-based or de-

notational. Currently, Julia features around 70 checkers, including

nullness, termination, synchronization and taint analysis. Since

Julia works on JB, it may analyse any programming language that

compiles into that bytecode. In particular, we apply Julia to the

compilation of CIL into JB.

Fig. 4 is a high level view of Julia’s architecture. Java code is

compiled by javac into a jar �le, then parsed through the BCEL

library [17]. Julia receives this la�er format, applies its analysis

(by using many components such as the checkers, that de�ne what

properties to check, a �xpoint engine, and the framework specifying

the semantics of some speci�c components of the programming

language), and outputs a list of warnings. �e added component

in our approach is the translation of CIL into BCEL format (grey

arrow in the upper part of Fig. 4). Since a program in BCEL format

can be dumped into a jar �le, we can dump a .dll �le in this format.

We added few annotations in a new framework of Julia to specify

the main components of the .Net framework (e.g., the signatures in

the Object class).

3 CONCRETE SEMANTICS
We formalize here the concrete semantics of CIL and JB.

3.1 Notation
Let Ref and Num be the set of reference and numerical values,

respectively, and let Val = Ref ∪ Num. A stack s of elements in

T is a function in N → T such that ∃i ∈ N : ∀i1 ≤ i : i1 ∈
dom(s) ∧ ∀i2 > i : i2 < dom(s). We will refer to i as the height

of s (height (s)). Given a stack s and an element e , s :: e denotes a

3

https://msdn.microsoft.com/en-us/library/14akc2c7.aspx

1 public class Wrapper
2 {
3 int f ;
4 Wrapper(int f) { this . f = f ; }
5 static ICollection<Wrapper> WrappersCollection(int n)
6 {
7 ICollection<Wrapper> result = new List<Wrapper>();
8 for (int i = 0; i < n; i++)
9 result .Add(new Wrapper(i));

10 return result ;
11 }
12 }

(a) �e C# source code of the running example.

1 static ICollection<Wrapper> WrappersCollection(int n)
2 {
3 newobj List<Wrapper>::.ctor()
4 stloc.0
5 ldc.0
6 stloc.1
7 br #18
8

9 ldloc.0
10 ldloc.1
11 newobj Wrapper::.ctor(int32)
12 call Generic.ICollection<Wrapper>::Add
13 ldloc.1
14 ldc.1
15 add
16 stloc.1
17

18 ldloc.1
19 ldarg.0
20 blt #9
21

22 ldloc.0
23 ret
24 }

(b) �e compilation into CIL of the code in (a).

1 static WrappersCollection(I)LSystem/Collections/Generic/ICollection {
2 new <System/Collections/Generic/List>
3 dup
4 invokespecial <System/Collections/Generic/List.<init>>

5 astore 1
6 iconst 0
7 istore 2
8 goto 23
9

10 aload 1
11 iload 2
12 istore 3
13 new <Wrapper>
14 dup
15 iload 3
16 invokespecial <Wrapper.<init>>

17 invokevirtual <System/Collections/Generic/ICollection.Add>
18 iload 2
19 iconst 1
20 iadd
21 istore 2
22

23 iload 2
24 iload 0
25 if icmplt 10
26

27 aload 1
28 areturn
29 }

(c) �e translation into JB of the CIL in (b).

Figure 2: �e C# code, CIL, and JB of the running example.

1 void init (ref int i)
2 {
3 i++;
4 }
5

6 void run()
7 {
8 int i=0;
9 init (ref i);

10 }

(a) C# code

1 static void init (ref A& a)
2 {
3 ldarg.0
4 ldarg.0
5 ldind. i4
6 ldc. i4.1
7 add
8 stind. i4
9 }

10

11 public static int run()
12 {
13 ldc. i4.0
14 stloc.0
15 ldloca.s 0
16 call void Temporary.Foo::'init '(int32&)
17 }

(b) CIL

1 public static final void init (WrapRef i) {
2 i .value = i .value + 1;
3 }
4

5 public static final int run() {
6 int i = 0;
7 WrapRef wrapper = new WrapRef();
8 wrapper.value = i ;
9 init (wrapper);

10 i = wrapper.value;
11 }

(c) Java code

Figure 3: CIL code using ref parameters.

stack whose top element (that is, the one with the highest index) is

e followed by the stack s .
As usual for object-oriented programming languages, an object

is a map from �eld names to values, and a heap is a map from

references to objects. Formally, Heap : Ref → Field→ Val, where

Field is the set containing all �eld names. fresh(T , h) = (r , h′)
allocates an object of type T in heap h and returns (i) the reference

r of the freshly allocated object, and (ii) the heap h′ resulting from

the allocation of memory on h.

4

For simplicity, we consider only integer (Int) and long (Long)

numerical types (NumTypes = {Int, Long}), and references (Ref).
Given a valuev , typeOf (v) returns its type (Int, Long, or Ref). Since

JB instructions o�en append a pre�x to distinguish instructions

dealing with di�erent types (e.g., iadd and ladd), we de�ne a

support function JVMpre�x that, given a type t , returns the pre�x

of the given type (i.e., i if t = Int, l if t = Long, and a if t = Ref).
We de�ne by WRef an object type with a unique �eld value.

Given a method signature m and a list of arguments L (with

the receiver in the �rst argument if m is not static), body (m,L) :

N→ St returns the body of the method resolving the call, that is, a

sequence of statements (represented by a function mapping indexes

to statements). Similarly, each statement belongs to a method;

hence getBody (st) = b is the body of the method where st occurs.

Finally, isStatic(m) means that m is static.

3.2 CIL
First, we de�ne the concrete semantics of our CIL fragment (Sec. 2.1).

Concrete State A local state in CIL is composed by a stack of

values or reference to local variables Stack : N → Val ∪ RefLoc
(where ri ∈ RefLoc represents the cell’s reference of the i-th local

variable), an array of local variables Loc : N→ Val, and an array of

method arguments Arg : N→ Val. A concrete CIL state consists of

a local state and a heap, that is, ΣCIL = Stack × Loc × Arg × Heap.

Concrete Semantics Fig. 5 shows the concrete CIL semantics

〈st,σ 〉 →CIL σ
′
. For a statement st and an entry state σ , it yields

the state σ ′ resulting from the execution of st over σ ; or a program

label l, meaning that the next instruction to execute is that at l.

Otherwise, the next instruction to execute is implicitly assumed to

be the subsequent one, sequentially (if any).

For the most part, the concrete semantics just formalizes the

runtime semantics of the CIL ECMA Standard [16]. For instance,

rule add pops the two topmost values of the operand stack and

replaces them with their addition. However, its semantics is de�ned

i� the two values have the same type. Instead, ldloc i pushes

to the operand stack the value of the i-th local variables, while

stloc i stores the top of the operand stack into the i-th local

variable. Statements working with objects, such as ldfld and

stfld, read from and write into the heap, if their receiver is not

null. call and callstatic create a frame (i.e., an array of

arguments, an empty array of local variables and an empty operand

stack), execute the callee and leave its returned value on the stack,

if any. For simplicity, the formalization assumes that there is no

returned value. Finally, ldloca i loads the reference to the i-th
local variable to the stack (represented by ri), stind stores the

given value to the given reference, and ldind loads the value

pointed by the given reference.

Running example: Consider the running example in Fig. 2b and

apply the concrete semantics when n is 1, that is, when the entry

state consists of an empty operand stack and of an array of local

variables, while the value of the arguments is [0 7→ 1]. Assume

that newobj allocates the object at address #1. �en a�er the

�rst block (lines 3-7) the address of the object is stored in local

variable 0, local variable 1 (representing variable i of the source

program) holds 0, and address #1 in the heap holds an object of

type List〈Collection〉. Formally, the concrete state at line 7 is

(∅, [0 7→ #1, 1 7→ 0], [0 7→ 1], [#1 7→<>]), where <> stands for the

empty list. �en the body of the for loop (lines 9-16) is executed

once and creates a new Wrapper object (assume at address #2)

wrapping 0, adds it to the list at address #1 and increments counter

i (i.e., local variable 0) by 1. Hence the execution of the concrete

semantics of the body of the loop leads to the concrete state σ =
(∅, [0 7→ #1, 1 7→ 1], [0 7→ 1], [#1 7→< #2 >, #2 7→ { f 7→ 0}])

at line 16. �e condition at line 20 will then route the program

to line 22 (since both argument 0 and local variable 1 hold 1). In

conclusion, the concrete semantics will reach statement ret at

line 23 with a state σCIL equal to σ , but where the operand stack

contains reference #1.

3.3 JB
Let us turn to the concrete semantics of the JB fragment (Sec. 2.1).

Concrete State A local state in JB is composed by a stack of values

Stack : N → Val and an array of local variables Loc : N → Val.
A concrete JB state consists of a local state and a heap, that is,

ΣJB = Stack × Loc × Heap.

Concrete Semantics Fig. 6 reports the concrete JB semantics→JB.

For a statement st and an entry state σ , it yields the state σ ′

resulting from the execution of st over σ .

For the most part, the behavior of this semantics is identical to

that for CIL. �e main di�erences are that JB instructions work on

speci�c types (e.g., while CIL add statement adds two values of the

same type, JB iadd and ladd statements add the values i� they

are both int or long, respectively), and new only allocates a new

object, while CIL newobj statements also calls a constructor.

Running example: �e application of the JB concrete semantics

is similar to that for CIL, but there are two minor di�erences: (i)

there is only one array of local variables representing both CIL

arguments and local variables (e.g., CIL local variable 0 is repre-

sented by JB local variable 1, since the �rst local variable holds

the argument of the method); and (ii) there is an instrumentation
local variable at index 3. �erefore, a�er we apply the JB concrete

semantics from the entry state that maps the argument to 1, we

obtain the concrete state ([0 7→ #1], [0 7→ 1, 1 7→ #1, 2 7→ 1, 3 7→

0], [#1 7→< #2 >, #2 7→ { f 7→ 0}]).

4 FROM CIL TO JB
�is section formalizes and proves correct the translation of CIL

statements into JB statements.

4.1 Concrete States
Function Tσ J K : ΣCIL → ΣJB translates CIL concrete states into

JB concrete states: Tσ J(s, l, a, h)K = (s′, cnvrtLoc(l, a), h′l)
�is function (i) replaces direct reference with wrapper objects,

and (ii) merges the array of local variables and arguments, adjusting

variable indexes for 64 bits values. Formally:

i ∈ dom(s), l = height (s)

s′ =
[
i 7→

{
s(i) if s(i) ∈ Val
ri if s(i) ∈ RefLoc

]

where h′−1 = h, and (h′i , ri) = allocWrp(h′i−1
, i)

allocWrp(h, j) =

(h, null) if s(j) ∈ Val
(h′[r 7→ h(r)[value 7→ l(j)]])

where (r , h′) = fresh(WRef, h)
if s(i) ∈ RefLoc

5

typeOf (v1) = typeOf (v2)

〈add, (s :: v1 :: v2, l, a, h)〉 →CIL (s :: (v1 + v2), l, a, h)
(add)

〈ldloc i, (s, l, a, h)〉 →CIL (s :: l(i), l, a, h)
(ldloc)

〈stloc i, (s :: v, l, a, h)〉 →CIL (s :: l[i 7→ v], a, h)
(stloc)

〈ldarg i, (s :: l, a, h)〉 →CIL (s :: a(i), l, a, h)
(ldarg)

isStatic(m(arg0, · · · , argi)) = false ∧ t , null∧
〈body (m(arg0, · · · , argi), (t, v1, · · · , vi)), (ε, ∅, [0 7→ t, j 7→ vj : j ∈ [1..i]], h)〉 →CIL (s′, l′, a′, h′)

〈call m(arg1, · · · , argi), (s :: t :: v1 :: · · · :: vi , l, a, h)〉 →CIL (s, l, a, h′)
(call)

isStatic(m(arg0, · · · , argi)) = true∧
〈body (m(arg0, · · · , argi), (v1, · · · , vi)), (ε, ∅, [j − 1 7→ vj : j ∈ [1..i]], h)〉 →CIL (s′, l′, a′, h′)

〈call m(arg1, · · · , argi), (s :: v1 :: · · · :: vi , l, a, h)〉 →CIL (s, l, a, h′)
(callstatic)

fresh(T, h) = (r, h1) ∧ 〈body (ctor(arg1, · · · , argi), (v1, · · · , vi)), (ε, ∅, [0 7→ r, j 7→ vj : j ∈ [1..i]], h1)〉 →CIL (s′, l′, a′, h′)

〈newobj T(a1, · · · , ai), (s :: v1 :: · · · :: vi , l, a, h)〉 →CIL (s :: r, l, a, h′)
(newobj)

o , null

〈ldfld f, (s :: o, l, a, h)〉 →CIL (s :: h(o) (f), l, a, h)
(ldfld)

o , null s′ = h(o)[f 7→ v]

〈stfld f, (s :: o :: v, l, a, h)〉 →CIL (s, l, a, h[o 7→ s′])
(stfld)

typeOf (v1) = typeOf (v2) ∧ v1 > v2

〈bgt l, (s :: v1 :: v2, l, a, h)〉 →CIL 〈l, (s, l, a, h)〉
(bgt true)

typeOf (v1) = typeOf (v2) ∧ v1 ≤ v2

〈bgt l, (s :: v1 :: v2, l, a, h)〉 →CIL (s, l, a, h)
(bgt false)

〈ldloca i, (s, l, a, h)〉 →CIL (s :: ri , l, a, h)
(ldloca)

〈stind, (s :: ri :: v, l, a, h)〉 →CIL (s, l, a, h[ri 7→ v])
(stind)

〈dup, (s :: v, l, a, h)〉 →CIL (s :: v :: v, l, a, h)
(dup)

〈ldind, (s :: ri , l, a, h)〉 →CIL (s :: h(ri), l, a, h)
(ldind)

Figure 5: Concrete CIL semantics.
typeOf (v) , Long

〈dup, (s :: v, l, h)〉 →JB (s :: v :: v, l, h)
(dup)

typeOf (v1) , Long

〈dup2, (s :: v1 :: v2, l, h)〉 →JB (s :: v1 :: v2 :: v1 :: v2, l, h)
(dup2 32)

typeOf (v) = Long

〈dup2, (s :: v, l, h)〉 →JB (s :: v :: v, l, h)
(dup2 64)

typeOf (v1) = Int ∧ typeOf (v2) = Int

〈iadd, (s :: v1 :: v2, l, h)〉 →JB (s :: (v1 + v2), l, h)
(iadd)

typeOf (v1) = Long ∧ typeOf (v2) = Long

〈ladd, (s :: v1 :: v2, l, h)〉 →JB (s :: (v1 + v2), l, h)
(ladd)

x = JVMpre�x (typeOf (l(i)))
〈xload i, (s, l, h)〉 →JB (s :: l(i), l, h)

(xload)
x = JVMpre�x (typeOf (v))

〈xstore i, (s :: v, l, h)〉 →JB (s, l[i 7→ v], h)
(xstore)

isStatic(m(arg0, · · · , argi)) = false ∧ t , null∧
〈body (m(arg0, · · · , argi), (t, v1, · · · , vi)), ([], [0 7→ t, j 7→ vj : j ∈ [1..i]], h)〉 →JB (s′, l′, h′)

〈invokevirtual m(arg1, · · · , argi), (s :: t :: v1 :: · · · :: vi , l, h)〉 →JB (s, l, h′)
(invokevirtual)

isStatic(m(arg0, · · · , argi)) = true∧
〈body (m(arg0, · · · , argi), (v1, · · · , vi)), ([], [j − 1 7→ vj : j ∈ [1..i]], h)〉 →JB (s′, l′, h′)

〈invokestatic m(arg1, · · · , argi), (s :: v1 :: · · · :: vi , l, h)〉 →JB (s, l, h′)
(invokestatic)

fresh(T, h) = (r, h′)

〈new T, (s, l, h)〉 →JB (s :: r, l, h′)
(new)

o , null

〈getfield f, (s :: o, l, h)〉 →JB (s :: h(o) (f), l, h)
(getfield)

o , null s′ = h(o)[f 7→ v]

〈putfield f, (s :: o :: v, l, h)〉 →JB (s, l, h[o 7→ s′])
(putfield)

typeOf (v1) = Int ∧ typeOf (v2) = Int ∧ v1 > v2

〈if icmpgt l, (s :: v1 :: v2, l, h)〉 →JB 〈l, (s, l, h)〉

(
if icmpgt

true

)
typeOf (v1) = Int ∧ typeOf (v2) = Int ∧ v1 ≤ v2

〈if icmpgt l, (s :: v1 :: v2, l, h)〉 →JB (s, l, h)

(
if icmpgt
false

)
Figure 6: Concrete JB semantics.

Intuitively, each direct reference in the operand stack (that is,

s(i) ∈ RefLoc) is replaced by another reference pointing to a wrap-

per object freshly allocated and containing in its �eld the value

pointed by the original direct reference.

�en, for an array of values b and an index i , the following

function counts the 64 bits types among the �rst i:

64
i
b = | {j : 0 ≤ j < i and b[j] is a 64 bit value} |6

�en the array cnvrtLoc(l, a) is de�ned as follows:

∀0 ≤ i < |a| : cnvrtLoc(l, a)[i + 64
i
a] = a[i]

∀0 ≤ i < |l| : cnvrtLoc(l, a)[|a| + 64
|a |
a + i + 64

i
l] = l[i]

Running example: Consider the CIL exit state computed in Sec. 3.2,

that is, σCIL = ([0 7→ #1], [0 7→ #1, 1 7→ 1], [0 7→ 1], [#1 7→< #2 >

, #2 7→ { f 7→ 0}]). �e CIL to JB translation computes Tσ JσCILK =
([0 7→ #1], [0 7→ 1, 1 7→ #1, 2 7→ 1], [#1 7→< #2 >, #2 7→ { f 7→ 0}])
(it merges CIL arguments and local variables). �is state is almost

identical to the exit state of the JB concrete semantics applied to

the running example (Sec. 3.3) but for the instrumentation local

variable at index 3.

4.2 Statements
Fig. 7 formalizes the translation TJstCIL, KK = stJB of a single CIL

statement into a sequence of JB statements. K is the static type

information about locals, arguments and stack elements, computed

at stCIL by a standard algorithm [16]. In particular, types and height

of the stack are �xed and statistically known at each bytecode. In

addition, the forth componentw is a stack of elements in⊥∪ (N×N)
that, for each element in the operand stack, tells (i) ⊥ if it is not

a direct reference, or (ii) (i, j) where i is the index of the local

variables pointed by the direct reference
4
, and j the index of the

local instrumentation variable containing a pointer to the wrapper

simulating the direct reference.

Few CIL statements (namely, ldfld and stfld) have a one-to-

one translation into a JB statement (getfield and putfield).

�e statements reading and writing local variables and arguments

(ldarg, ldloc, and stloc) are translated into their JB counter-

part (xload, xstore, respectively) taking into account the type

of the value at the top of the stack, and adjusting the index of the

variable taking into account arguments and 64 bit variables. Some

CIL statements (dup) get translated into di�erent JB statements

on the basis of contextual information such as the type of values

in the operand stack (dup and dup2). Other CIL statements can

be translated only if the type of the values in the operand stack

is numeric: (i) add can be translated into ladd and iadd, and

(ii) bgt to is icmpgt; if they are applied to references (as in

generic CIL code), then the code is unsafe and we do not support

its translation.

call requires to (i) translate the method call to the correspond-

ing static or dynamic invocation statement in JB, and (ii) to prop-

agate the side e�ects on direct pointers passed to the method as

out/ref parameters to the local variables of the callee.

�e translation of newobj is tricky because of the di�erent pat-

terns used in CIL and JB for object creation
5
. While CIL creates

and initializes the object (i.e., calls its constructor) with a single in-

struction, JB splits these operations and requires the newly created

object to occur below the arguments on the stack, before calling

the constructor. Hence, the translation relies on a function freshIdx
to store and load the values of the constructor arguments through

instrumentation local variables. In particular, given a CIL method

m, the number and types of arguments and local variables of the

4
Since the language we introduced in Fig. 1 supports only ldloca to get a direct

pointer, we need to track only this information in the formalization.

5
For sake of simplicity, we assume the constructor does not have out/ref parameters.

In the implementation, they are treated as for call statements

method are known (Sec. II.15.4 of [16]). �erefore, function cnvrtLoc
tells which local variables the translated JB method already uses.

�en, for each argument of each newobj statement in m, it is pos-

sible to allocate a fresh local variable to store and load its value. In

this way, the translation allocates a new object and puts its address

below the constructor arguments.

Instructions dealing with direct pointers (namely, ldloca, stind,

and ldind in our minimal language) are translated through equiv-

alent CIL instructions dealing with wrapper objects (and their

�eld value). �erefore, stind and ldind are simply translated

through equivalent write and read of �eld value, respectively.

ldloca instead requires to allocate a wrapper object newobj,

stores a reference to the wrapper (stloc) in an instrumentation

variable obtained through freshIdx, stores the value pointed by the

direct reference in the local variable to its �eld value (ldloc
and stfld), and leaves a reference to the wrapper object in the

operand stack (dup).

In general, each CIL statement is translated into one or more

JB statements, hence o�sets are not preserved. �us, function

statementIdx : St → N yields the JB o�set of the �rst statement

in the translation of the given CIL statement. In addition, since

direct references are replaced by wrapper objects, when a method

parameter has a direct reference type &T (and this happens when it

is a ref or out parameter in safe C#), this is replaced by a wrapper

object WRef.

Running example: Consider the running example in Fig. 2. Most

CIL statements are translated into a single JB statement (e.g., lines

18-20 and 22-23 of Fig. 2b are translated into lines 23-25 and 27-

28 of Fig. 2c), with the noticeable exception of the CIL newobj
statements at line 3 and 11, translated into lines 2-4 and 12-16,

respectively. �e former passes no argument to the constructor;

the la�er (that instantiates a Wrapper) calls a constructor with an

argument, hence requiring an instrumentation variable at index 3.

Direct references As sketched in Sec. 2.2.1, we model the seman-

tics of pointers in safe C# code through wrapper objects. In par-

ticular, ldind (line 5 of Fig. 3b) is translated into the �eld ac-

cess i.value (right side of the assignment at line 2 of Fig. 3c),

while stind (line 8 of Fig. 3b) is translated into the assignment

of i.value (le� side of the assignment at line 2 of Fig. 3c). In

addition, ldloca (line 15 of Figure 3b) leads to the construction

and assignment of a wrapper object (lines 7 and 8 of Figure 3c),

while a�er the method call the value contained in the wrapper

object is wri�en into the local variable (line 10 of Figure 3c).

4.3 Correctness
We prove the translation from CIL to JB being correct. Namely,

given a concrete CIL state σCIL, by applying the operational seman-

tics for a statement st, we get a state that, when translated into JB,

is exactly the one resulting from the translation of σCIL into JB and

the application of the JB semantics to it:

∀st ∈ StCIL,σCIL ∈ ΣCIL :

〈st,σCIL〉 →CIL σ
′
CIL and 〈TJst, KK,Tσ JσCILK〉 →JB σ

′
JB

⇓

Tσ Jσ ′CILK =• σ
′
JB

where σ1 =• σ2 means that the two states are equal up to instrumen-

tation variables introduced by the translation process. Formally, let

7

TJdup, s :: t, l, a, wK =

{
dup if t , Long
dup2 if t = Long

TJadd, s :: t1 :: t2, l, a, wK =

{
iadd if t1 = t2 = Int
ladd if t1 = t2 = Long

TJldloc i, s, l, a, wK = xload j where j = |a | + 64
|a |
a + i + 64

i
l ∧ x = JVMpre�x (typeOf (l(i)))

TJstloc i, s :: t, l, a, wK = xstore j where j = |a | + 64
|a |
a + i + 64

i
l ∧ x = JVMpre�x (typeOf (l(i)))

TJldarg i, s, l, a, wK = xload j where j = i + 64
i
a ∧ x = JVMpre�x (typeOf (a(i)))

TJcall m(arg1, · · · , argi), = invoke ; aload p1

idx1

; getfield value ; xidx1
store p2

idx1

; · · ·

s :: t1 :: · · · :: ti , l, a, w :: p1 :: · · · :: pi K · · · aload p1

idxj
; getfield value ; xidxj store p

2

idxj
;

where invoke =

{
invokestatic m(arg1, · · · , argi) if isStatic(m(arg1, · · · , argi))
invokevirtual m(arg1, · · · , argi) otherwise

{idx1, · · · , idx j } = {k : argk ∈ RefLoc }
∀k ∈ [1..j] : xidxk = JVMpre�x (typeOf (l(p2

idxk
))) ∧ ∀r ∈ [1..i] : pi = (p1

i , p
2

j)

TJnewobj T(a1, · · · , ai), = xistore idxi ; · · · ; x1store idx1 ; new T ; dup ;

s :: t1 :: · · · :: ti , l, a, wK x1load idx1 ; · · · ; xiload idxi ; invokevirtual < init > (arg1, · · · , argi)
where ∀j ∈ [1..i] : x j = JVMpre�x (aj) ∧ idx j = freshIdx (newobj T(a1, · · · , ai), j)

TJldfld f, s :: to, l, a, wK = getfield f

TJstfld f, s :: to :: tv, l, a, wK = putfield f

TJbgt k, s :: t1 :: t2, l, a, wK = if icmpgt k′ where k ′ = statementIdx (getBody (bgt k) (k)) if t1 = t2 = Int

TJldloca i, s, l, a, wK = TJnewobj WrapRef() ; dup2 ; stloc j; ldloc i; stfld value, s, l, a, wK
where j = freshIdx (ldloca i, 0)

TJstind, s, l, a, wK = TJstfld value, s, l, a, wK

TJldind, s, l, a, wK = TJldfld value, s, l, a, wK

Figure 7: Translation of CIL statements into JB.

σ1 = (s1, l
1
1 :: . . . :: ln1, h1) andσ2 = (s2, l

1
2 :: . . . :: ln2, :: l

n+1
2 :: . . .

:: ln+k2 , h2), then σ1 =• σ2 i� s1 = s2, and ∀i ≤ n : li1 = li2, and

h1 = h2. Note that instrumentation variables are present only in

the JB state, hence in the right hand-side of the equality.
6

Running example: Sec. 3.2 showed that, starting from σCIL =
(∅, ∅, [0 7→ 1], ∅), the concrete semantics on the program in Fig. 2b

ends up in σ ′CIL = ([0 7→ #1], [0 7→ #1, 1 7→ 1], [0 7→ 1], [#1 7→<

#2 >, #2 7→ { f 7→ 0}]). �en Sec. 3.3 showed that, starting from

the corresponding Tσ JσCILK state, the JB concrete semantics leads

to σ ′JB = ([0 7→ #1], [0 7→ 1, 1 7→ #1, 2 7→ 1, 3 7→ 0], [#1 7→< #2 >

, #2 7→ { f 7→ 0}]. So, by de�nition of Tσ J K, we get Tσ Jσ ′CILK =
•σ ′JB since the two stacks and the two heaps are equal, the values of

three local variables of the JB state correspond to the values of the

argument and the two local variables of the CIL state, respectively,

and =• projects out the fourth variable of the JB state σ ′.

4.4 Other Instructions
In this section, we informally discuss how our approach deals with

CIL instructions that are slightly di�erent from other instructions in

6
Appendix A reports the detailed formal proof.

JB. We decided to handle these instructions informally since their

translation is mostly straightforward. It is intended for readers

that are expert of JB, CIL and more advanced C# features, such as

generic type erasure in JB, or delegates in C#.

Numerical and Reference Comparison CIL compares numeri-

cal or reference values in two ways: through conditional branches

(e.g., beq branches when the topmost two values on the stack are

equals) and comparisons (e.g., ceq pushes 1 i� the topmost two

values on the stack are equals, and 0 otherwise). As usual, these

instructions are type independent and apply to numerical (int, �oat,

long, …) as well as reference values. JB uses a di�erent approach,

since its instructions are type dependent. If the topmost two values

on the stack are integers, it uses a conditional branch instruction

(if icmpeq) similar to that of CIL (beq). However, JB has no

comparison instruction on integers and we need to simulate it

through a sequence of JB instructions relying on constants and

branch. For instance, a ceq statement on integers is simulated as

in Fig. 8a. Instead, if the topmost two values on the stack are long,

JB uses a comparison statement lcmp that pushes to the stack 1,

0, or -1 i� the �rst value is less than, equal to, or greater than the

8

1 if icmpeq 4
2 iconst 0
3 goto 5
4 iconst 1
5 nop

(a) On integers

1 lcmp
2 iconst 0
3 if icmpeq 6
4 iconst 0
5 goto 7
6 iconst 1
7 nop

(b) On longs
Figure 8: Translation of ceq.

1 ldloc.0
2 ldc. i4.0
3 callvirt !0 List<A>::get(int32)
4 stloc.1

(a) In CIL

1 aload 0
2 iconst 0
3 invoke List.get :(I)LObject;
4 checkcast A
5 astore 1

(b) In JB
Figure 9: Getting an element from a list.

second, respectively. Hence, we simulate CIL conditional branch

and comparison instructions through lcmp, integer constants and

a conditional branch on integers. For instance, beq is translated

into the sequence lcmp; ifne #i; where i is the target JB

instruction of beq. �e comparisons over long is similar to int.

Namely, ceq is translated into the code in Fig. 8b. Conditional

branch and comparison work also on references. Equality and in-

equality statements are treated as for integers, since JB de�nes

an if acmpeq statement. Other CIL operators (e.g., bgt) can be

applied to arbitrary references, as long as one of them is null.

Generic Types CIL keeps information about generic types, while

JB erases it into Object. For instance, imagine that we have a local

variable list of type List〈A〉. At source code level, a method call

like A a = list.get(0) in Java or A a = list[0] in C# is

legal since the elements of the list have type A in both languages. At

bytecode level, ge�ing an element from the list e�ectively returns

an object of type A in CIL (see Fig. 9a), while it returns an object

whose static type is Object in JB and casts it dynamically to

A through a checkcast (Fig. 9b). Hence, our translation of a

CIL method call with generic return type T adds a checkcast
instruction to T a�er the call. Primitive types (e.g., int and long)

can be passed as generic types in CIL but not in JB. Hence, when

using a primitive type for the generic parameter or return value

of a CIL method call, we box and unbox the primitive value into a

Java wrapper class such as java.lang.Integer.

Delegates Lambda expressions have only been introduced in Java

8, while C# has been using delegates since its very beginning. C# im-

plements delegates through CIL instructions that load a pointer to

a method (ldftn) and execute it, sometime by using inner classes.

Namely, C# accesses a pointer to the method through ldftn and

calls the Invoke method of the delegate class. Consider for in-

stance Fig. 10. �e C# code in Fig. 10a uses a delegate to call a

method. In Fig. 10b, this is compiled into a ldftn statement at

line 4 followed by a call to Invoke at line 7. We translate this by

using re�ection and string constants. Namely, the signature of the

method pointed by ldftn is represented by a string, passed to an

instrumentation library call in class Reflection, that calls this

method by re�ection (Fig. 10c). However, many static analyzers

(including Julia) are unsound for re�ection. Hence, our translation

marks all signatures accessed in this way as entry points (that is,

Library # met. # fail % fail Tr. t. Mem.
mscorlib 28,344 870 3.07% 23” 158

Sys.Core 6,988 47 0.68% 4” 96

Sys.Design 13,509 4 0.03% 20” 180

Sys 17,851 242 1.36% 21” 142

Sys.Runtime.Serial 5,624 74 1.32% 5” 86

Sys.ServiceModel 34,603 80 0.23% 34” 156

Sys.Web 28,249 38 0.13% 37” 216

Sys.Web.Extensions 4,245 0 0.00% 4” 109

Sys.Windows.Forms 28,319 53 0.19% 42” 189

Sys.XML 12,727 171 1.34% 23” 146

Total 180,460 1,579 0.87% 3’33”

Table 2: Experimental results on libraries.

methods that might be directly called from outside the application

and therefore are analyzed under the most generic assumptions).

�is might cause a loss of precision, since contextual information

on delegates is lost, but preserves soundness.

Async and Await In C#, an async method returns a Task ob-

ject that allows the caller to execute the code of the method asyn-

chronously. On the other hand, statement await waits until the

execution of the asynchronous method ends and extracts the results

of the computation. �is pa�ern is compiled into method pointers

and re�ection at CIL bytecode level, in the same way delegates are

treated. �erefore, we apply the same solution for delegates we

described in Sec. 4.4.

5 EXPERIMENTAL RESULTS
We implemented our translation from CIL to JB through (i) a C#

program that translates a CIL program to an intermediate XML

representation (representing Java bytecode), and (ii) a Java program

that produces a jar �le from an XML representation. We had

to split the implementation in this way since the library to read

CIL bytecode (Mono.Cecil) is wri�en in .NET, while the library

writing jar bytecode (BCEL) is wri�en in Java. �e �rst part

of the translation (CIL to JB) runs in parallel on di�erent classes

through the System.�reading.Tasks library (part of the standard

.Net framework). We used an Intel Core i5-6600 CPU at 3.30GHz

machine with 16 GB of RAM, 64-bit Windows 7 Professional, and

Java SE Runtime Environment v.1.8.0 111-b14.

As a �rst experiment to assess the e�ciency and precision of

our approach, we translated and analyzed the �ve most popular

GitHub repositories (as on February 27th, 2017) wri�en in C# and

tagged as C# repositories
7
. Tab. 1 reports (i) the number of C# LOC

of each projects (Column LOC)
8

(our benchmarks range between

17 and 120 KLOC, hence they are real world applications); (ii) the

number of stars of the GitHub repository as on February 27th, 2017

(GH *); (iii) the total number of methods (# meth.), and for how

many of them the translation failed because of unsafe code (# fail);
(iv) the time (Tr. t.) and memory (Mem., in MB) consumed by the

translation from CIL to JB; (v) the time of Julia’s analyses (Analysis
t.), and (vi) the number of alarms (Al.), of false alarms because of

loss of information introduced by the translation (False al.), and

the precision (ratio of false alarms w.r.t. the total number of alarms,

column Precision) of Julia’s analysis.

7
We consider the number of watchers as measure of popularity of a repository. We

discarded some projects tagged as C# that actually mostly contain native code (corefx,

coreclr, mono), that did not compile in Visual Studio (roslyn, powershell), that have

been dismissed (shadowsocks), or that are particularly small (wavefunction, below

1KLOC).

8
LOC are computed with LocMetrics h�p://www.locmetrics.com/

9

http://www.locmetrics.com/

1 delegate void Del(string message);
2 void DelegateMethod(string message) {...}
3 void go() {
4 Del handler = DelegateMethod;
5 handler(”Hello World”);
6 }

(a) C# code

1 void go () {
2 ldarg.0
3 ldftn A::DelegateMethod(string)
4 newobj A/Del::.ctor(object, int)
5 ldstr ”Hello World”
6 call void A/Del::Invoke(string)
7 }

(b) CIL

1 void go() {
2 ldc ”DelegateMethod(LString;)V”
3 invokestatic

Reflection.GetMethod:(LString;)LMethod;
4 ldc ”Hello World”
5 invokevirtual A/Del.Invoke:(LString ;)
6 }

(c) JB
Figure 10: An example of CIL delegate.

Program LOC GH * # met. # fail Tr. t. Mem. Analysis t. Al. False al. Precision
CodeHub 32,510 7,718 4,887 0 0’07” 115 0’43” 9 1 89%

SignalR 71,207 6,285 6,610 3 0’07” 131 0’50” 8 1 88%

Dapper 22,513 5,815 1,058 0 0’07” 77 0’29” 13 3 77%

ShareX 171,580 5,208 11,568 14 0’58” 193 2’08” 57 0 100%

Nancy 109,139 4,969 8,817 0 0’07” 136 1’25” 18 1 94%

Total 406,949 32,940 17 1’26” 4’35” 105 6 94%

Table 1: Experimental results on the 5 most starred Github C# projects.

In order to assess the e�ciency and library coverage of our

approach, we also analyzed the 10 largest (based on the size of the

.dll �les) system libraries of the Microso� .Net framework version

4.0.30319. �ey contain unsafe code (such as cryptographic code

in mscorlib.dll) and might not be compiled from C#, but possibly

from VB.Net. Tab. 2 reports the number of methods of the library (#
met.), the number and percentage of methods where the translation

fails because of unsafe code (# fail and % fail), and time (Tr. t.)
and memory (Mem., in MB) for the translation.

Research�estion 1: E�ciency.
In 4 out of 5 top Github projects, our translation took 7” (Tab. 1);

it took almost 1 minute for ShareX. �ese times are much shorter

(overall, less than a third) than the analysis time. �e memory

consumed by the translation is small (below 200MB). �e results

for .Net framework libraries (Tab. 2) show a similar trend: we

translated about 180K methods in about 3’30” (that is, a bit more

than 1 msec per method) consuming at most 189MB of memory. So,

our system deals with industrial-size so�ware with a translation

time comparable to the analysis time.

Research�estion 2: Precision
We manually checked only the 105 high severity alarms issued

by Julia on the top 5 Github projects, over a total of several thou-

sands. Tab. 1 reports their number (column Al.) and the number

of false alarms (False al.) due to our translation. �e static anal-

ysis might generate false alarms as well, for instance because of

disjunctive constraints not tracked by Julia; we do not count these

as false alarms, since we want to evaluate the imprecision due

to the translation, and not that inherent to Julia. In particular,

6 alarms out of 105 (about 6%) are false because of imprecision

introduced by the translation. �is shows that our approach sat-

is�es Research �estion 2. �e origins of this imprecision are (i)

async and await statements (in particular in Dapper), and (ii)

try-catch-finally blocks (e.g., in SignalR). �ese would re-

quire to modify Julia to recognize these features more precisely

(through automatic annotations produced by the translation).

Research�estion 3: Libraries
We manually checked that all methods of the 5 top Github C#

projects where our translation fails are actually unsafe. Column #

fail in Tab. 1 shows that there is no failure for CodeHub, Dapper
and Nancy. Instead, there are 3 failures for SignalR, due to unsafe

methods in class Infrastructure.SipHashBasedString-
EqualityComparer, and 14 failures for ShareX, due to unsafe

methods in two classes: (i) GreenshotPlugin.Core has meth-

ods se�ing or ge�ing colors in fast implementations of bitmaps

(UnsafeBitmap and subclasses); (ii)ShareX.ImageHelpers
uses unsafe classes (such as UnsafeBitmap). �is shows that

our approach fails only for unsafe code with unsafe pointer manip-

ulation (storing pointers in �elds, returning them from methods,

performing pointer arithmetic). Tab. 2 shows that the translation

succeeds for 99.13% of the methods, with a worst case of 96.93%.

Hence, our approach satis�es Research �estion 3.

6 CONCLUSION
�is article introduced, formalized and proved correct a transla-

tion from CIL to JB, for static analysis. To assess its feasibility and

interest, it has been implemented and connected to the Julia ana-

lyzer. Experiments show positive results for e�ciency, precision,

and libraries’ coverage. As future work, we plan to (i) improve

Julia precision in the corner cases highlighted by our experiments,

(ii) investigate new .Net properties of interest, and (iii) rely on

invokedynamic when translating delegates.

REFERENCES
[1] Checkstyle. h�p://checkstyle.sourceforge.net.

[2] Clr to jvm. h�p://xmlvm.org/clr2jvm/.

[3] CodeSonar – Static Analysis SAST So�ware. h�ps://www.grammatech.com/

products/codesonar.

[4] Findbugs
TM

– Find Bugs in Java Programs. h�p://�ndbugs.sourceforge.net/.

[5] Ndepend. h�p://www.ndepend.com.

[6] .Net Re�ector Add-Ins. h�ps://www.microso�.com/en-us/research/project/spec.

[7] PMD. h�ps://pmd.github.io/.

[8] WALA. h�p://wala.sourceforge.net/wiki/index.php/Main Page.

[9] M. Ameri and C. A. Furia. Why Just Boogie? Translating between Intermediate

Veri�cation Languages. In Proceedings of IFM ’16, LNCS. Springer, 2016.

[10] R. Atkey and D. Sannella. �readSafe: Static Analysis for Java Concurrency.

Electronic Comm. of the European Association of So�ware Science and Technology,

72, 2015.

[11] M. Barne�, K. Leino, and W. Schulte. �e Spec# Programming System: An

Overview. In Proceedings of CASSIS ’04, 2004.

[12] M. Bebenita, F. Brandner, M. Fähndrich, F. Logozzo, W. Schulte, N. Tillmann, and

H. Venter. SPUR: a Trace-based JIT Compiler for CIL. In W. R. Cook, S. Clarke,

and M. C. Rinard, editors, Proceedings of OOPSLA ’10. ACM, 2010.

10

http://checkstyle.sourceforge.net
http://xmlvm.org/clr2jvm/
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
http://findbugs.sourceforge.net/
http://www.ndepend.com
https://www.microsoft.com/en-us/research/project/spec
https://pmd.github.io/
http://wala.sourceforge.net/wiki/index.php/Main_Page

[13] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed la�ice model for

static analysis of programs by construction or approximation of �xpoints. In

Proceedings of POPL ’77. ACM Press, 1977.

[14] P. Cousot and R. Cousot. Abstract Interpretation: A Uni�ed La�ice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In

Proc. of Principles of Programming Languages (POPL’77), pages 238–252, 1977.

[15] Coverity. Coverity Prevent
TM

. h�p://www.coverity.com/library/pdf/coverity

prevent.pdf.

[16] ECMA. Standard ECMA-335: Common Language Infrastructure (CLI). 2012.

[17] T. A. S. Foundation. Apache Commons BCEL. h�ps://commons.apache.org/

proper/commons-bcel, checked on June 24, 2016.

[18] JetBrains. Resharper. h�ps://www.jetbrains.com/resharper.

[19] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. �e Java Virtual Machine
Speci�cation, Java SE 7 Edition. Addison-Wesley Professional, 1st edition, 2013.

[20] F. Logozzo. Cibai: An Abstract Interpretation-Based Static Analyzer for Modular

Analysis and Veri�cation of Java Classes. In Proceedings of VMCAI ’07, LNCS.

Springer, 2007.

[21] F. Logozzo and M. Fähndrich. Static Contract Checking with Abstract Interpre-

tation. In Proceedings of FoVeOOS ’10, LNCS. Springer, 2010.

[22] Microso�. FxCop. h�ps://msdn.microso�.com/en-us/library/bb429476(v=vs.80)

.aspx.

[23] F. Spoto. �e Julia Static Analyzer for Java. In Proceedings of SAS ’16, LNCS.

Springer, 2016.

[24] Wikipedia. List of Tools for Static Code Analysis. h�ps://en.wikipedia.org/wiki/

List of tools for static code analysis#Java.

11

http://www.coverity.com/library/pdf/coverity_prevent.pdf
http://www.coverity.com/library/pdf/coverity_prevent.pdf
https://commons.apache.org/proper/commons-bcel
https://commons.apache.org/proper/commons-bcel
https://www.jetbrains.com/resharper
https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis#Java
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis#Java

A PROOF OF CORRECTNESS
We present here the main steps of the correctness proof of our

approach.

Lemma A.1. �e function convertLocals is an identity embedding.

Proof. It is su�cient to observe that, by construction, the func-

tion concatenates the two arrays by shi�ing indexes when a 64 bits

value occurs, hence preserving the values and the ordering of the

elements’ indexes. �

Lemma A.2. �e translation of ldloc is correct.

Proof. Let us consider the case of integer arguments (the other

case can be treated analogously). Let us prove that the translation

of ldloc for integer values is correct, i.e., that ∀σCIL ∈ ΣCIL, if

〈ldloc i,σCIL〉 →CIL σ
′
CIL and

〈TJldloc i, (s, l, a,w)K, Tσ JσCILK〉 →JB σ ′JB then Tσ Jσ ′CILK = σ
′
JB.

Let σCIL = (s, l ,a,h) be arbitrary. By the ldloc−CIL rule we have

σ ′CIL = (s :: l[i], l, a, h). By rule (3) of Fig. 7,TJldloc i, s, l, a,wK =

iload j where j = |a| + 64
|a |
a + i + 64

i
l
. By de�nition of Tσ JK:

Tσ JσCILK = Tσ J(s, l, a, h)K
= (s′, convertLocals (l, a), h′).

By the iload−JB rule:

〈iload j, (s, convertLocals (l, a), h)〉 →JB
(s′ :: convertLocals (l, a)[j], convertLocals (l, a), h′) = σ ′JB.

By de�nition of Tσ JK we have

Tσ Jσ ′CILK = Tσ J(s :: l[i], l, a, h)K
= (s :: l[i], convertLocals (l, a), h).

By de�nition of convertLocals we have

convertLocals (l, a)[j] = l[i],

which implies Tσ Jσ ′CILK = σ
′
JB, and thus Tσ Jσ ′CILK =• σ

′
JB.

�

Lemma A.3. �e translation of call is correct.

Proof. Let us consider the case of static call (the other case can

be treated analogously). Moreover, let us denote by `
[i, j] the se-

quence `i , . . . , `j , and by s(i,j) the sequence of types [k1, . . . , ki, t1,
. . . , tj].

We show that ∀σCIL = ([u
[1,n]
,v

[1,i]], l, a, h), if
〈call m(arg

[1,i]
),σCIL〉 →CIL σ

′
CIL = ([u

[1,n]
], l, a, h′) and

〈TJcall m(arg
[1,i]

), (s(n,i) , l, a,w[1,i]
)K,Tσ JσCILK〉 →JB σ

′
JB,

then Tσ Jσ ′CILK =• σ
′
JB.

Rule 〈call m(arg
[1,i]

),σCIL〉 →CIL σ
′
CIL requires, to be applied,

that the condition

〈body (m(arg
[0,i]

), (v
[1,i])), ([], ∅, [j − 1 7→ vj : j ∈ [1..i]], h)〉

↓CIL
(s′, l′, a′, h′)

is satis�ed.

Observe that for a = [j−1 7→ vj : j ∈ [1..i]], we getTσ J([], ∅, a, h)K =
([], l̂, h), where for each j ∈ [1..i], l̂[j + 64

j
a] = vj . Moreover,

TJbody (m(arg
[0,i]

)), (t1, . . . , ti), ∅, a, hK =body (m(arg[0,i]
)). �ere-

fore, by inductive hypothesis, we get that 〈body (m(arg
[0,i]

) (v
[1,i])),

([], [j−1 7→ vj : j ∈ [1..i]], h)〉 →JB (ŝ, l̂, ĥ) is such thatTσ J(s′, l′, a′, h′)K =•
(ŝ, l̂, ĥ), and in particular h′ = ĥ. It is su�cient now to recall that by

Fig. 7 (static call) TJcall m(arg
[1,i]

), s(n,i) , l, a,w[n,i]
K is obtained

by applying invokestatic m(arg
[1,i]

) followed by the update of

all the local variables passed by reference to the called method,

and that by the invokestatic rule of Fig. 6, σ ′JB = ([u
[1,n]
, l̂, h).

Finally, by the de�nition of Tσ J K, we get Tσ Jσ ′CILK =• σ
′
JB. �

Lemma A.4. �e translation of bgt is correct.

Proof. ConsiderTJbgt k, s :: t1 :: t2, l, a,wK in the case t1 = t2 =
int, and assume σCIL = ([s

[1,n]
:: v1,v2], l, a, h) with v2 > v2

(the other case is similar), yielding to 〈bgt l,σCIL〉 →CIL σ
′
CIL =

〈l,σCIL〉.

We show that if 〈TJbgt k, s :: t1 :: t2, l, a,wK,Tσ JσCILK〉 →JB
σ ′JB, then Tσ Jσ ′CILK =• σ

′
JB. By the corresponding rule in Fig. 7,

TJbgt k, s :: t1 :: t2, l, a,wK = if icmpgtk ′ where

k ′ = statementIdx (getBody (bgt k) (k)).
By the semantics of if icmpgtwe have that 〈if icmpgtk ′, ([s

[1,n]
::

v1 :: v2], convertLocals (l, a), h) →JB 〈k
′, (s

[1,n]
, convertLocals (l, a), h)〉.

As Tσ JσCILK = ([s
[1,n]

:: v1 :: v2], convertLocals (l, a), h), and by

de�nition of statementIdx (), we get thatTσ J〈l,σCIL〉K = 〈k ′,Tσ JσCILK〉
= σ ′JB, and thus Tσ J〈l,σCIL〉K =• σ ′JB �

Lemma A.5. �e translation of newobj is correct.

Proof. Assume σCIL = ([s
[1,n]

:: v
[1,i]], l, a, h). By de�nition,

〈newobjT(arg
[1,i]

),σCIL〉 →CIL σ ′CIL = (s :: r , (l ,a,h′)), where r
and h′ satisfy the constraints of the corresponding rule of Fig. 5.

In particular, fresh T h = (r , h′) allocates the memory for an object

of type T on heap h and returns (i) the reference r of the freshly

allocated object, and (ii) the heap h′ resulting from the allocation

of memory on h.

Let σ ′JB = 〈TJnewobj T(a
[1,i]

), s :: t
[1,i]
, l, a,wK,Tσ JσCILK〉, and

compare Tσ Jσ ′CILK and σ ′JB componentwise. We may observe that

in both cases the store is equal to s :: r , as the new elements added to

the store during the translation in order to implement the object ini-

tialization are �nally removed when applying the invokevirtual
call, whose correctness is granted by structural inductive hypoth-

esis. Moreover, the single array in JB for both local variables and

method arguments is updated properly by storing and loading

the values of the constructor arguments in the expected ordering.

Finally, the heap h′ results in both cases from the allocation of

corresponding memory on h. �

Lemma A.6. �e translation of stind is correct.

Proof. By Fig. 7, we have that

TJstind, s, l, a,wK = TJstfld value, s, l, a,wK = putfield value
By Fig. 5, we have that 〈stind, (s :: ri :: v, l, a, h)〉 →CIL (s, l, a, h[ri 7→

v]). By de�nition of the translation of concrete states (assum-

ing that the only direct reference in the stack is ri), we have that

Tσ J(s :: ri :: v, l, a, h)K = (s :: r ′ :: v, cnvrtLoc(l, a), h[r ′ 7→ [value 7→

12

l (i)]]) where r ′ is a freshly allocated references pointing to a wrap-

per. �en by Fig. 6, we have that 〈putfield value, (s :: r ′ ::

v, cnvrtLoc(l, a), h[r 7→ [value 7→ l (i)]])〉 →JB (s, cnvrtLoc(l, a),
h[r ′ 7→ [value 7→ v]]). Finally, we obtain thatTσ J(s, l, a, h[ri 7→ v])K =•
(s, cnvrtLoc(l, a), h[r ′ 7→ [value 7→ v]]) proving the soundness of

the translation of stind. �

Lemma A.7. �e translation of ldind is correct.

Proof. By Figure 7, we have that

TJldind, s, l, a,wK = TJldfld value, s, l, a,wK = getfield value
By Figure 5, we have that 〈ldind, (s :: ri , l, a, h)〉 →CIL (s ::

h(ri), l, a, h). By de�nition of the translation of concrete states

(assuming that the only direct reference in the stack is ri), we

have that Tσ J(s :: ri, l, a, h)K = (s :: r ′, cnvrtLoc(l, a), h[r ′ 7→
[value 7→ l (i)]]) where r ′ is a freshly allocated references point-

ing to a wrapper. �en by Fig. 6, we have that 〈getfield value, (s ::

r ′, cnvrtLoc(l, a), h[r ′ 7→ [value 7→ l (i)]])〉 →JB (s :: l (i)]], cnvrtLoc(l, a), h[r ′ 7→
[value 7→ v]]). Finally, we obtain that Tσ J(s :: l(i), l, a, h)K =•
(s, cnvrtLoc(l, a), h[r ′ 7→ [value 7→ l (i)]]) proving the soundness

of the translation of ldind. �

Lemma A.8. �e translation of ldloca is correct.

Proof. By Fig. 5, we have that 〈ldloca i, (s, l, a, h)〉 →CIL (s ::

ri , l, a, h) where ri is the direct reference pointing to the i-th local

variable. By Fig. 7, we have that ldloca i is translated into a

sequence of statements that (i) creates a wrapper object containing

the value of the i-th local variable, (ii) stores its reference into

an instrumentation variable, and (iii) leaves its reference on the

operand stack as well. �en, by de�nition of the concrete semantics

of JB, we obtain a �nal state σ ′JB appending to the initial stack a

reference to the wrapper object whose value is the one of the i-

th local variable. �erefore, σ ′JB =• Tσ J(s :: ri, l, a, h)K since =•

ignores the instrumentation variables. �is proves the soundness

of the translation of ldloca. �

Theorem A.9. �e translation of a CIL program into JB code is
correct.

Proof. We prove that the translation of each statement fromCIL
to JB depicted in Fig. 7 satis�es the correctness property introduced

in Sec. 4.3. In fact, by Lemma A.2, the translation of ldloc is

correct, and a similar proof can be provided for the add, stloc,

ldarg, ldfld, and stfld statements. �e correctness of a new

object creation is proved by Lemma A.5. �e correctness proof of

static and dynamic calls translation has been given in Lemma A.3,

and that of stind, ldind, ldloca was proved by Lemmas A.6,

A.7 and A.8, respectively. Finally, the correctness of the comparison

statements translation is shown in Lemma A.4. �

13

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 CIL and JB
	2.2 Running Example
	2.3 Julia

	3 Concrete semantics
	3.1 Notation
	3.2 CIL
	3.3 JB

	4 From CIL to JB
	4.1 Concrete States
	4.2 Statements
	4.3 Correctness
	4.4 Other Instructions

	5 Experimental Results
	6 Conclusion
	References
	A Proof of correctness

