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Abstract—Dependency information (data- and/or control-dependencies) among program variables and program statements is playing
crucial roles in a wide range of software-engineering activities, e.g. program slicing, information flow security analysis, debugging,
code-optimization, code-reuse, code-understanding. Most existing dependency analyzers focus on mainstream languages and they do
not support database applications embedding queries and data-manipulation commands. The first extension to the languages for
relational database management systems, proposed by Willmor et al. in 2004, suffers from the lack of precision in the analysis
primarily due to its syntax-based computation and flow insensitivity. Since then no significant contribution is found in this research
direction. This paper extends the Abstract Interpretation framework for static dependency analysis of database applications, providing
a semantics-based computation tunable with respect to precision. More specifically, we instantiate dependency computation by using
various relational and non-relational abstract domains, yielding to a detailed comparative analysis with respect to precision and
efficiency. Finally, we present a prototype semDDA, a semantics-based Database Dependency Analyzer integrated with various
abstract domains, and we present experimental evaluation results to establish the effectiveness of our approach. We show an
improvement of the precision on an average of 6% in the interval, 11% in the octagon, 21% in the polyhedra and 7% in the powerset of
intervals abstract domains, as compared to their syntax-based counterpart, for the chosen set of Java Server Page (JSP)-based
open-source database-driven web applications as part of the GotoCode project.

Index Terms—Dependency Graphs, Static Analysis, Relational Databases, Structured Query Languages.
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1 Introduction

Static analysis is recognized as a fundamental approach
to collect information about the behavior of computer pro-
grams for all possible inputs, without performing any actual
execution [1]. Over the past several decades, continuous
and concerted research efforts in this direction make them
powerful enough to solve many non-trivial questions about
program’s behavior, although they are undecidable in prac-
tice [1], [2]. Some notable and widely used static analysis
techniques include Data-flow analysis [3], [4], Control-flow
analysis [5], Type-based Theory [6], [7], [8], Abstract Inter-
pretation [9], [10].

Observably most of the existing static analysis tech-
niques in the literature make use, implicitly or explicitly,
of dependency information among program statements and
variables, solving a large number of software engineering
tasks. Examples include information-flow security analysis
[11], taint analysis [12], program slicing [13], optimization
[14], [15], code-reuse [16], code-understanding [17]. A most
common representation of these dependencies is Dependency
Graph [18], [19], an intermediate form of programs which
consists of both data- and control-dependencies among pro-
gram components. Since the pioneer work by Ottenstein and
Ottenstein [18], a number of variants of dependency graph
for various programming languages are proposed by tuning
them towards their suitable application domains. They are
Program Dependency Graph (PDG) for intra-procedural
programs [18], System Dependency Graph (SDG) for inter-
procedural programs [20], Class Dependency Graph (ClDG)

for object-oriented programs [21], Database-Oriented Pro-
gram Dependency Graph (DOPDG) for database programs
[22].

Although static analysis has been longly studied over
the last several decades, researchers have not paid much
attention to the case of database applications embedding
database languages. In order to exploit the power of de-
pendency graph in solving problems related to database
applications, Willmor et al. [22] first introduced the no-
tion of Database-Oriented Program Dependency Graph
(DOPDG), considering the following two additional data
dependencies due to the presence of database statements:
(i) Program-Database dependency (PD-dependency) which
represents dependency between an imperative statement
and a database statement, and (ii) Database-Database de-
pendency (DD-dependency) which represents a depen-
dency between two database statements. However, since
then no such notable contribution is found in this research
direction. Some of the problems among many others which
can effectively be addressed by using DOPDGs are:

(a) Slicing of Database Applications. Program slicing
[23] is a well-known static analysis technique to address
many software-engineering problems, including code un-
derstanding, debugging, maintenance, testing, paralleliza-
tion, integration, software measurement [17], [24], [25], [26].
Existing program-slicing approaches have not considered
external database states and therefore they are inappli-
cable to data-intensive programs in information system
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scenarios. It is imperative to say that slicing of database
applications [27] based on their dependency information
definitely serves as a powerful technique to solve the above-
mentioned software-engineering problems relating query
languages and underlying databases. In this context, pre-
ciseness of DOPDGs (hence slices) and their efficient com-
putations are two prime factors which may affect the above-
mentioned solutions to a great extent. This is yet to receive
enough attention from the scientific community.

(b) Database Leakage Analysis. Language-based
information-flow security analysis [28] has been longly
studied during past decades to control illegitimate infor-
mation leakage in software products. Needless to say, the
confidentiality of sensitive database information can also
possibly be compromised during their flow along database-
applications accessing and processing them legitimately
[29], [30]. The dependency information in the form of
DOPDG can effectively capture any interference (if it ex-
ists) between sensitive and non-sensitive data. Of course,
preciseness of dependency information highly matters to
guarantee the absence of false security alarms in software
products.

(c) Data provenance. Data provenance [31] is a static
analysis technique which aids understanding and trou-
bleshooting database queries by explaining the results in
terms of input databases. Its intention is to show how (part
of) the output of a query depended on (part of) its input.
Precise dependency information among queries and identi-
fication of all parts of database information flowing along
the program code are the basis of effective computations of
data provenance.

(d) Materialization View Creation. Attribute dependen-
cies are one of the prime factors for creating materialized
views of databases [32]. The computation of precise static
dependency information of database queries issued on a
database over a certain period of time leads to a more
precise materialized view creation.

A common challenge in all the above-mentioned ap-
plication scenarios is to address the susceptibility of static
dependency analysis to false positives, a main drawback
of static analysis, which reduces development speed signif-
icantly. The best way to reduce false-positives is to allow
tuning the analysis behavior towards specific needs. Our
contribution in this paper on semantics-driven database
dependency analyzer meets this challenge by facilitating
precision control under various levels of abstractions.

To exemplify our motivation briefly, let us consider a
small database code snippet, depicted in Figure 1, which
increases salary of all employees by a common bonus
amount Cbonus and by an additional special bonus amount
Sbonus only for aged employees. Observe that the syntactic
presence of ’sal’ as the defined-variable in Q1 and as the
used-variable in Q3 makes Q3 syntactically dependent on
Q1. However, a careful observation reveals that syntactic
presence of variables as a way of dependency computation
may often result in false positives, and thus fails to compute
optimal set of dependencies. For instance, it is clear from the
code that the values of ’sal’ referred in the “WHERE” clauses
of Q1 and Q3 do not overlap with each other and this results
in an independency between Q1 and Q3. This triggers a
semantics-based approach to compute dependency where

Start;
Q0: Connection c =DriverManager.getConnection(. . . . . .);
Q1: UPDATE emp SET sal = sal + Sbonus WHERE age > 60;
Q2: SELECT AVG(sal) FROM emp WHERE age > 60;
Q3: SELECT AVG(sal) FROM emp WHERE age < 60
Q4: UPDATE emp SET sal = sal + Cbonus;
Q5: SELECT AVG(sal) FROM emp;
Stop;

Fig. 1: An Introductory Example

values instead of variables are considered. In this context,
the following research question arises: Are the values defined
by one statement being used by another statement? The problem
to compute semantics-based dependency among statements
in concrete domain is in general undecidable [2], [33]. This is
also true in the case of database applications when the input
database instance is unknown. Addressing similar problems
in imperative languages, Mastroeni and Zanardini [34] in-
troduced the notion of abstract semantics-based data depen-
dency in the Abstract Interpretation framework. Abstract In-
terpretation [9], [10] is a widely used formal method which
offers a sound approximation of the program’s semantics
to answer about the program’s runtime behavior including
undecidable ones. The intuition of Abstract Interpretation
is to lift the concrete semantics to an abstract domain, by
replacing concrete values by suitable properties of interests
and simulating the operations in the abstract domain w.r.t.
its concrete counterparts, in order to ensure sound semantic
approximation.

Willmor’s definition for DOPDG is not fully semantics-
based [22]: although they define DD-dependency in terms
of defined- and used-values of databases, their definition of
PD-dependency relies on the syntactic presence of variables
and attributes in statements. Intuitively, the precision of
DOPDG depends on how precisely one can identify the
overlapping of database-parts by various database opera-
tions (INSERT, UPDATE, DELETE). Although they refer to the
Condition-Action rules [35] to compute the overlapping of
database-parts, this fails to capture semantic independencies
when the application contains more than one database state-
ments defining (in sequence) the same attribute which is
subsequently used by another database statement. The main
reason behind this is the flow-insensitivity of the Condition-
Action rules. For example, in Figure 1, Q5 is semantically
independent on Q1 as the part of sal-values defined by Q1 is
fully redefined by Q4 and never reaches Q5. Unfortunately,
Condition-Action rules can not capture this independency
as the approach checks every pair of database statements
independently, and as a result, this finds dependency when
the pair Q1 and Q5 is encountered.

As the values of database attributes differ from that
of imperative language variables, the computation of ab-
stract semantics (and hence semantics-based dependency)
of database applications is, however, challenging and re-
quires different treatment. The key point here is the static
identification of various parts of the database information
possibly accessed or manipulated by database statements at
various program points. Addressing these challenges, in this
paper, we aim to answer the following two main research
objectives:
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• How to obtain more precise dependency information
(hence more precise DOPDG)? and

• How to compute them efficiently?

To summarize, our contributions in this paper1 are:

• Adapting the Abstract Interpretation framework to
define computable abstract semantics of database
applications, even in an undecidable scenario when
the input database instance is unknown.

• Design of an algorithm to compute semantics-based
independencies among database statements based on
Abstract Semantics.

• A detailed analytical study on precision vs. efficiency
when computing dependency in various well-suited
non-relational and relational abstract domains, e.g.
Interval, Octagon, Polyhedra, Powerset Domain.

• Development of a prototype “semDDA”, Semantics-
based Database Dependency Analyzer integrated
with various abstract domains, which enables users
to perform precise dependency computation in vari-
ous abstract domains of interest.

• Experimental evaluation on a set of open-source
database-driven JSP web applications as part of the
GotoCode project [37] using our semDDA tool2. Ex-
periments demonstrate the results in different ab-
stract domains with a detailed comparison on pre-
cision and efficiency. This clearly shows that our
technique improves precision w.r.t. the proposal by
Willmor et al. [22].

Our preliminary theoretical proposal in [36] considered
only polyherdra abstract domain. To be specific, the
improvements in this paper compared to [36] are: (i)
strengthening the approach by instantiating dependency
computation using various non-relational and relational
abstract domains, yielding a detailed comparative
analysis with respect to precision and efficiency, (ii)
implementation of semDDA which is tunable at various
levels of abstractions, (iii) validation of our approach by
performing experiments on a set of open-source database-
driven JSP web applications using semDDA, establishing
the effectiveness of our approach w.r.t. the literature.

The structure of the rest of paper is as follows: Section
2 illustrates a running example. In section 3 we describe
the evolution of syntax-based dependency computation
of database programs. Section 4 recalls some basics on
syntax and concrete semantics of programs embedding
SQL statements. In section 5 we describe semantics-
based dependency computation in the concrete domain,
whereas in section 6 we lift semantics-based dependency
computation from the concrete domain to various non-
relational and relational abstract domains. Section 7
illustrates the proposed framework on our running
example. The soundness of our approach is proved in
section 8. Section 9 describes the experimental results on
a set of benchmark codes. We present in section 10 a case
study on database code slicing, witnessing an improvement
in the precision, by applying the proposed semantics-based

1. This work is a revised and extended version of [36].
2. Available at: https://github.com/angshumanjana/SemDDA.

dependency computation framework. We discuss in section
11 the current state-of-the-art in the literature. Finally,
section 12 concludes our work.

2 A Running Example
Consider the database code snippet “Prog” depicted in
Figure 2. The code implements a module which provides
a set of offers on various purchases made on an online
shopping system.

The main method of the class saleOffer updates the
purchase amount (stored in the attribute purchase_amt) de-
pending on various discount offers. For instance, a customer
will get 5% discount if the purchase amount is between
1000 USD and 3000 USD. Similarly, a 10% of discount is
offered on the purchase amount more than 3000 USD. A
special offer on waiving delivery charges is also given for all
customers (program point 7). Finally, the module increments
the points accumulated by its customers depending on both
the purchase amount and the wallet balance at program
points 15 and 16.

Observing the code carefully, we can identify a number
of dependencies among the statements in “Prog”. Some of
them, although exist syntactically, may not be valid depen-
dencies when we consider semantics of the program. For ex-
ample, although statement 6 is syntactically DD-dependent
on statement 5, but they are semantically independent as the
values of the attribute purchase_amt defined by statement
5 can never be used by statement 6. In the subsequent
sections, we pursue various existing approaches to refine
dependency information, and finally we propose an abstract
interpretation-based approach to approximate defined and
used database parts by database statements (at various lev-
els of abstractions) and hence to compute semantics-based
dependencies among them based on the overlapping. We
show, in section 7, how the proposed approach effectively
identifies false DD-dependencies in ‘Prog”.

3 Revisiting Syntax-based Dependency Computation in
Database Applications
This section briefly discusses the evolution of syntax-based
Database-Oriented Program Dependency Graph (DOPDG)
construction and its limitations w.r.t. the literature. Through-
out this paper we shall use the terms “Program” and
“Database Program” synonymously. Similarly, we shall use
the term “Statement” which synonymously refers to either
“imperative statement” or “database statement” depending
on the context.

3.1 Pure Syntax-based DOPDGs

The construction of pure syntax-based Database-Oriented
Program Dependency Graph (DOPDG) is straightforward.
It is an extension of traditional Program Dependency
Graphs (PDGs) [18] to the case of database programs, con-
sidering the following three kinds of data-dependencies:
(1) Program-Program dependency (PP-dependency) which
represents a dependency between two imperative state-
ments, (2) Program-Database dependency (PD-dependency)
which represents a dependency between a SQL statement
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0. public class saleOffer
{

1. public static void main(String[] args) throws SQLException
{

2. float x = 0.1;
3. float y = 0.05;
4. try

{
Statement con = DriverManager.getConnection("jdbc mysql: . . . ", "scott", "tiger").createStatement();

/ ∗ 5% discount offer based on the purchase amount. ∗ /
5. con.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − y ∗ purchase_amt WHERE purchase_amt BETWEEN 1000 AND 3000 ");

/ ∗ 10% discount offer based on the purchase amount. ∗ /
6. con.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − x ∗ purchase_amt WHERE purchase_amt > 3000 ");

/ ∗ Free delivery offer. ∗ /
7. con.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − delivery_charge ");

. . .

. . .

. . .

11. ResultSet rs=con.executeQuery("SELECT cust_name, purchase_amt FROM Sales WHERE purchase_amt > 200 ");
. . .
. . .
. . .

/ ∗ Points increment based on the purchase amount and wallet balance. ∗ /
15. con.executeUpdate("UPDATE Sales SET point = point + 2 WHERE (purchase_amt + wallet_bal) > 5000 AND (purchase_amt + wallet_bal) < 10000 ");

16. con.executeUpdate("UPDATE Sales SET point = point + 4 WHERE (purchase_amt + wallet_bal) > 10000 ");
}

catch (Exception e)
{
. . .

} }}

Fig. 2: Database Code Snippet “Prog”

and an imperative statement, and (3) Database-Database
dependency (DD-dependency) which represents a depen-
dency between two SQL statements. This is to observe that
syntax-based PP-dependencies and control dependencies in
DOPDGs are the same as syntax-based data-dependencies
and control-dependencies in PDGs respectively3. Let us
define them below:
Definition 1 (Program-Program (PP) dependency [18]). An

imperative statement I2 is PP-dependent on another
imperative statement I1 if there exists an application
variable x such that: (i) x is defined by I1, (ii) x is used by
I2, and (iii) there is a x-definition free path from I1 to I2.

Definition 2 (Program-Database (PD) dependency [22]). A
database statement Q is PD-dependent on an imperative
statement I if there exists an application variable x such
that: (i) x is defined by I, (ii) x is used as an input to
Q, and (iii) there is a x-definition free path from I to Q.
Similarly, an imperative statement I is PD-dependency
on a database statement Q if there exists an application
variable x such that: (i) the execution of Q sets x to be
equal to one of the output of Q, (ii) x is used by I, and
(iii) there is a x-definition free path from Q to I.

Definition 3 (Database-Database (DD) dependency). A
database statement Q2 is DD-dependent on another
database statement Q1 for an attribute a (denoted Q1

a
−→

Q2) if the following conditions hold: (i) a is defined by
Q1, (ii) a is used by Q2, and (iii) there is no rollback
operation in between them, which undoes the effect of
Q1 on a.

The syntax-based dependency computation depends on the
syntactic presence of one variable in the definition of an-
other variable or on the control structure of the program.
Let C, Va and Vd be the sets of statements, application-
variables and database-attributes in database programs. Let

3. In the rest of the paper, we represent DD-, PD-, control-
dependencies by blue dashed-line, red dotted-line and black line re-
spectively.

V = Va ∪ Vd where Va ∩ Vd = ∅. The construction of
syntax-based DOPDG can be formalized based on the two
following functions:

USE : C→ ℘(V) (1)
DEF : C→ ℘(V) (2)

which extract the set of variables (either application-
variables or database-attributes) used and defined in a state-
ment c ∈ C.

The following example illustrates the construction of
pure syntax-based DOPDG using the above functions.
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Fig. 3: Pure Syntax-based DOPDG (F denotes attribute
purchase_amt) of “Prog”

Example 1. Consider our running example “Prog” depicted
in Figures 2. The control dependencies 1→2, 1→3,
1→4, etc. are computed in similar way as in the case of
traditional PDG. The used and defined variables at each
program point of “Prog” are computed as follows:
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DEF(2) ={x} DEF(3) = {y}
DEF(4) ={purchase_amt, delivery_charge, cust_name,

wallet_bal, point}
DEF(5) ={purchase_amt} USE(5) = {purchase_amt, y}
DEF(6) ={purchase_amt} USE(6) = {purchase_amt, x}
DEF(7) ={purchase_amt}
USE(7) ={purchase_amt, delivery_charge}
USE(11)={purchase_amt, cust_name}
DEF(15)={point}
USE(15)={purchase_amt, wallet_bal, point}
DEF(16)={point}
USE(16)={purchase_amt, wallet_bal, point}

Observe that statement 4 defines all database attributes
as it connects to the database, resulting DEF(4) to contain
all attributes. From the above information, the following
data dependencies are identified:

• DD-dependencies for purchase_amt: 4 5 ,
4 6 , 4 7 , 4 11 , 4 15 ,
4 16 , 5 6 , 5 7 , 5 11 ,
5 15 , 5 16 , 6 7 , 6 11 ,
6 15 , 6 16 , 7 11 , 7 15 ,
7 16 ,

• DD-dependencies for other attributes: 4 7 ,
4 11 , 4 15 , 4 16 , 15 16

• PD-dependencies for x and y: 2 6 , 3 5

The syntax-based DOPDG of “Prog” is depicted in Fig-
ure 3.

Limitations. Syntax-based dependency computation often
introduces false dependencies, leading to an imprecise anal-
ysis. For instance, in Example 1, although the statement 6 is
syntactically DD-dependent on statement 5, however one
can observe that the values of the attribute purchase_amt
defined by statement 5 can never be used by statement 6.
This is also true for 15 16 . Similarly observe that the
redefinition of all values of purchase_amt at program point
7 makes the statements 11, 15 and 16 data-independent on
statements 4, 5 and 6 for purchase_amt, which is not captured
here.

3.2 An Improved Syntax-driven Construction of
DOPDGs

We proposed in [38] an improvement over the syntax-
driven DOPDG construction algorithm by tagging variables
with labels which indicate whether a variable is fully-defined
or partially-defined. This enables us to (partially) identify a
number of false dependencies.

The modified definitions of USE and DEF functions are
as follows:

USE : C→ ℘(V × L) (3)
DEF : C→ ℘(V × L) (4)

where L =
{
,

}
is a set of labels. The label associated

with an attribute a indicates that a is fully-defined – which

means all values of a in the database are defined by the
database statement. On other hand, the label associated
with a indicates that a is partially-defined – which means only
a subset of the values of a in the database are defined.
Observe that these fully- and partially-defined distinctions
are also applicable to program variables representing collec-
tions, such as arrays, lists, etc. For ordinary variable holding
single value, the label is by default (i.e., fully-defined). Let
us illustrate this on our running example.
Example 2. Applying equations 3 and 4 on all statements

in “Prog” of the running example, we get the following
information:

DEF(2) ={(x, )} DEF(3) = {(y, )}
DEF(4) ={(purchase_amt, ), (cust_name, ), (point, ),

(wallet_bal, ), (delivery_charge, )}
DEF(5) ={(purchase_amt, )}
USE(5) ={(purchase_amt, ), (y, )}
DEF(6) ={(purchase_amt, )}
USE(6) ={(purchase_amt, ), (x, )}
DEF(7) ={(purchase_amt, )}
USE(7) ={(purchase_amt, ), (delivery_charge, )}
USE(11)={(purchase_amt, ), (cust_name, )}
DEF(15)={(point, )}
USE(15)={(purchase_amt, ), (wallet_bal, ), (point, )}
DEF(16)={(point, )}
USE(16)={(purchase_amt, ), (wallet_bal, ), (point, )}

The above information results in the following refined
set of data dependencies:

• DD-dependencies for purchase_amt: 4 5 ,
4 6 , 4 7 , 5 6 , 5 7 , 6 7 ,
7 11 , 7 15 , 7 16 ,

• DD-dependencies for other attributes: 4 7 ,
4 11 , 4 15 , 4 16 , 15 16

• PD-dependencies for x and y: 2 6 , 3 5

The label associated with purchase_amt in DEF(7)
indicates that all values of purchase_amt are defined
at program point 7. This means that all definitions of
purchase_amt before 7 does not reach any of its use
after 7, identifying false DD-dependencies 4 11 ,
5 11 , 6 11 , 4 15 , 5 15 , 6 15 ,
4 16 , 5 16 and 6 16 for purchase_amt.

Observe that the DD-dependency 4 11 exists for
cust_name and dependencies 4 15 , 4 16 exist
for both wallet_bal and point. The improved syntax-based
DOPDG of “Prog” is depicted in Figure 4.

Limitations. This improved DOPDG construction approach
also fails to compute optimal dependency results, because of
its syntactic bound. For example, the false DD-dependencies
5 6 for purchase_amt and 15 16 for point still

remain unidentified.

3.3 DOPDG Construction on Condition-Action Rules
Although Willmor et al. [22] defined PD-dependency (Def-
inition 2) in terms of syntax, however interestingly they
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Fig. 4: Improved Syntax-based DOPDG of “Prog” (F de-
notes attribute purchase_amt)

defined DD-dependency in terms of defined and used values
(see Definition 4). This leads to an improvement in the
precision of DD-dependency computation. However, the
preciseness depends on how precisely one can identify the
overlapping of database-parts by various database opera-
tions.

Definition 4 (Database-Database (DD) dependency [22]).
Let Q.SEL, Q.INS, Q.UPD and Q.DEL denote the parts
of database state which are selected, inserted, updated,
and deleted respectively by Q. A database statement Q1
is DD-dependent on another database statement Q2 iff (i)
the database-part defined by Q2 overlaps the database-
part used by Q1, i.e. Q1.SEL ∩ (Q2.INS ∪ Q2.UPD ∪
Q2.DEL) , ∅, and (ii) there is no roll-back operation
in the execution path p between Q2 and Q1 (exclusive)
which reverses back the effect of Q2.

As a solution to compute this overlapping, Willmor et al.
refer to the propagation algorithm in [35] designed for the
static analysis of Condition-Action rules in expert database
systems. The Condition-Action rules defined in an expert
database system enable it to react automatically in some
situations without the need of user access. These rules are,
in general, expressed in the form Econd −→ Eact, where Eact
represents an action as data modification operation (e.g.
INSERT, UPDATE and DELETE) and Econd represents a condi-
tion. Formally, [35] considers an extended version of the
relational algebra by introducing an additional operator ε,
known as attribute extension operator, in case of database
update. This operator is defined as ε[x = expr]e, where the
expression expr is evaluated over each tuple t of e and the
resulting value is entered into the new attribute x for t under
the new schema schema(e) ∪ {x}. Let us illustrate this with
running example.

Example 3. Consider our running example in Section 2.
Following the extended relational algebra, we get the
following Condition-Action rules at program points 5

and 6:

E5
cond → πpurchase_amt(σpurchase_amt>1000∧purchase_amt63000 Sales)

E5
act → ε[purchase_amt′ = purchase_amt − 0.05 ×

purchase_amt](σpurchase_amt>1000∧purchase_amt63000 Sales)

E6
cond → πpurchase_amt(σpurchase_amt>3000 Sales)

E6
act → ε[purchase_amt′ = purchase_amt − 0.1 ×

purchase_amt](σpurchase_amt>3000 Sales)

where π and σ are basic relational algebra operators for
attribute projection and attribute selection respectively.

The propagation algorithm predicts how the action of one
rule can affect the condition of another. In other words, the
analysis checks whether a condition in one rule sees any
data inserted or deleted or modified due to an action in
another. This considers following three possibilities: (i) both
the pre-defined part (i.e., database-part before performing
the action Eact) and the post-defined part (i.e., database-part
obtained after performing the action Eact) are in use by the
condition Econd; (ii) the pre-defined part is not in use by Econd
whereas the post-defined part is in use by Econd, (iii) the pre-
defined part is in use by Econd whereas the post-defined part
is not in use by Econd. Let us illustrate this by recalling the
rules already defined in Example 3. This is worthwhile to
note here that this kind of conditions verification makes the
computational complexity exponential w.r.t. the number of
defining statements.
Example 4. Consider the Condition-Action rules at pro-

gram points 5 and 6 of our running example expressed
in Example 3. Observe that the predicates (1000 6
purchase_amt 6 3000) in E5

act and (purchase_amt > 3000)
in E6

cond are contradictory – meaning that E5
act operates

on a part of data which is not accessed by E6
cond. In

other words, the action E5
act does not affect the condition

E6
cond. Therefore, DD-dependency 5 6 is false. Simi-

larly we can also identify another false DD-dependency
15 16 . The refined set of data dependencies are:

• DD-dependencies for purchase_amt: 4 5 ,
4 6 , 4 7 , 4 11 , 4 15 ,
4 16 , 5 7 , 5 11 , 5 15 ,
5 16 , 6 7 , 6 11 , 6 15 ,
6 16 , 7 11 , 7 15 , 7 16

• DD-dependencies for other attributes: 4 7 ,
4 11 , 4 15 , 4 16

• PD-dependencies for x and y: 2 6 , 3 5

Figure 5 depicts the refined DOPDG based on the above
result.

Limitations. The Condition-Action rules can be applied
only on a single def-use pair at a time. This fails to capture se-
mantic independencies when a code contains more than one
defining database statements (in sequence) for an attribute
which is subsequently used by another database statement.
The main reason behind this is the flow-insensitivity of
this approach. For instance, the approach fails to identify
false DD-dependencies 4 11 , 4 15 , 4 16 ,
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Fig. 5: Condition-Action Rules-based DOPDG of “Prog” (F
denotes attribute purchase_amt)

5 11 , 5 15 , 5 16 , 6 11 , 6 15
and 6 16 in “Prog” due to the presence of multiple
definitions of purchase_amt by the statements 5, 6 and 7
in sequence. Moreover, this approach incurs a high com-
putational overhead w.r.t. program size. Observe that the
algorithm combining from sections 3.2 and 3.3 will identify
a set of false dependencies which is same as the union of the
results obtained from both of the algorithms when applied
individually.

The subsequent sections are dedicated to semantic-
based DD-dependency (in concrete domain) and DD-
independency (in abstract domain) computation of database
programs.

4 Formal Syntax and Concrete Semantics of Database
Query Languages
In this section, we recall from [39] the formal syntax and
concrete semantics of database query languages.

Abstract syntax of database statement is denoted by
〈A, φ〉 where A represents an action-part and φ represents
a conditional-part. For instance, the query “UPDATE t SET

sal=sal + 100 WHERE age > 35” is denoted by 〈A, φ〉 where
A represents “UPDATE t SET sal=sal + 100” and φ represents
“age > 35”.

Table 1 depicts the syntactic sets and the abstract syntax
of database statements. The SQL clauses GROUP BY, ORDER

BY, DISTINCT/ALL, and the aggregate functions are denoted
by different functions g(), f (), r(), and h() respectively. A
SQL action A is either “SELECT” or “UPDATE” or “DELETE”
or “INSERT”. For example, the abstract syntax of the query
above is denoted by

〈UPDATE(~vd,~e), φ〉

where φ = (age > 35) and ~vd = 〈sal〉 and ~e = 〈sal + 100〉.

It is worthwhile to mention that our defined abstract
syntax, which we recall from our previous work [39], has

limitation in the sense that it considers only numerical
attributes. However, the syntax is consistent with the SQL
definition given by ANSI [40]. In fact, we have shown
its equivalence with relational algebra and its extension
to support nested queries in sections 8 and 10 of [39]
respectively. Therefore, our formalism supports different
RDBMS implementations, like Oracle, MySQL or IBM DB2.

Application Environment. Given the set of application
variablesVa and the domain of values Val, let Ea : Va 7→ Val

be the set of all functions with domain Va and range
included in Val. An application environment ρa ∈ Ea maps
application variables to their values in Val.

Database Environment. A database d is a set of tables
{ti | i ∈ Ix} for a given set of indexes Ix. A database
environment is defined as a function ρd whose domain is Ix,
such that for i ∈ Ix, ρd(i) = ti.

Table Environment. Given a database table t with attributes
attr(t)={a1, a2, . . . , ak}. So, t ⊆ D1 × D2 × .... × Dk where ai is
the attribute corresponding to the typed domain Di. A table
environment ρt for a table t is defined as a function such
that for any attribute ai ∈ attr(t), ρt(ai) = 〈πi(l j) | l j ∈ t〉
where π is the projection operator and πi(l j) represents the
ith element of the l j-th row. In other words, ρt maps ai to the
ordered set of values over the rows of the table t.

Concrete Semantics. Let Σdba be the set of states for
the database language under consideration, defined by
Σdba , Edbs × Ea where Edbs and Ea denote the set of
all database environments and the set of all application
environments respectively. Therefore, a state ρ ∈ Σdba is
denoted by a tuple (ρd, ρa) where ρd ∈ Edbs and ρa ∈ Ea. The
transition relation

Tdba : (C × Σdba) 7→ ℘(Σdba) (5)

specifies which successor states (ρd′ , ρa′ ) ∈ Σdba can follow
when a statement c ∈ C executes on state (ρd, ρa) ∈ Σdba. Let
us illustrate the concrete semantics of an update statement.

Example 5.
Consider the database table t in Table 2(a) and the
following update statement:

Qupd : UPDATE t SET sal = sal + 100 WHERE age > 35

The abstract syntax is denoted by 〈UPDATE(~vd,~e), φ〉
where φ = (age > 35) and ~vd = 〈sal〉 and ~e = 〈sal + 100〉.

The table targeted by Qupd is target(Qupd)= {t}. The
semantics of Qupd is:

Tdba[[Qupd]](ρd, ρa)

=Tdba[[
〈
UPDATE(〈sal〉, 〈sal + 100〉), (age > 35)

〉
]](ρd, ρa)

=Tdba[[
〈
UPDATE(〈sal〉, 〈sal + 100〉), (age > 35)

〉
]](ρt, ρa)

Since, target(Qupd)={t}
=Tdba[[UPDATE(〈sal〉, 〈sal + 100〉)]](ρt↓(age>35), ρa)

t

(ρt↓¬(age>35), ρa) Absorbing φ = (age > 35)
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Constants:
k ∈ R Set of Numerical Constants

Variables:
va ∈ Va Set of Application Variables
va ::= x | y | z | . . .
vd ∈ Vd Set of Database Attributes
vd ::= a1 | a2 | a3 | . . .
V ::= Va ∪Vd

Expressions:
e ∈ E Set of Arithmetic Expressions
e ::= k | vd | va | opu e | e1 opb e2 where opu ∈ {+,−} and opb ∈ {+,−, ∗, /}
b ∈ B Set of Boolean Expressions
b ::= true | false | e1 opr e2 | ¬b | b1 ⊕ b2 where opr ∈ {≤,≥,==, >,,, . . . } and ⊕ ∈ {∨,∧}

SQL Pre-conditions:
τ ∈ T Set of Terms
τ ::= k | va | vd | fn(τ1, τ2, ..., τn) where fn is an n-ary function.

a f ∈ A f Set of Atomic Formulas
a f ::= Rn(τ1, τ2, ..., τn) | τ1 == τ2 where Rn(τ1, τ2, ..., τn) ∈ {true, f alse}
φ ∈ W Set of Pre-conditions
φ ::= a f | ¬φ | φ1 ⊕ φ2 | ⊗ v φ where ⊕ ∈ {∨,∧} and ⊗ ∈ {∀,∃}

SQL Functions:
g(~e) ::= GROUP BY(~e) | id where ~e = 〈e1, ..., en | ei ∈ E〉 and id denotes identity function

r ::= DISTINCT | ALL

s ::= AVG | SUM | MAX | MIN | COUNT | id
h(e) ::= s ◦ r(e)
h(∗) ::= COUNT(*) where * represents the list of all database attributes denoted by ~vd.
~h(~x) ::= 〈h1(x1), ..., hn(xn)〉 where ~h = 〈h1, ..., hn〉 and ~x = 〈x1, ..., xn | xi = e ∨ xi = ∗〉
f (~e) ::= ORDER BY ASC(~e) | ORDER BY DESC(~e) | id

Commands:
Q ∈ Q Set of SQL Statements
Q ::= Qsel | Qupd | Qins | Qdel

Qsel ::= 〈Asel, φ〉

::=
〈
SELECT

(
f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1

〉
Qupd ::= 〈Aupd, φ〉

::= 〈UPDATE(~vd,~e), φ〉
Qins ::= 〈Ains, φ〉

::= 〈INSERT(~vd,~e), f alse〉
Qdel ::= 〈Adel, φ〉

::= 〈DELETE(~vd), φ〉
c ∈ C Set of Commands
c ::= skip | va = e | Q | if b then c endif

| if b then c1 else c2 endif
| while b do c done

P ::= c | c ; P Program

TABLE 1: Abstract Syntax of Programs embedding SQL

eid sal age dno
1 1500 35 10
2 800 28 20
3 2500 50 10
4 3000 62 10

(a) table t

eid sal age dno
1 1600 35 10
2 800 28 20
3 2600 50 10
4 3100 62 10

(b) table t′′

TABLE 2: Database before and after the update operation

=(ρt′ , ρa) t (ρt↓¬(age>35), ρa)
=(ρt′ t ρt↓¬(age>35), ρa)
=(ρt′′ , ρa)

where

ρt′ ≡ρt↓ (age > 35)

[
sal ← E[[sal + 100]](ρt↓ (age > 35), ρa)

]
=ρt↓ (age > 35) [sal ← 〈1600, 2600, 3100〉]

The notation (t ↓ (age > 35)) denotes the set of tuples in
t for which (age > 35) is true (denoted by red part in t of
Table 2(a)). E[[.]] is the semantic function for arithmetic
expression which maps “sal + 100” to a list of values
〈1600, 2600, 3100〉 on the table environment ρt↓(age>35). The
notation ← denotes a substitution by new values. Ob-
serve that the substitution of ’sal’ by the list of values in
ρt↓(age>35) results in a new table environment ρt′ (denoted
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by red part in Table 2(b)). Finally, the least upper bound
(denoted t) which is defined over the lattice of table
environments partially ordered by ⊆, results in a new
state (ρt′′ , ρa) where t′′ is depicted in Table 2(b).

5 Semantics-based Dependency: A Formalization in
Concrete Domain
As witnessed in section 3, the DOPDG construction ap-
proaches based on the syntax often fail to compute optimal
set of dependencies. This motivates researchers towards
semantics-based dependency computation considering val-
ues rather than variables [34]. For instance, consider an
arithmetic expression “e = x2 + 4w mod 2 + z”. Although in
this expression e syntactically depends on w, semantically
there is no dependency as the evaluation of “4w mod 2” is
always zero.

We, in our previous work [36], formalized the notion of
semantics-based dependencies of database programs. Let us
first recall this and then in the subsequent sections we build
a computational framework considering this as the basis.

Given a SQL statement Q = 〈A, φ〉 and its target table t.
Suppose ~x = USE(A), ~y = USE(φ) and ~z = DEF(Q). According
to the concrete semantics, suppose Tdba[[Q]](ρt, ρa) = (ρt′ , ρa).

The used and defined part of t by Q are computed accord-
ing to the following equations:

Adef(Q, t) = ∆(ρt′ (~z), ρt(~z)) (6)

Ause(Q, t) = ρt↓φ(~x) ∪ ρt↓φ(~y) (7)

where

t ↓ φ : Set of tuples in table t which satisfies the
condition-part φ.

ρt↓φ(~x) : Values of ~x in (t ↓ φ).
ρt↓φ(~y) : Values of ~y in (t ↓ φ).

∆ : Computes the difference between the original
database state on which Q operates and the
new database state obtained after performing
the action-part A.

In other words, the function Ause maps a query Q to the
part of the database information used by it, whereas the
function Adef defines the changes occurred in the database
states when data is updated or deleted or inserted by Q. The
following example illustrates this.

Example 6. Let us consider the concrete database table t
shown in Table 2(a) and the following update statement:

Qupd : UPDATE t SET sal = sal + 100 WHERE age > 35

where A = UPDATE(〈sal〉, 〈sal + 100〉) and φ = age > 35.
According to equations 6 and 7, the used-part and defined-
part are as follows:

Ause(Qupd, t) = ρt↓(age>35)(sal) ∪ ρt↓(age>35)(age)

Adef(Qupd, t) = ∆(ρt′ (sal), ρt(sal))

These are depicted in Tables 3(a) and 3(b) respectively
where we have denoted Ause(Qupd, t) and Adef(Qupd, t) by
red color.

eid sal age dno
1 1500 35 10
2 800 28 20
3 2500 50 10
4 3000 62 10

(a) Ause(Qupd, t)

eid sal age dno
1 1600 35 10
2 800 28 20
3 2600 50 10
4 3100 62 10

(b) Adef(Qupd, t)

TABLE 3: The used and defined part of t by Qupd (marked with
red color)

Given two database statements Q1 = 〈A1, φ1〉 and Q2 =
〈A2, φ2〉 such that target(Q1) = t and Tdba[[Q1]](ρt, ρa) =
(ρt′ , ρa) and target(Q2) = t′. Following the equations 6 and
7, we can compute the defined part of t by Q1 as Adef(Q1, t)
and used-part of t′ by Q2 as Ause(Q2, t′). Therefore, we can say
Q2 is DD-dependent on Q1 when Adef(Q1, t) and Ause(Q2, t′)
overlap with each other, i.e. Ause(Q2, t′) ∩Adef(Q1, t) , ∅. Ob-
serve that Q1 is either UPDATE, INSERT and DELETE statement
which defines the database. This is defined in Definition 5.
Definition 5 (Semantics-based DD-dependency [27]). A SQL

statement Q2 = 〈A2, φ2〉 with target(Q2) = t′ is DD-
dependent for Υ on another SQL statement Q1 = 〈A1, φ1〉

with target(Q1) = t (denoted Q1
Υ
−→ Q2) if Q1 ∈

{Qupd,Qins,Qdel} and Tdba[[Q1]](ρt, ρa) = (ρt′ , ρa) and the
overlapping-part Υ = Ause(Q2, t′) ∩Adef(Q1, t) , ∅.

When an initial database instance is unknown, due to
infiniteness of the concrete domains, the computation of
concrete semantics of database programs and hence Ause,
Adef and Υ become undecidable problem. Nevertheless, in
case of finite large scale databases, these semantics-based
dependency computations also incur in high computational
overhead. To ameliorate this performance bottleneck, we
apply the Abstract Interpretation theory [9] to compute
abstract semantics of database languages, in a decidable
way, as a sound approximation of its concrete counterparts.

6 Semantics-basedAbstract dependency: A SoundAp-
proximation

In this section, we first briefly introduce the Abstract In-
terpretation framework [9], [10]. Then we define abstract
semantics of database statements in various non-relational
and relational abstract domains. Finally, we present the
computation of abstract dependencies among statements
identifying their approximated used and defined database-
parts based on the abstract semantics.

6.1 The Abstract Interpretation Framework: Preliminar-
ies

Abstract Interpretation is a method of sound approxima-
tion of the program’s concrete semantics which enables to
provide sound answers to questions about the program’s
run-time behaviour. The idea is to lift concrete seman-
tics to an abstract setting by replacing concrete values by
suitable properties of interest, and simulating the concrete
operations by sound abstract operations. The concrete and
the abstract domains are partially ordered sets (lattices, or
complete lattices, possibly), where the ordering relations
describe the relative precision of the denotations including
the top elements representing no information. The mapping
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between concrete and abstract semantics domains is usually
established by a Galois Connection 4:

Definition 6 (Galois Connections [9]). Consider two partial
orders (D, 6) and (D, v) where the first one represents
a concrete domain and the second one represents an
abstract domain. The Galois Connection between D and

D is denoted by
〈
(D,6), α, γ, (D,v)

〉
or (D, 6)

α
−→
←−−
γ

(D, v)

where α: D→ D and γ: D→ D holds iff:

• ∀v ∈ D. v v γ ◦ α(v).
• ∀v ∈ D. α ◦ γ(v) v v.
• α and γ are monotonic.

In other words, iff ∀v ∈ D, v ∈ D. α(v) v v ⇐⇒ v 6 γ(v).

A number of abstract domains, non-relational and rela-
tional, exist in the literature [9], [10], [41], [42], [43]. Let us
briefly illustrate them below:

Non-relational Abstract Domains.

An abstract domain is said to be non-relational if it does
not preserve any relation among program variables. Non-
relational abstract domains care only about the actual
variables being updated, rather than having potential to
change multiple values at once [10]. Some widely used
non-relational abstract domains for program analysis in-
clude sign domain for sign property analysis, parity domain
for parity property analysis, interval domain for division-
by-zero or overflows [9]. Analyses in these domains are,
although efficient, but imprecise w.r.t. relational abstract
domains. Figure 6 pictorially depicts a scenario where a set
of points SP (indicated by •) on the xy-plane are abstracted
by sign and interval properties.
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Fig. 6: Abstractions of SP by Sign (left) and Interval Proper-
ties (right)

Relational Abstract Domains.

Unlike non-relational abstract domains, the relational ab-
stract domains preserve relations among program variables
[41]. Analyses in these domains are more precise as com-
pared to the non-relational abstract domains, in particular,
for large number of relations among variables in the code.
Widely used relational abstract domains are the domains of
Polyhedra, Octagons, Difference-Bound Matrices (DBM), etc
[41], [42], [43]. Abstractions of the same set of points in the
octagon and polyhedra domains are exemplified in Figure
7.

4. Notice that for some abstract domains only a concretization func-
tion exists, like in the case of Polyhedra.
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Fig. 7: Abstractions of SP in Octagon (left) and Polyhedra
Domains (right)

6.2 Defining Abstract Semantics of Database State-
ments

We are now in a position to define the abstract semantics
of database statements in various abstract domains. To this
aim, let us first define abstract database states and the
abstract semantic transition relation in an abstract domain
of interest w.r.t. its concrete counterpart (section 4).

Definition 7 (Abstract Table). Given a concrete table t ∈ ℘(D)
where D = D1×D2× ....×Dk such that attr(t)={a1, a2, . . . ,
ak} and ai is the attribute corresponding to the typed do-
main Di. Let D be an abstract domain which represents
properties of the attributes of t establishing the Galois
Connection 5

〈
(℘(D),⊆), α, γ, (D,v)

〉
. An element t ∈ D is

said to be a sound abstraction of the concrete table t if
for all tuples l ∈ t, l ∈ γ(t).

Definition 8 (Abstract Table Environment). Given an ab-
stract table t, an abstract table environment ρt is defined
as ρt(ai) = πi(t) for any attribute ai ∈ attr(t), where π is
the projection operator in the abstract domain and πi(t)
represents the projected abstract values corresponding to
the ith attribute in t.

Definition 9 (Abstract Database States). An abstract
database d is a set of abstract tables {ti | i ∈ Ix} for a given
set of indexes Ix. An abstract database environment is
defined as a function ρd whose domain is Ix, such that
for i ∈ Ix, ρd(i) = ti.

Definition 10 (Abstract States). An abstract state ρ ∈ Σdba
for database applications is defined as a tuple (ρd, ρa)
where ρd ∈ Edbs and ρa ∈ Ea are an abstract database
environment and an abstract application environment
respectively.

Observe that, as any constraint defined at database level has
no role in the dependency computation at application-code
level, we consider database abstraction without taking these
constraints into consideration.

In order to formalize the abstract semantics of database
applications, we define the following sound abstract transi-
tion relation corresponding to its concrete counterpart Tdba
(defined in equation 5 of section 4):

T dba : C × Σdba 7→ Σdba (8)

which specifies the successor abstract state (ρd′ , ρa′ ) ∈ Σdba
when a statement c ∈ C executes on an abstract state

5. Notice that for some abstract domain the abstraction function may
not exist.
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: ρo – Abstract database state which does not satisfy φ

: ρ� – Abstract database state which satisfies φ

: ρ� – Abstract database after action occurs on ρ�

Fig. 8: Representation of abstract database state 〈ρo, ρ�, ρ�〉

(ρd , ρa) ∈ Σdba. The soundness of the abstract semantics
relies on the soundness of T dba w.r.t. Tdba (see the proof in
section 8).

Since our objective is to compute semantics-based DD-
independencies, it is important to identify database-parts
(identified by the condition φ) before and after performing
the action A. With this objective, unlike equation 8 which
results in a single abstract state ρ, we define a variant of the
abstract transition relation as follows:

T dep : C × Σdba 7→ (Edbs × Edbs × Edbs) (9)

which results in a three-tuple 〈ρo, ρ�, ρ�〉 of abstract
database states, where ρo, ρ�, ρ� ∈ Edbs. The first component
ρo represents an abstract database state which does not
satisfy φ, whereas the second component ρ� represents an
abstract database state which satisfies φ. Observe that an
abstract database-part which may or may not satisfy φ (due
to abstraction) will be included in both ρo and ρ�. The third
component ρ� is obtained after performing an action A on
ρ�. These are depicted in Figure 8.

The abstract semantics of database statements in various
abstract domains following equations 8 and 9 are defined in
the subsequent sections.

6.2.1 Domain of Intervals

Let Lc = 〈℘(R),⊆, ∅,R,∩,∪〉 be a concrete lattice of the pow-
erset of numerical valuesR. Let I = {[l, h] | l ∈ R∪{−∞}, h ∈
R ∪ {+∞}, l ≤ h} ∪ ⊥ be the abstract domain of intervals
forming an abstract lattice La = 〈I,v,⊥, [−∞,+∞],u,t〉, such
that:

• [l1, h1] v [l2, h2] ⇐⇒ l2 6 l1 ∧ h2 > h1
• [l1, h1] u [l2, h2] = [max(l1 l2), min(h1 h2)]
• [l1, h1] t [l2, h2] = [min(l1, l2), max(h1 h2)]

The correspondence between Lc and La is formalized as the
Galois connection 〈Lc, αI, γI, La〉 where ∀S ∈ ℘(R) and ∀v ∈
I:

αI(S) =



⊥ if S = ∅

[l, h] if min(S) = l ∧ max(S) = h
[−∞, h] if @min(S) ∧ max(S) = h
[l, +∞] if min(S) = l ∧ @max(S)
[+∞, −∞] if @min(S) ∧ @max(S);

γI(v) =



∅ if v = ⊥

{k ∈ R | l ≤ k ≤ h} if v = [l, h]
{k ∈ R | k ≤ h} if v = [−∞, h]
{k ∈ R | l ≤ k} if v = [l, +∞]
R if v = [+∞, −∞].

The pictorial representation of the Galois connections 〈Lc,
αI, γI, La〉 is shown in Figure 9.

∅

{0} {1} {2} . . .{-1}{-2}. . .

. . .

R

αI

γI

⊥

[0, 0] [1, 1] [2, 2] . . .[-1, -1][-2, -2]. . .

[-2, -1] [-1, 0] [0, 1] [1, 2]. . . . . .

. . .

[-∞, +∞]

Fig. 9: Galois Connection between Lc and La

Abstract Semantics of Imperative Language in Interval: A
Quick Tour [44].
Consider the set of concrete states Σ : Va 7→ R repre-
senting the mapping of imperative program variables to
their semantic domain values. Given the set of arithmetic
expressions E, boolean expressions B and commands C.
The concrete denotational semantics functions Te : (E ∪
B) 7→ (Σ 7→ R ∪ {true, f alse}) for expressions evaluation,
T f : B 7→ (℘(Σ) 7→ ℘(Σ)) for state-filtering based on boolean
satisfiability and Tc : C 7→ (℘(Σ) 7→ ℘(Σ)) specifying effects
of commands on states, are defined in Figure 10.

Given an abstract domain I of intervals, the set of ab-
stract states is defined as Σ : Va 7→ I which respects the
Galois Connection, i.e. ∀ ρ ∈ Σ,∀ ρ ∈ Σ: α(ρ) v ρ ⇐⇒ ρ ⊆
γ(ρ).

The corresponding sound abstract semantics function
Te : (E ∪ B) 7→ (Σ 7→ I ∪ {true, f alse,>B}) for expression
evaluation where >B denotes “ may be true or may be false”,
is defined as:

Te[[k]] ={(ρ, [k, k]) | ρ ∈ Σ}

Te[[x]] ={(ρ, ρ(x)) | ρ ∈ Σ}

Te[[e1 ⊕ e2]] ={(ρ, v1 ⊕ v2) | (ρ, v1) ∈ Te[[e1]], (ρ, v2) ∈ Te[[e2]]}

Te[[e1 } e2]] ={(ρ, v1 } v2) | (ρ, v1) ∈ Te[[e1]], (ρ, v2) ∈ Te[[e2]]}

Examples of sound abstract arithmetic and relational opera-
tions ⊕ and } respectively in the domain of intervals are:

[l1, h1] + [l2, h2] =[l1 + l2, h1 + h2]
[l1, h1] × [l2, h2] =[min(l1 × l2, l1 × h2, h1 × l2, h1 × h2),

max(l1 × l2, l1 × h2, h1 × l2, h1 × h2)]

Abstract versions of other arithmetic and relational
operations are also defined this way, ensuring the soundness
in I.

Similarly, the abstract semantics functions T f : B 7→

(Σ 7→ Σ) for abstract state-filtering and Tc : C 7→ (Σ 7→ Σ)
for commands are:

T f [[x 6 k]] =
{
(ρ, ρ[x← [l,min(h, k)]]) | ρ ∈ Σ, ρ(x) = [l, h], l 6 k

}
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Te[[k]] ={(ρ, k) | ρ ∈ Σ}

Te[[x]] ={(ρ, v) | ρ ∈ Σ, ρ(x) = v}
Te[[e1 ⊕ e2]] ={(ρ, v1 ⊕ v2) | (ρ, v1) ∈ Te[[e1]], (ρ, v2) ∈ Te[[e2]],

⊕ ∈ {+,−,×} ∨ (⊕ ∈ {/,%} ∧ v2 , 0)}
Te[[e1 } e2]] ={(ρ,u1 } u2) | (ρ,u1) ∈ Te[[e1]], (ρ,u2) ∈ Te[[e2]],

} ∈ {>,6, <, >,==}}

Te[[¬b]] ={(ρ,¬w) | (ρ,w) ∈ Te[[b]]}
Te[[b1 ~ b2]] ={(ρ,w1 ~ w2) | (ρ,w1) ∈ Te[[b1]], (ρ,w2) ∈ Te[[b2]],

~ ∈ {∨,∧}}

T f [[b]] ={(ρ, ρ) | ρ ∈ Σ, (ρ, true) ∈ Te[[b]]}
Tc[[skip]] ={(ρ, ρ) | ρ ∈ Σ}

Tc[[x = e]] ={(ρ, ρ[x← v]) | ρ ∈ Σ, (ρ, v) ∈ Te[[e]]}
Tc[[c1; c2]] =Tc[[c1]] ◦Tc[[c2]]
Tc[[if b then c1 else c2]]

= {(ρ , ρ′) | (ρ , ρ) ∈ T f [[b]], (ρ , ρ′) ∈ Tc[[c1]]}
∪

{(ρ , ρ′′) | (ρ, ρ) ∈ T f [[¬b]], (ρ, ρ′′) ∈ Tc[[c2]]}
Tc[[while b do c]]

= {(ρ , ρ′) | (ρ , ρ′) ∈
T f [[¬b]] ◦ lfp λY.(ρ ∪Tc[[c]] ◦T f [[b]]Y)}

Fig. 10: Concrete Denotational Semantics of simple Impera-
tive Language

T f [[x > k]] =
{
(ρ, ρ[x← [max(l, k), h]]) | ρ ∈ Σ, ρ(x) = [l, h], h > k

}
T f [[x == k]] =

{
(ρ, ρ[x← [k, k]]) | ρ ∈ Σ, ρ(x) = [l, h], l 6 k 6 h

}

Tc[[skip]] =
{
(ρ, ρ) | ρ ∈ Σ

}
Tc[[x = e]] =

{
(ρ, ρ[x← v]) | (ρ, v) ∈ Te[[e]]

}
Tc[[if b then c1 else c2]]

= {(ρ, ρ3) | (ρ, ρ1) ∈ T f [[b]], (ρ1, ρ3) ∈ Tc[[c1]]}
t

{(ρ, ρ4) | (ρ, ρ2) ∈ T f [[¬b]], (ρ2, ρ4) ∈ Tc[[c2]]}

= {(ρ, ρ3 t ρ4) | ρ ∈ Σ}

where t denotes component-wise join operation in the
abstract lattice La.

Tc[[while b do c]]
= {(ρ , ρ1) | (ρ , ρ1) ∈

T f [[¬b]] ◦ lfp λY.(Y∇(ρ t T c[[c]] ◦T f [[b]]Y))}

where ∇ : (I × I)→ I is a widening operator, if:

• for each x, y ∈ I: x v x∇y and y v x∇y.
• for each increasing chain x0 v x1 v . . . , the increasing

chain defined by y0 = x0, yn+1 = yn∇xn+1 for n ∈ N, is
not strictly increasing.

x = 1

x < 100

x = x + 1

ρ0 = 〈x 7→ ⊥〉

ρ1 = ρ0[[1, 1]/x]

x: [1,1]

ρ2 = (ρ1 ∩ ρ3) ∩ [−∞, 99]

x: [1,99]

yes

ρ3 = ρ2+[1, 1]

x: [2,100]

ρ4 = (ρ1 ∩ ρ3) ∩ [100,+∞]

x: [100,100]

no

Fig. 11: An example of interval analysis

Example 7. Consider the statement c ::= if x > 5 then x = x+y
else x = x − y. Consider an abstract state in the domain
of intervals ρ=〈x 7→ [2, 10], y 7→ [1, 1]〉. The abstract
semantics of c w.r.t. ρ is illustrated below:

T f [[x > 5]](ρ) =ρ[x← [5, 10]] = ρ1

T f [[¬(x > 5)]](ρ) =ρ[x← [2, 4]] = ρ2

Te[[x + y]](ρ1) =ρ1(x) + ρ1(y) = [6, 11]

Te[[x − y]](ρ2) =ρ2(x) − ρ2(y) = [1, 3]

Tc[[x = x + y]](ρ1) =ρ1[x← [6, 11]] = ρ3

Tc[[x = x − y]](ρ2) =ρ2[x← [1, 3]] = ρ4

Tc[[if x > 5 then x = x + y else x = x − y]](ρ)
= (ρ3 t ρ4) = 〈[6, 11] t [1, 3], [1, 1] t [1, 1]〉
= 〈[1, 11], [1, 1]〉 = ρ5

Example 8. Consider the simple code fragment x = 1;
while(x < 100){x = x + 1;}. Figure 11 illustrates a data
flow-based analysis of the code in I for the absence of
runtime errors. The data-flow equation for each node is
mentioned on the controlling edge of the corresponding
node. The fix-point solution of these equations represent
the abstract collecting semantics (denoted by red color).

Defining Abstract Semantics of Database Language in
Interval Domain.
Let us recall the semantic function T dba defined in equation
8 which specifies the successor abstract state (ρd′ , ρa′ ) ∈
Σdba when a statement c ∈ C executes on an abstract state
(ρd , ρa) ∈ Σdba.

Given a database statement Q = 〈A, φ〉 and an abstract
database state ρ = (ρd , ρa), the abstract semantics of Q w.r.t.
ρ is defined below:

T dba[[〈A, φ〉]]ρ

=T dba[[〈A, φ〉]](ρd , ρa)

=T dba[[〈A, φ〉]](ρt , ρa)

where t = target(〈A, φ〉) and ∃t ∈ d : t ∈ γ(t)

=T dba[[〈A〉]](ρTM , ρa) t (ρFM , ρa)
=(ρTM′ , ρa) t (ρFM , ρa)
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=(ρTM′ t ρFM , ρa t ρa)
=(ρt′ , ρa) (10)

where

(ρTM , ρa) ∈ T f [[φ]](ρt , ρa) and (ρFM , ρa) ∈ T f [[¬φ]](ρt , ρa)

Observe that TM and FM are the abstract database states
obtained by using the filtering semantics function T f based
on the satisfaction of φ. In particular, TM denotes the part
of the abstract database state for which φ is true, whereas
FM denotes the abstract database state for which φ is false.
After performing the update action A on TM, the resultant
abstract state TM′ is obtained. Finally, component-wise join
operation between TM′ and FM yields the resultant abstract
state t′. Observe that, in order to ensure the soundness, both
TM and FM include the information for which φ results in
“may be true or false”. We illustrate this in Example 9.
Example 9. Consider the abstract domain of intervals I.

Given the concrete database table t shown in Table
4(a), its corresponding abstract version t replacing con-
crete values by their properties from I is depicted in
Table 4(b). Similarly, given an application environment

eid sal age dno
1 1500 35 10
2 800 28 20
3 2500 50 10
4 3000 62 10

(a) Concrete table t

eid sal age dno
[1,4] [800,3000] [28,62] [10, 20]

(b) Abstract table t in interval domain

TABLE 4: Concrete and its corresponding Abstract Database

ρa = 〈x 7→ 100〉 where x is an application variable, its
corresponding abstract application environment in I is
ρa = 〈x 7→ [100, 100]〉.

Now consider the following UPDATE statement:

Qupd : UPDATE t SET sal = sal + x WHERE sal > 1500

Here A = UPDATE(〈sal〉, 〈sal + x〉) and φ = sal > 1500. The
concrete semantics yields the resultant table t′ shown in
Table 5.

eid sal age dno
1 1600 35 10
2 800 28 20
3 2600 50 10
4 3100 62 10

TABLE 5: Execution result t′ by Qupd on t

The abstract semantics of Qupd w.r.t. ρ = (ρt , ρa) is

T dba[[〈A, φ〉]](ρt , ρa)

=T dba[[
〈
UPDATE(〈sal〉, 〈sal + x〉), sal > 1500

〉
]](ρt , ρa)

=T dba[[
〈
UPDATE(〈sal〉, 〈sal + x〉)

〉
]](ρTM, ρa) t (ρFM, ρa)

=(ρTM′ , ρa) t (ρFM , ρa)

=(ρTM′ t ρFM , ρa t ρa)

=(ρt′ , ρa)

where

ρTM =T f [[sal > 1500]](ρt) = ρt

[
sal ← [1500, 3000]

]

ρFM =T f [[¬(sal > 1500) ]](ρt) = ρt

[
sal ← [800, 1499]

]
ρTM′ = T dba[[UPDATE(〈sal〉, 〈sal + x〉)]](ρTM , ρa)

= Tc[[sal = sal + x]](ρTM , ρa)

= Tc[[sal = sal + [100, 100]]](ρTM , ρa)

= ρTM

[
sal← [1600, 3100]

]
Tables 6(a) and 6(b) depict TM and FM respectively.
After performing the update action A on TM, the resul-
tant abstract table TM′ is shown in Table 6(c). Finally,
component-wise join operation between TM′ and FM
yields the resultant table t′ depicted in Table 6(d). Ob-
serve that the abstract semantics is sound, i.e. t′ ∈ γ(t′).

eid sal age dno
[1,4] [1500,3000] [28,62] [10, 20]

(a) Abstract table TM

eid sal age dno
[1,4] [800,1499] [28,62] [10, 20]

(b) Abstract table FM

eid sal age dno
[1,4] [1600,3100] [28,62] [10, 20]

(c) Abstract table TM′

eid sal age dno
[1,4] [800,3100] [28,62] [10, 20]

(d) Abstract table t′ = TM′ t FM

TABLE 6: Execution results of Qupd on t

Limitations. Let us illustrate the limitation of the analysis
in I by the following example.

Example 10. Consider the abstract state ρ = (ρt , ρa) defined
in Example 9. Consider the following statement:

Qupd : UPDATE t SET sal = sal + sal ∗ 0.1 WHERE sal + age > 1550

where A = UPDATE(〈sal〉, 〈sal + sal ∗ 0.1〉) and φ = sal + age >
1550. Observe that, as the semantics of φ on ρt results in
“may be true or false”, therefore both ρTM and ρFM include
all abstract database-parts as depicted in Table 7. Therefore,
analysis-results in interval domain of such cases are highly
approximated, which may lead to the computation of false
dependency.

eid sal age dno
[1,4] [800,3000] [28,62] [10, 20]

(a) Abstract table TM

eid sal age dno
[1,4] [800,3000] [28,62] [10, 20]

(b) Abstract table FM

TABLE 7: Part of execution results of Qupd on t

Abstract Semantics towards Independency Computation.
In order to compute semantics-based DD-independencies,
we define T dep, according to equations 9, in I for database
statements as follows:

T dep[[〈A, φ〉]]ρ

=T dep[[〈A, φ〉]](ρd , ρa)

=T dep[[〈A, φ〉]](ρt , ρa)

where t = target(〈A, φ〉) and ∃t ∈ d : t ∈ γ(t)

=
〈
ρFM , ρTM , ρTM′

〉
(11)

where

• T f [[φ]](ρt , ρa) = (ρTM , ρa)
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• T f [[¬φ]](ρt , ρa) = (ρFM , ρa)
• Tc[[A]](ρTM , ρa) = (ρTM′ , ρa)

Let us now define T dep for UPDATE, DELETE, INSERT and
SELECT.

UPDATE statement:

T dep[[
〈
UPDATE(~vd, ~e), φ

〉
]](ρt , ρa) =

〈
ρFM , ρTM , ρTM′

〉
where T f [[¬φ]](ρt , ρa) = (ρFM , ρa)

T f [[φ]](ρt , ρa) = (ρTM , ρa)

Tc[[UPDATE(~vd,~e)]](ρTM , ρa)
= (ρTM[~vd ← Te[[~e]](ρTM , ρa)], ρa) = (ρTM′ , ρa)

INSERT statement:

T dep[[
〈
INSERT(~vd, ~e), f alse

〉
]](ρt , ρa) =

〈
ρt , ρ⊥ , ρnew

〉
where T f [[¬ f alse]](ρt , ρa) = (ρt , ρa)

T f [[ f alse]](ρt , ρa) = (ρ⊥ , ρa)

Tc[[INSERT(~vd , ~e)]](ρ⊥ , ρa)

= (ρ⊥[~vd ← Te[[~e]](ρ⊥ , ρa)] , ρa) = (ρnew , ρa)

where ρ⊥ maps the attributes to the bottom element in the
abstract domain which represents “undefined” values.

DELETE statement:

T dep[[
〈
DELETE(~vd), φ

〉
]](ρt , ρa) =

〈
ρFM , ρTM , ρ⊥

〉
SELECT statement:

T dep[[
〈
SELECT

(
f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1

〉
]](ρt , ρa)

=
〈
ρFM , ρTM , ρTM

〉
Observe that the select operation does not change any
information.

Example 11. Consider the abstract state ρ = 〈ρt , ρa〉 and
ρa = 〈x 7→ [100, 100]〉 where t is depicted in Table
4(b), as defined in Example 9. Consider the following
statements:

Qupd =UPDATE t SET sal = sal + x WHERE sal > 1500
Qins =INSERT INTO t (eid, sal, age, dno)VALUES(5, 2700, 52, 20)
Qdel =DELETE FROM t WHERE age > 61
Qsel =SELECT age FROM t WHERE age 6 50

The abstract syntax of the statements are:

Qupd =〈UPDATE(〈sal〉, 〈sal + x〉), sal > 1500〉
Qins =〈INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse〉
Qdel =〈DELETE(〈eid, sal, age, dno〉), age > 61〉
Qsel =〈SELECT(〈age〉), age 6 50〉

Abstract semantics of Qupd w.r.t. ρ is

T dep[[
〈
UPDATE(〈sal〉, 〈sal + x〉), sal > 1500

〉
]](ρt , ρa)

=
〈
ρFM , ρTM , ρTM′

〉

where ρFM , ρTM and ρTM′ are shown in Table 6 of
Example 9.

The abstract semantics of Qins w.r.t. ρ is

T dep[[
〈
INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse

〉
]](ρt, ρa)

=
〈
ρt , ρ⊥ , ρnew

〉
where

ρnew =ρ⊥
[
eid← [5, 5], sal ← [2700, 2700], age ← [52, 52],

dno← [20, 20]
]

The abstract semantics of Qdel w.r.t. ρ is

T dep[[
〈
DELETE(〈eid, sal, age, dno〉), age > 61

〉
]](ρt , ρa)

=
〈
ρFM , ρTM , ρ⊥

〉
where

ρTM = T f [[ age > 61 ]](ρt) = ρt

[
age ← [61, 62]

]
ρFM = T f [[¬(age > 61) ]](ρt) = ρt

[
age ← [28, 60]

]
The abstract semantics of Qsel w.r.t. ρ is

T dep[[
〈
SELECT(〈age〉), age 6 50

〉
]](ρt , ρa) =

〈
ρFM , ρTM , ρTM

〉
where

ρTM = T f [[ age 6 50 ]](ρt) = ρt

[
age ← [28, 50]

]
ρFM = T f [[¬( age 6 50) ]](ρt) = ρt

[
age ← [51, 62]

]
6.2.2 Relational Abstract Domain of Octagons
To yield more precise analysis as compared to the interval
abstract domain, Antoine Miné [43] proposed a weekly
relational abstract domain – the domain of octagons – which
allows an analyzer to discover automatically common er-
rors, such as division by zero, out-of-bound array access or
deadlock, and more generally to prove safety properties of
programs.

The octagon abstract domain encodes binary constraints
between program variables in the form of kixi + k jx j 6 k
where xi, x j are program variables, ki, k j ∈ [−1, 0, 1] are
coefficients and k is a constant in the numerical domain
R. Since coefficients can be either -1, 0 or 1, the number
of inequalities between any two variables is bounded. The
set of points satisfying the conjunction of such constraints
forms an octagon.

Octagonal constraints representation in memory. The
encoding of conjunctions of octagonal constraints makes
use of Difference Bound Matrix (DBM) representation. Let
us describe DBM first and then an extension to encode the
set of octagonal constraints.

Difference Bound Matrices (DBM) [42]. Given a program P
with a finite set of variables VP = {x1, . . . , xn}. A Difference
Bound Matrix (DBM) m with size n × n represents a set of
invariants each of the form x j − xi 6 k, where k ∈ R∞ and
R∞ = R ∪ {∞} such that:

mi j ,


k if (x j − xi 6 k) where xi, x j ∈ VP and k ∈ R∞,

∞ otherwise.
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Example 12. Consider the constraints {x1−x2 6 3, x2−x3 6 4,
x3−x1 6 5, x2−x4 6 4}. These constraints are represented
by the DBM shown below:

x1 x2 x3 x4
x1 ∞ ∞ 5 ∞

x2 3 ∞ ∞ ∞

x3 ∞ 4 ∞ ∞

x4 ∞ 4 ∞ ∞

Extension to encode octagonal constraints [43]. The above DBM
representation over program variables can represent only a
subset of octagonal constraints of the form xi − x j 6 k. In
order to allow more general form ±xi ± x j 6 k of octagonal
constraints, a DBM m of size n × n defined over VP is
extended to another DBM m′ of size 2n × 2n over the set
of enhanced variablesV′

P
= {x′1, . . . , x

′

2n} where each variable
xi ∈ VP comes in two forms: a positive form x′2i−1, denoted
x+

i and a negative form x′2i, denoted x−i . This extended form
of DBM m′ is called coherent DBM (CDBM) representing
octagon. This is illustrated in the following example.

Example 13. Consider the octagonal constraints {x1 + x2 6 3,
x1 − x2 6 4, −x1 − x2 6 5, x1 6 4}, its equivalent CDBM
constraints are {x+

1 − x−2 6 3, x+
2 − x−1 6 3, x+

1 − x+
2 6 4,

x−2 − x−1 6 4, x−1 − x+
2 6 5, x−2 − x+

1 6 5, x+
1 − x−1 6 8}. These

constraints are represented in CDBM shown below:
x+

1 x−1 x+
2 x−2

x+
1 ∞ ∞ ∞ 5

x−1 8 ∞ 3 4
x+

2 4 5 ∞ ∞

x−2 3 ∞ ∞ ∞

Observe that any constraints of the form (xi 6 k) and (xi > k)
can be represented as (x+

i − x−i 6 2k) and (x−i − x+
i 6 −2k)

respectively.

Closure. An octagon can be represented by more than one
set of inequalities. For instance, the octagonal constraints
{(x 6 4) ∧ (y 6 6)} and {(x 6 4) ∧ (y 6 6) ∧ (x + y 6 10)}
represent the same concrete values. Therefore, the use of
closure operation ensures a unique representation of any
octagonal constraints. The closure operation on CDBM
follows Floyd – Warshall algorithm [45].

In the rest of the paper, we use the notation m to
represent closed CDBM when the context is clear.

Galois Connections. Let Lc = 〈℘(Rn),⊆, ∅,Rn,∩,∪〉 be
the concrete lattice. Let M be the set of all closed CDBMs
representing the domain of octagons. Let M⊥= M ∪ {m⊥}
where m⊥ represents the bottom element that contains an
unsatisfiable set of constraints. We define the abstract lattice
La = 〈M⊥, v, m⊥, m>, u, t〉 where m> represents the top
element for which the bound for all constraints is ∞. The
partial order, meet and join operations in La are defined as
follows:

• ∀m,n ∈M⊥: m v n⇐⇒ ∀i, j: mi j 6 ni j.
• ∀m,n ∈M⊥: (mun)=m’where ∀i, j: m’i j ,min(mi j, ni j).
• ∀m,n ∈M⊥: (mtn)=m’where ∀i, j: m’i j ,max(mi j, ni j).

Observe that since the union of two octagons is not always
an octagon the result is approximated.

Let Σ be the set of all environments defined as Σ : V 7→
R. An environment ρ ∈ Σ maps each variable to its value.
An environment will be understood as a point in Rn where

|V| = n. The Galois connection between Lc and La is formal-
ized as 〈Lc, αM, γM, La〉 where αM and γM on S ∈ ℘(Rn) and
m ∈M⊥ are defined below:

• if S = ∅: αM(S) , m⊥
• if S , ∅: αM(S) = m where mi j ,

max{ρ(xl) − ρ(xk)|ρ ∈ S} when i = 2k − 1, j = 2l − 1
or i = 2l, j = 2k

max{ρ(xl) + ρ(xk)|ρ ∈ S} when i = 2k, j = 2l − 1
max{−ρ(xl) − ρ(xk)|ρ ∈ S} when i = 2k − 1, j = 2l

γM(m) =


∅ if m = m⊥
Rn if m = m>{
(k1, . . . , kn) ∈ Rn

| (k1,−k1 . . . kn,−kn)
∈ dom(m) and ∀i, j : x j − xi 6 mi j

}
otherwise

Sound operations in octagon domain. Let us recall from
[43] some useful sound operations in octagon abstract
domain defined in terms of CDBM:

• Emptiness test: Let m be a CDBM and G be a directed
weighted graph of m. We say that the octagon is
empty, i.e. γ(m) = ∅, if and only if G has a simple cycle
with a strictly negative total weight. The well-known
Bellman-Ford [46] algorithm is used for such cycle
detection.

• Projection: Let m be a CDBM representing a non
empty octagon. We extract the values of the variable
xi from m in the form of interval as:

{v | ∃(k1 . . . kn) ∈ γ(m) such that ki = v}
= [−m2i 2i+1/2, m2i+1 2i/2]

Interested reader may refer to [43] [47] for more abstract
operations (closure, widening, etc.) in octagon domain.

Abstract Semantics of Imperative Language in Octagon: A
Quick Tour [43].

Given the set of boolean expressions B and commands
C. The concrete denotational semantics functions for
state-filtering based on the boolean satisfiability is defined
as T f :

(
B 7→ ℘(Σ)

)
7→ ℘(Σ). The corresponding sound

abstract function T f in the domain of octagons is defined as
T f : (B 7→M⊥) 7→M⊥. Similarly, the concrete denotational
semantic function for the effects of commands on states is
defined as Tc :

(
C 7→ ℘(Σ)

)
7→ ℘(Σ) and its corresponding

sound abstract function Tc in octagon domain is defined as
Tc : (C 7→M⊥) 7→M⊥.

Test: Given a CDBM m representing abstract state at a
program point and a boolean expression b. The state-
filtering function T f finds m’ applying b on m where γ(m′)
is {ρ ∈ γ(m) | ρ satisfies b}. However, as it is in general
impossible to implement such a transition function, an
upper approximation result is computed such that

γ(m′) ⊇ {ρ ∈ γ(m) | ρ satisfies b}

The tests that can be modeled in the octagon domain are:
xh + xl 6 k, xh − xl 6 k, −xh − xl 6 k, xh + xl = k, xh 6 k
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and xh > k. The state-filtering function T f for xh + xl 6 k is
defined as below:

T f [[xh + xl 6 k]]m = m′ where

m′i j ,


min(mi j, k) if (i, j) ∈ {(2h, 2l − 1), (2l, 2h − 1)},

mi j otherwise

Observe that the entries in the CDBM m corresponding to
the cells (x−h , x+

l ) and (x−l , x+
h ) are updated based on the value

k, resulting into m’ which satisfies xh + xl 6 k. Similarly T f
for all others tests can also be defined.

Assignment: An assignment is to replace the value of a
program variable xi with the value of an expression e,
formally xi = e. Given an abstract state m representing
octagonal constraints at a program point and an assignment
xi = e, the abstract semantics of the assignment on m results
m’ as an upper approximation such that

γ(m′) ⊇ {ρ[xi ← k] | ρ ∈ γ(m) ∧ k = Te[[e]]ρ} where

Te is the semantic function of arithmetic expression and
ρ[xi ← k] denote ρ with its ith component changed into k.

The assignments that can be modeled in octagon domain
are: xh = xh + k and xh = xl + k with h , l. In the first case
xh = xh + k, we subtract k from inequalities having negative
coefficient for xh and we add k to inequalities having
positive coefficient for xh. On the other hand, for the second
case xh = xl + k, the inequalities xh − xl 6 k and xl − xh 6 −k
are added into the octagon. Let us illustrate them below:

1) If xh = xh + k:
Tc[[xh = xh + k]]m = m′ where m′i j , mi j + (αi j + βi j)k
with

αi j ,


+1 if j = 2h,
-1 if j = 2h − 1,
0 otherwise

and

βi j ,


-1 if i = 2h,
+1 if i = 2h − 1,
0 otherwise

2) If xh = xl + k with h , l:
Tc[[xh = xl + k]]m = m′ where

m′i j ,


k if (i, j) ∈ {(2h, 2l); (2l − 1, 2h − 1)},
-k if (i, j) ∈ {(2l, 2h); (2h − 1, 2l − 1),
mi j if i, j < {2h, 2h − 1},
+∞ otherwise

Example 14. Consider the statement c ::= if x > 5 then x =
y + 1 else x = y − 1. Let the initial abstract state be m>
(which is the top element in the lattice of octagon abstract
domain). The abstract semantics of c w.r.t. m is illustrated
below, where

rep
= denotes an alternative representation in

memory.

T f [[x > 5]]m> ={−x 6 −5}
rep
= m1

T f [[¬(x > 5)]]m> ={x 6 4}
rep
= m2

Tc[[x = y + 1]]m1 ={x − y 6 1, y − x 6 −1,−x 6 −5}
rep
= m3

Tc[[x = y − 1]]m1 ={x − y 6 −1, y − x 6 1, x 6 4}
rep
= m4

Tc[[if x > 5 then x = y + 1 else x = y − 1]]m> = (m3 tm4)
rep
= 〈{x − y 6 1, y − x 6 −1,−x 6 −5} t

{x − y 6 −1, y − x 6 1, x 6 4}〉
= 〈{x − y 6 1, y − x 6 1}〉 = m5

After recalling the abstract semantics of imperative lan-
guages on octagon domains designed by [43], let us move
to database languages.

Defining Abstract Semantics of Database Language in
Octagon Domain.
In case of database applications, we consider two different
environments: database environment ρd ∈ Edbs and applica-
tion environment ρa ∈ Ea. To determine abstract semantics
of database statements in the domain of octagons, we define
the abstract state ρ ∈ Σdba as

ρ = 〈md,ma〉

where md and ma are CDBMs of octagonal constraints as ab-
straction of database values and application variables values
respectively. Therefore, as defined in equation 8, the abstract
semantic function for database statements Q = 〈A, φ〉 is
defined as: T dba[[〈A, φ〉]](md,ma) = T dba[[〈A, φ〉]](mt , ma) =
(mt′ , ma) where mt is the octagonal representation of the
concrete table t which acts as the target of Q and mt′ is the
octagonal representation of the resultant table t′. Below is
the abstract semantics for update statement.

T dep[[〈UPDATE(~vd,~e), φ〉]](mt , ma)

=T dep[[〈UPDATE(~vd,~e)〉]](mTM , ma) t (mFM , ma)
=(mTM′ , ma) t (mFM , ma)
=(mTM′ tmFM , ma tma)
=(mt′ , ma)

where

T f [[¬φ]](mt,ma) = (mFM,ma) and T f [[φ]](mt,ma) = (mTM,ma)

We can define similarly the abstract semantics for other
database statements as well.
Example 15. Consider the concrete table t shown in Ta-

ble 4(a). Consider the concrete application environment
ρa = 〈x 7→ 100〉 where x is an application variable. The
corresponding abstract representation of ρt and ρa in
octagon domain are represented by CDBM mt and ma
respectively as

mt
rep
=

{
− eid 6 −1, eid 6 4, − sal 6 −800, sal 6 3000,

− age 6 −28, age 6 62,−dno 6 −10, dno 6 20
}
, and

ma
rep
=

{
x 6 100,−x 6 −100

}
.

Consider the following UPDATE statement

Qupd : UPDATE t SET sal = sal + x WHERE age > 35

where A = UPDATE(〈sal〉, 〈sal + x〉) and φ = age > 35. The
abstract semantics w.r.t. ρ = (mt,ma) is

T dba[[〈A, φ〉]](mt,ma)



17

=T dba[[
〈
UPDATE(〈sal〉, 〈sal + x〉), age > 35

〉
]](mt,ma)

=T dba[[
〈
UPDATE(〈sal〉, 〈sal + x〉)

〉
]](mTM,ma) t (mFM,ma)

=(mTM′ ,ma) t (mFM,ma)

=(mTM′ tmFM , ma tma)

=(mt′ , ma)

where

mTM
rep
=

{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000,−age

6 −35, age 6 62, − dno 6 −10, dno 6 20
}

mFM
rep
=

{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000,−age

6 −28, age 6 34, − dno 6 −10, dno 6 20
}

mTM′
rep
=

{
− eid 6 −1, eid 6 4,−sal 6 −900, sal 6 3100,−age

6 −35, age 6 62, − dno 6 −10, dno 6 20
}

Observation. We can follow an alternative equivalent way
of abstract state representation by combining both CDBM
of md and ma for the sake of simplicity. Let p and q denote
the numbers of database variables and application variables
respectively. Given md and ma as CDBM representations of
database values and variables values, these can be combined
into equivalent CDBM m defined in (p+q) – dimension space
by merging md and ma. In the subsequent sections we define
abstract semantics w.r.t. abstract state ρ = m.

Abstract Semantics towards Independency Computation

Like for the interval domain, the following transition re-
lation is defined, according to equation 9, to compute
semantics-based DD-independency in the domain of oc-
tagons:

T dep : C ×M⊥ 7→ (M⊥ ×M⊥ ×M⊥)

Below is the definition of T dep for various database
statements in octagon domain.

1. UPDATE:

T dep[[〈UPDATE(~vd, ~e), φ〉]]m =



〈
mF, mT, mT′

〉
if φ ∈{

kixi + k jx j 6 k
}

where
xi, x j ∈ V and ki, k j ∈

[−1, 0, 1] and k ∈ R

〈m,m,m′〉 otherwise

where T f [[¬φ]]m = mF and T f [[φ]]m = mT

Tc[[UPDATE(~vd, ~e)]]mT = mT

[
~vd ← Te[[~e]]mT

]
= mT′

Tc[[UPDATE(~vd,~e)]]m = m′

2. INSERT: T dep[[
〈
INSERT(~vd,~e), f alse

〉
]]m =

〈
m, m⊥, mnew

〉
where T f [[¬ f alse]]m = m and T f [[ f alse]]m = m⊥ and

Tc[[INSERT(~vd,~e)]]m⊥ = m⊥[~vd ← Te[[~e]]m⊥] = mnew

where m⊥ represents bottom element that contains an
unsatisfiable set of constraints.

3. DELETE:

T dep[[〈DELETE(~vd), φ〉]]m =



〈
mF, mT, m⊥

〉
if φ ∈{

kixi + k jx j 6 k
}

where
xi, x j ∈ V and ki, k j ∈

[−1, 0, 1] and k ∈ R

〈m,m,m⊥〉 otherwise

4. SELECT:

T dep[[
〈
SELECT

(
f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1

〉
]]m

=



〈
mF, mT, mT

〉
if φ ∈

{
kixi + k jx j 6 k

}
where

xi, x j ∈ V and ki, k j ∈ [−1, 0, 1] and k ∈ R

〈m,m,m〉 otherwise

Observe that φ ∈ {kixi + k jx j 6 k} checks whether the
condition in WHERE clause of database statement respects the
form of octagonal constraints.
Example 16. Consider the concrete database table t shown in

Table 4(a), and its corresponding abstract representation
in the form of CDBM mt in the domain of octagons as

mt
rep
=
{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000,

− age 6 −28, age 6 62,−dno 6 −10, dno 6 20
}
.

Consider the following statements:

Qupd =UPDATE t SET sal = sal + x WHERE age > 35
Qins =INSERT INTO t(eid, sal, age, dno)VALUES(5, 2700, 52, 20)
Qdel =DELETE FROM t WHERE age > 61
Qsel =SELECT sal FROM t WHERE age 6 50

The abstract syntax are

Qupd =〈UPDATE(〈sal〉, 〈sal + 100〉), age > 35〉
Qins =〈INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse〉
Qdel =〈DELETE(〈eid, sal, age, dno〉), age > 61〉
Qsel =〈SELECT(〈sal〉), age 6 50〉

The abstract semantics of the Qupd with respect to mt is

T dep[[
〈
UPDATE(〈sal〉, 〈sal + 100〉), age > 35

〉
]]mt =

〈
mF,mT,mT′

〉
where mT, mF and mT′ are depicted in Example 15.

The abstract semantics of the Qins w.r.t. mt is

T dep[[
〈
INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse

〉
]]mt

=
〈
mt, m⊥, mnew

〉
where

mnew
rep
=
{
− eid 6 −5, eid 6 5,−sal 6 −2700, sal 6 2700,

− age 6 −52, age 6 52,−dno 6 −20, dno 6 20
}

The abstract semantics of the Qdel w.r.t. mt is

T dep[[
〈
DELETE(〈eid, sal, age, dno〉), age > 61

〉
]]mt

=
〈
mF, mT, m⊥

〉
where

mT
rep
=
{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000, age 6 62,
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− age 6 −61,−dno 6 −10, dno 6 20
}

mF
rep
=
{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000, age 6 60,

− age 6 −28,−dno 6 −10, dno 6 20
}

The abstract semantics of the Qsel w.r.t. mt is

T dep[[
〈
SELECT(〈age〉), age 6 50

〉
]]mt =

〈
mF, mT, mT

〉
where

mT
rep
=
{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000, age 6 50,

− age 6 −28,−dno 6 −10, dno 6 20
}

mF
rep
=
{
− eid 6 −1, eid 6 4,−sal 6 −800, sal 6 3000, age 6 62,

− age 6 −51,−dno 6 −10, dno 6 20
}

Limitations. The octagon abstract domain is a weakly re-
lational domain that allows a limited number of relations
between program variables. Due to this bottleneck, anal-
yses in this abstract domain may fail to produce precise
results. For example, consider the following statement:
UPDATE t SET a = a + 1 WHERE a + b + c > 35. Given an abstract
state m in the domain of octagons, the abstract semantics
function T dep fails to capture mTM and mFM precisely as the
constraint a+b+c > 35 involves more than two variables and
hence can not be represented in octagonal constraint form.

6.2.3 Relational Abstract Domain of Polyhedra
The preciseness of the analysis in relational abstract do-
main improves significantly if more number of relations
among variables or attributes are in consideration when
analyzing the programs. Thus, the analysis in the polyhedra
abstract domain, although computationally costly, improves
the precision significantly compared to the octagon abstract
domain. P. Cousot and N. Halbwachs in their seminal work
[41] first introduced the polyhedra abstract domain for static
determination of linear equality and inequality relations
among program variables, and over the past several decades
this has been widely used in several engineering problems
such as static analysis of gated Data Dependence Graphs
(gated DDGs) [48], Information flow analysis to detect possi-
ble information leakages combining symbolic propositional
formulas domain and numerical polyhedra domain [49],
Hybrid systems verification tool SpaceEx [50], etc.

Let us briefly recall some basics. The regions in n-
dimensional spaceRn bounded by finite sets of hyperplanes
are called polyhedra. Let VP = {x1, x2, . . . xn} be the set of
variables in program P. We represent by ~v = 〈v1, v2, . . .
vn〉 ∈ R

n, an n-tuple (vector) of real numbers. By β = ~v.~x
> k where ~v , ~0, ~x = 〈x1, x2, . . . , xn〉, k ∈ R, we represent a
linear inequality over Rn. A linear inequality defines an
affine half-space of Rn. If P is expressed as the intersection
of a finite number of affine half-spaces of Rn, then P ∈ Rn is
a convex polyhedron. Formally, a convex polyhedron P =
(Θ, n) is a set of linear inequalities Θ = {β1, β2 . . . βm} on Rn.
Equivalently, P can be represented by frame representation
which is a collection of generators i.e. vertices and rays [51].
On the other hand, given a set of linear inequalities Θ on
Rn, a set of solutions or points defines a polyhedron P =
(Θ,n).

Concretization Function. Let Lc = 〈℘(Rn),⊆, ∅,Rn,∩,∪〉
be the concrete lattice defined over the concrete domain.
The set of polyhedra P with partial order v forms an
abstract lattice La=〈P,v, P⊥, P>,u,t〉. Given P1, P2 ∈ P, the
partial order, meet and join operations are defined below:

• P1 v P2 if and only if γ(P1) ⊆ γ(P2), where γ(P) rep-
resents the set of solutions or points in P as concrete
values.

• P1u P2 is the convex polyhedron containing exactly
the set of points γ(P1) ∩ γ(P2).

• P1t P2 is not necessarily a convex-polyhedron. There-
fore, the least polyhedron enclosing this union is
computed in terms of convex hull.

An environment ρ ∈ Σ , V 7→ R map each variable to its
value in R. Given P ∈ P, γP is defined below:

γP(P) =


∅ if P = P⊥

Rn if P = P>.{
ρ ∈ Σ | ∀(~v.~x > k) : ~v.ρ(~x) > k

}
otherwise

Note that there is no abstraction function in polyhedra
abstract domain because some vector sets do not have a
best over-approximation as a convex closed polyhedron
[41]. Therefore, in this case we denote by αP(S) a (possibly
minimal) polyhedron in P such that γP(αP(S)) ⊇ S.

Sound operations in polyhedra domain. Let us recall from
[41], [52], [53] some useful operations in the abstract
domain of polyhedra:

• Emptiness test: Program analyzers during their anal-
ysis may encounter constraints present in program
statements. Addition of a constraint to a non-empty
polyhedron may lead to an empty polyhedron. A
polyhedron is empty if and only if its constraint set
is infeasible. The Linear Programming (LP) solver
[54] is used for checking feasibility of such constraint
system. For example, adding a new constraint ~v.~x
> k to a non empty polyhedra P, we can solve the
LP problem µ = min ~v.~x subject to P. If k > µ, then
new polyhedron is empty. Alternatively, in generator
representation a polyhedron is empty if and only if
its set of vertices and rays are empty.

• Projection: Let P be a non empty polyhedron. The
projection operation removes all constraints informa-
tion from P corresponding to a variable xi without
affecting the relational information between other
variables, defined as:

Πxi (P) = {ρ[v/xi] | ρ ∈ γ(P), v ∈ R}

This is computed by eliminating all occurrences of xi
in the constraints of P by using the Fourier-Motzkin
algorithm [55] as below:

F(P,xi) , {(Σivixi > k) ∈ Θi
| vi = 0} ∪

{(−v−i )β+ + v+
i β
−
| β+ = (Σiv+

i xi > k+) ∈ Θ+, v+
i > 0,

β− = (Σiv−i xi > k−) ∈ Θ−, v−i < 0}

where v+
i and v−i represent positive and

negative coefficients for xi respectively. The
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algorithm partitions the set of liner inequalities
Θ = {β1, β2 . . . βm} into Θ+, Θi and Θ−, corresponding
to inequalities that have positive, zero and negative
coefficients for xi. For each pair (β+, β−) of inequalities
drown from Θ+

×Θ−, the algorithm multiplies β+ by
the absolute value of xi-th coefficient (|v−i |) in β− and
similarly multiplies β− by xi-th coefficient v+

i in β+.
The combination of these two results finally removes
xi as the resultant coefficient becomes zero.

• Inclusion test: Let P1 and P2 be non empty polyhedra.
The inclusion test (denoted P2 v P1) reduces to the
problem of checking whether each inequality in P2 is
entailed by P1, which can be implemented using LP.
For example, we can compute µ = min ~v.~x subject to
P1 for each ~v.~x > k. If µ < k then inclusion does not
hold.

Abstract Semantics of Imperative Language in Polyhedra
– A Quick Tour [41].
Given the concrete denotational semantics functions
T f :

(
B 7→ ℘(Σ)

)
7→ ℘(Σ), the corresponding sound

abstract function T f in the domain of polyhedra is defined
as T f : (B 7→ P) 7→ P. Similarly, given the concrete
denotational semantic function Tc :

(
C 7→ ℘(Σ)

)
7→ ℘(Σ),

its corresponding sound abstract function Tc in polyhedra
domain is defined as Tc : (C 7→ P) 7→ P.

Test: Let b be a boolean expression in the form of linear
inequalities ~v.~x > k and the abstract state in the form
of polyhedron P. The state-filtering function T f finds P’
applying b on P define as

T f [[~v.~x > k]]P = P′

where P′ = P u b.
Example 17. Given P=({x > 8, y > 6}, 2). The equivalent gen-

erators representation (vertices and rays) of P is V={(8, 6)}
and R={(1, 0), (0, 1)}. The abstract semantics of boolean
expression x > 20 is defined as: T f [[x > 20]]P = P′ where
P′ = ({x > 20, y > 6}, 2) and its equivalent generators
representation is V′={(20, 6)} and R′={(1, 0), (0, 1)}.

Assignment statement: Tc[[x j = e]](P) = P’ where P’ is obtained
as follows: (i) Case-1: If e is non-linear expression or the
assignment is non-invertible, then we simply project-out
the corresponding variable from the linear inequalities in
P, resulting into a new polyhedron P’; (ii) Case-2: otherwise,
we introduce a fresh variable x j’ to hold the value of e, then
we project out x j and finally we reuse x j’ in place of x j which
results into P’.
Example 18. Given P=({x > 3, y > 2}, 2). The equivalent

generators representation (vertices and rays) of P is V={(3,
2)} and R={(1, 0), (0, 1)}. The Tc of assignment x = x + y
is define as

Tc[[x = x + y]]({x > 3, y > 2}, 2) = P′ where

P′ = ({x − y > 3, y > 2}, 2) and its equivalent generators
representation is V′={(5, 2)} and R′={(1, 0), (-1, -1)}.

Defining Abstract Semantics of Database Language in
Polyhedra Domain.

Let us define the abstract semantics for four database op-
erations in the domain of polyhedra. Like octagon domain,
given ρ = 〈Pd, Pa〉 ∈ Σdba where Pd and Pa are polyhedra
representation of database values and application variables
values respectively. According to equation 8, the abstract
semantic function for database statements Q = 〈A, φ〉 is
defined as: T dba[[〈A, φ〉]](Pd, Pa) = T dba[[〈A, φ〉]](Pt , Pa) =
(Pt′ , Pa) where Pt is the polyhedron representation of the
concrete table t which acts as the target of Q, and Pt′ is the
polyhedron representation of the resultant table t′.

Alternatively, like octagon abstract domain, for the sake
of simplicity, we may combine both Pd and Pa into a single
polyhedra P as an abstract program state. In the subsequent
sections we define abstract semantics suitable for indepen-
dency computations w.r.t. an abstract state ρ= P in the
domain of polyhedra.

Abstract Semantics towards Independency Computation.

Let us define the transition relation T dep : C × P 7→ (P ×
P × P) to compute semantics-based DD-independency in
the domain of polyhedra for database statements:

1. UPDATE: T dep[[〈UPDATE(~vd,~e), φ〉]]P =
〈
PF, PT, PT′

〉
where

T f [[¬φ]]P = PF.
T f [[φ]]P = PT

Tc[[UPDATE(~vd,~e)]]PT = Tc[[~vd = ~e]]PT = PT′

We denote by the notation ~vd= ~e a series of assignments 〈v1=
e1, v2= e2, . . . , vn= en〉 where ~vd = 〈v1, v2, . . . , vn〉 and ~e=〈e1,
e2, . . . , en〉, which follow the transition semantic definition
for the assignment statement.

2. INSERT: T dep[[〈INSERT(~vd,~e), f alse〉]]P =
〈
P, P⊥, Pnew

〉
where

T f [[¬ f alse]]P = P

T f [[ f alse]]P = P⊥

Tc[[INSERT(~vd,~e)]]P⊥ = P⊥
[
~vd ← Te[[~e]]P⊥

]
= Pnew

Pnew represents a polyhedron corresponding to the new
inserted tuple values.

3. DELETE: T dep[[〈DELETE(~vd), φ〉]]P =
〈
PF, PT, P⊥

〉
4. SELECT:

T dep[[
〈
SELECT

(
f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1

〉
]]P =

〈
PF, PT, PT

〉
Example 19. Consider the database table t in Table 4(a) and

its corresponding abstract representation Pt =(Θ,n) in the
form of polyhedron, where

Pt =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000,

age > 28,−age > −62, dno > 10,−dno > −20
}
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Consider the following statements:

Qupd =UPDATE t SET sal = sal + sal × 0.2 WHERE dno + age > 60
Qins =INSERT INTO t (eid, sal, age, dno)VALUES(5, 2700, 52, 20)
Qdel =DELETE FROM t WHERE age > 61
Qsel =SELECT age FROM t WHERE age + dno 6 60

The equivalent abstract syntax are:

Qupd =〈UPDATE(〈sal〉, 〈sal + sal × 0.2〉), dno + age > 60〉
Qins =〈INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse〉
Qdel =〈DELETE(〈eid, sal, age, dno〉), age > 61〉
Qsel =〈SELECT(〈age〉), age + dno 6 60〉

The abstract semantics of Qupd w.r.t. Pt is

T dep[[
〈
UPDATE(〈sal〉, 〈sal + sal × 0.2〉), dno + age > 60

〉
]]Pt

=
〈
PF, PT, PT′

〉
where

PT =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 40,

− age > −62, dno > 10,−dno > −20, dno + age > 60
}

PF =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 28,

− age > −49, dno > 10,−dno > −20,−dno − age > −59
}

PT′ =
{
eid > 1,−eid > −4, sal > 960,−sal > −3600, age > 40,

− age > −62, dno > 10,−dno > −20, dno + age > 60
}

The abstract semantics of Qins w.r.t. Pt is

T dep[[
〈
INSERT(〈eid, sal, age, dno〉, 〈5, 2700, 52, 20〉), f alse

〉
]]Pt

=
〈
Pt, P⊥, Pnew

〉
where

Pnew =
{
eid > 5,−eid > −5, sal > 2700,−sal > −2700, age > 52,

− age > −52, dno > 20,−dno > −20
}

The abstract semantics of Qdel w.r.t. Pt is

T dep[[
〈
DELETE(〈eid, sal, age, dno〉), age > 61

〉
]]Pt

=
〈
PF, PT, P⊥

〉
where

PT =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 61,

− age > −62, dno > 10,−dno > −20
}

PF =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 28,

− age > −60, dno > 10,−dno > −20
}

The abstract semantics of Qsel w.r.t. Pt is

T dep[[
〈
SELECT(〈age〉), age + dno 6 60

〉
]]Pt =

〈
PF, PT, PT

〉
where

PT =
{
eid > 1,−eid > −4, sal > 800,−sal > −3000, age > 28,

− age > −50, dno > 10,−dno > −20,−dno − age > −60
}

PF =
{
eid > 1,−eid > −4, sal > 960,−sal > −3600, age > 51,

− age > −62, dno > 10,−dno > −20, dno + age > 61
}

6.2.4 Powerset Abstract Domain
The finite powerset construction of an abstract domain
yields a new abstract domain which improves the precision
of the analysis as compared to the original one [56]. For
example, application of condition-part in many cases
may result in multiple abstract values for an attribute.
In such cases the powerset representation of abstract
state is more suitable in terms of precision. Due to the
scattered nature of data in the database, the semantics-
based dependency analysis of database applications in the
above-mentioned abstract domains may often be highly
over-approximated. Thus powerset abstract domains, on
top of the existing relational- and non-relational abstract
domains, may capture the database values as a way of
refined approximation, improving the analysis results
significantly.

Let Lc = 〈D,6,⊥c,>c,∩c,∪c〉 be a concrete lattice and
La = 〈D,v,⊥a,>a,ua,ta〉 an abstract lattice over an abstract
domain A. The Lc and La are related by the Galois
connection (Lc, α, γ, La). Considering the powerset abstract
domain, the powerset of D denoted by ℘(D) with the order
relations � forms an abstract lattice Lp = 〈℘(D),�, ∅,D,f,g〉.
The partial order, meet and join operations in this abstract
domain are defined as follows:

• ∀S1,S2 ∈ ℘(D) : S1 � S2 ⇔ ∀vi ∈ S1 : ∃v j ∈ S2. vi v v j.
• ∀S1,S2 ∈ ℘(D) : S1 f S2 = {vi u v j | ∀vi ∈ S1,∀v j ∈ S2}.
• ∀S1,S2 ∈ ℘(D) : S1 g S2 = S1 ∪ S2.

Observe that in powerset abstract domain the meet opera-
tion S1 f S2 is defined by the pairwise meet of the elements
from S1 and S2, whereas the join operation S1 g S2 reduces
to a set union.

The Lc and Lp are related by a Galois connections 〈Lc,
α1, γ1, Lp〉 where α1 and γ1 on ∀X ∈ D and ∀Y ∈ ℘(D) are
defined below:

α1(X) =


∅ if X = ⊥c

D if X = >c{
α(X)

}
otherwise

γ1(Y) =


⊥c if Y = ∅

>c if Y = D.⋃{
γ(v) | v ∈ Y

}
otherwise

The pictorial representation of the Galois Connection among
the concrete domain (Lc), the abstract domain (La), and the
powerset of the abstract domain (Lp) is shown below:

Lc Lp La

α

γ

α1

γ1

Let us explain the powerset construction over the interval
abstract domain. Consider the interval abstract domain I =
{[l, h] | l ∈ Z ∪ {−∞}, h ∈ Z ∪ {+∞}, l ≤ h} ∪ ⊥ forming an
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abstract lattice La = 〈I,v,⊥, [−∞,+∞],u,t〉. The powerset of
the intervals denoted by ℘(I) forms the abstract lattice Lp =

〈℘(I),�, ∅, I,f,g〉.
The correspondence between La and Lp is formalized as

the Galois connections 〈La, α1, γ1, Lp〉. The partial order, meet
and join operations in the powerset domain of intervals can
be defined accordingly.

Given a powerset abstract domain of intervals ℘(I), the
set of abstract states Σ : V 7→ ℘(I) respects the Galois
Connection, i.e. ∀ ρ ∈ Σ,∀ ρ ∈ Σ: α1(ρ) v ρ ⇐⇒ ρ ⊆ γ1(ρ).

Given S1,S2 ∈ ℘(I), the sound abstract arithmetic operations
⊕ in the powerset abstract domain of intervals are defined
as:

∀S1,S2 ∈ ℘(I) : S1⊕S2 = {vi ⊕ v j | ∀vi ∈ S1,∀v j ∈ S2}

The corresponding sound abstract semantics function
Te : (E ∪ B) 7→ (Σ 7→ ℘(I) ∪ {true, f alse,>B}) for expression
evaluation where >B denotes “ may be true or may be false”,
the abstract semantics functions T f : B 7→ (Σ 7→ Σ) for
abstract state-filtering and Tc : C 7→ (Σ 7→ Σ) for commands
are defined accordingly in the powerset domain of intervals.
Example 20 illustrates this.
Example 20. Consider the statement c ::= if x > 5 then x = x+

y else x = x−y. Consider an abstract state in the powerset
domain of interval ρ=〈x 7→ {[2, 6], [8, 10]}, y 7→ {[1, 1]}〉.
The abstract semantics of c w.r.t. ρ is illustrated below:

T f [[x > 5]](ρ) =ρ[x← {[5, 6], [8, 10]}] = ρ1

T f [[¬(x > 5)]](ρ) =ρ[x← {[2, 4]}] = ρ2

Te[[x + y]](ρ1) =ρ1(x) + ρ1(y) = {[6, 7], [9, 11]}

Te[[x − y]](ρ2) =ρ2(x) − ρ2(y) = {[1, 3]}

Tc[[x = x + y]](ρ1) =ρ1[x← {[6, 7], [9, 11]}] = ρ3

Tc[[x = x − y]](ρ2) =ρ2[x← {[1, 3]}] = ρ4

Tc[[if x > 5 then x =x + y else x = x − y]](ρ)
= (ρ3 g ρ4) = 〈{[6,7], [9, 11]} g {[1, 3]}, {[1, 1]} g {[1, 1]}〉
= 〈{[1, 3], [6, 7], [9,11]}, {[1, 1]}〉 = ρ5

Defining Abstract Semantics of Database Language in the
Powerset of Interval
Given the semantic domain ℘(I), the abstract state is defined
as ρ = (ρt, ρa) where ρt : attr(t)→ ℘(I) and ρa : Va → ℘(I).

Like other domains, according to equation 9, the abstract
semantics in the powerset abstract domain for database
statements are similarly defined below:

UPDATE:

T dep[[
〈
UPDATE(~vd, ~e) , φ

〉
]](ρt , ρa) =

〈
ρFM , ρTM , ρTM′

〉
where T f [[¬φ]](ρt, ρa) = (ρFM , ρa)

T f [[φ]](ρt , ρa) = (ρTM , ρa)

Tc[[UPDATE(~vd,~e)]](ρTM , ρa)

= (ρTM[~vd ← Te[[~e]](ρTM , ρa)] , ρa) = (ρTM′ , ρa)

INSERT: T dep[[
〈
INSERT(~vd, ~e), f alse

〉
]](ρt , ρa) =

〈
ρt , ρ⊥, ρnew

〉
where T f [[¬ f alse]](ρt , ρa) = (ρt , ρa)

T f [[ f alse]](ρt , ρa) = (ρ⊥ , ρa) where ρ⊥ : attr(t)→ ∅

Tc[[INSERT(~vd,~e)]](ρ⊥ , ρa)

= (ρ⊥[~vd ← Te[[~e]](ρ⊥ , ρa)] , ρa) = (ρnew , ρa)

DELETE: T dep[[
〈
DELETE(~vd), φ

〉
]](ρt , ρa) =

〈
ρFM , ρTM , ρ⊥

〉
SELECT:

T dep[[
〈
SELECT

(
va, f (~e′), r(~h(~x)), φ2, g(~e)

)
, φ1

〉
]](ρt , ρa)

=
〈
ρFM , ρTM , ρTM

〉
6.3 A Summary on Abstract Domains
Let us summarize the strengths and limitations of various
relational and non-relational abstract domains which we
have used above to define abstract semantics of database
applications. As abstraction in the interval domain does
not capture any relation among variables or attributes, this
yields a highly approximated analysis-results. On the other
hand, although abstract semantics in both octagon and
polyhedra domains capture relationships among variables
or attributes, the octagon domain allows a weak form of
constraints compared to that in polyhedra domain. Due
to this reason, analysis in octagon domain is less precise
than that in the polyhedra domain. Intuitively, preciseness
of the analysis in relational abstract domain improves sig-
nificantly when more number of relations among variables
or attributes is present in the program itself, e.g. in the
WHERE clause or in the conditional or iterative statements.
In terms of algorithmic efficiency, octagon domain always
lies between interval and polyhedra. Analyses (involving
all common operations e.g. emptiness test, inclusion, etc.)
in polyhedra abstract domain experience an exponential
(O(2n)) worst-case time complexity [54], whereas in octag-
onal domain the graph-based analysis algorithms for all
common operations experience O(n3) worst-case time com-
plexity, where n is the number of variables in the program
[43]. Powerset operator, on the other hand, can generate
very expressive interpretations. In fact, the powerset ab-
stract domain gains the capability of expressing the logical
disjunction of the properties represented by the original do-
main. A summary on the strength and weakness of domains
is reported in Table 8.

6.4 Algorithm to Compute Abstract Semantics of
Database Applications
We now design the algorithm CompAbsSem, depicted in
Algorithm 1, which makes use of the semantics function
T dba and computes abstract states w.r.t. abstract domain
D at each program point of the database program. The
algorithm is based on the data flow analysis considering var-
ious control-flow nodes: start, DB-connect, assignment, test,
update, delete, insert, select, join, end. We denote by pred(ci) and
AS(ci) the set of predecessor of ci and the abstract state at ci
respectively. The algorithm starts in step 2 with undefined
abstract state at each program point and then applies in
step 3 all the data-flow equations (defined in steps 4-25)
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Domain Invariants Time
cost

Memory
cost

Precision

Interval x ∈
{
[l, h] | l, h ∈

R, l ≤ h, x ∈ V
} O(n) O(n) low

Octagon ±xi ± x j 6 k,
xi, x j ∈ V ∧ k ∈
R ∪ {∞}

O(n3) O(n2) medium

Polyhedra Σn
i=1 aixi > k, xi ∈

V ∧ ai, k ∈ Rn
O(2n) O(2n) high

Powerset ℘(D) Depends
on D

Depends
on D

Improves
w.r.t. D

TABLE 8: A summary on various abstract domains

until least fixed point solution is reached. After obtaining
the abstract state at each program point in the form of
collecting semantics, step 26 applies T dep in order to get
state-representation in the form of three-tuples 〈ρo, ρ�, ρ�〉
(as defined in equation 9). This abstract semantics is used
to compute used- and defined-parts and hence the semantics-
based independencies (described next). Observe that if the
initial database is unknown then the domain range of each
attribute and other integrity constraints are considered to
represent the initial abstraction of database as an overap-
proximation of all possible initial database states, as defined
in steps 1 and 9.

6.5 Approximating used- and defined Database Parts in
Various Abstract Domains
Given a database statement Q, let ρ = 〈ρo, ρ�, ρ�〉 be an
abstract state at Q obtained by following Algorithm 1. In
order to determine abstract DD-dependency between two
database statements, we need to identify abstract database-
parts to be defined or used by Q. To this aim, let us define
sound abstract functions Adef and Ause w.r.t. their concrete
counterparts already defined in equations 6 and 7 respec-
tively. Suppose DQ and UQ denote the defined and the used
abstract database-parts by Q respectively. Therefore,

DQ = Adef(Q, ρ) = 〈ρ�, ρ�〉 (12)

UQ = Ause(Q, ρ) = 〈ρ�〉 (13)

Observe that Ause maps a query Q to the abstract database-
part used by it, whereas Adef defines the changes occurred
in the abstract database states after performing the action
in Q. We represent DQ in the form of two-tuple where ρ�
and ρ� respectively represent the true-part before and the
updated-part after executing Q on the abstract database.
Note that although the defined-part can be computed by
following the abstract difference operation ∆ (corresponding
to ∆ defined in equation 6), however to avoid computational
complexity in dependency computation, we keep both of
these separated. Table 9 depicts defined and used parts by
different database statements in various abstract domains.

6.6 Dependency Computations
We are now in a position to compute DD-independencies
among database statements based on the information on
used- and defined-parts as obtained in the previous section.

Algorithm 1: CompAbsSem
Input: Database program P containing n statements,

Initial database dB, and Abstract domain D.
Output: Abstract state at each program point of P

1 Compute ρ = 〈ρdB, ρa〉 using the abstraction function
α following the Galois connection〈
(℘(D),⊆), α, γ, (D,v)

〉
as formalized in Definition 7.

2 ∀i ∈ [1, . . . ,n], AS(ci) = ⊥. // Initializing AS(ci) as

initial abstract collecting semantics.

3 Apply data flow equations defined in steps 4 - 25
until least fix-point is reached.

4 for i =1 to n do
// Defining data flow equation for CFG-node

corresponding to a statement ci in P.

5 switch (ci)
6 case start:
7 AS(ci)=⊥

8 case DB-connect:
9 AS(ci)=〈ρdB, ρa〉

10 case assignment:
11 AS(ci) =

⊔
c j∈pred(ci)

{
T dba[[x = e]](ρ) | ρ ∈ AS(c j)

}
12 case test:
13 AS(ci) =

⊔
c j∈pred(ci)

{
T dba[[b]](ρ) | ρ ∈ AS(c j)

}
14 case update:
15 AS(ci) =

⊔
c j∈pred(ci){

T dba[[UPDATE(~vd, ~e), φ〉]](ρ) | ρ ∈ AS(c j)
}

16 case delete:
17 AS(ci) =

⊔
c j∈pred(ci){

T dba[[DELETE(~vd), φ〉]](ρ) | ρ ∈ AS(c j)
}

18 case insert:
19 AS(ci) =

⊔
c j∈pred(ci){

T dba[[INSERT(~vd, ~e), f alse〉]](ρ) | ρ ∈
AS(c j)

}
20 case select:
21 AS(ci) =

⊔
c j∈pred(ci){

T dba[[〈SELECT
(

f (~e′), r(~h(~x)), φ2, g(~e)
)
, φ1〉]](ρ)

| ρ ∈ AS(c j)
}

22 case join:
23 AS(ci)=

⊔
c j∈pred(ci) AS(c j)

24 case end:
25 AS(ci)=

⊔
c j∈pred(ci) AS(c j)

26 Apply the abstract transition relation T dep on the
abstract state AS(c j) obtained at each program
point.

27 End

Let ρQ1 = 〈ρQ1

o , ρ
Q1

�
, ρQ1

�
〉 and ρQ2 = 〈ρQ2

o , ρ
Q2

�
, ρQ2

�
〉 be the

abstract states at Q1 and Q2 respectively. The defined-part by
Q1 and the used-part by Q2 are :

DQ1 = Adef(Q1, ρ
Q1 ) = 〈ρQ1

�
, ρQ1

�
〉
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SQL Abstract Domain of Intervals ρ Abstract Domain of Octagons ρ Abstract Domain of Polyhedra ρ Powerset of Interval Domain ρ̂I
Abstract state defined-/ used-part Abstract state defined-/ used-part Abstract state defined-/ used-part Abstract state defined-/ used-part

Update
〈
ρFM , ρTM , ρTM′

〉
Adef(Qupd, ρ) = 〈ρTM, ρTM′ 〉

〈
mF,mT ,m′T

〉
Ade f (Qupd, ρ) = 〈mT ,m′T〉

〈
PF, PT , P′T

〉
Ade f (Qupd, ρ) = 〈PT , P′T〉

〈
ρFM, ρTM, ρTM′

〉
Ade f (Qupd, ρ) = 〈ρTM, ρTM′ 〉

Qupd Ause(Qupd, ρ) = 〈ρTM〉 Ause(Qupd, ρ) = 〈mT〉 Ause(Qupd, ρ) = 〈PT〉 Ause(Qupd, ρ) = 〈ρTM〉

Delete
〈
ρFM , ρTM , ρ⊥

〉
Ade f (Qdel, ρ) = 〈ρTM, ∅〉

〈
mF,mT ,m⊥

〉
Ade f (Qdel, ρ) = 〈mT , ∅〉

〈
PF, PT , P⊥

〉
Ade f (Qdel, ρ) = 〈PT , ∅〉

〈
ρFM, ρTM, ρ⊥

〉
Ade f (Qdel, ρ) = 〈ρTM, ∅〉

Qdel Ause(Qdel, ρ) = 〈ρTM〉 Ause(Qdel, ρ) = 〈mT〉 Ause(Qdel, ρ) = 〈PT〉 Ause(Qdel, ρ) = 〈ρTM〉

Insert
〈
ρt , ρ⊥ , ρnew

〉
Ade f (Qins, ρ) = 〈∅, ρnew〉

〈
mt,m⊥,mnew

〉
Ade f (Qins, ρ) = 〈∅,mnew〉

〈
Pt, P⊥, Pnew

〉
Ade f (Qins, ρ) = 〈∅, Pnew〉

〈
ρt, ρ⊥, ρnew

〉
Ade f (Qins, ρ) = 〈∅, ρnew〉

Qins Ause(Qins, ρ) = 〈∅〉 Ause(Qins, ρ) = 〈∅〉 Ause(Qins, ρ) = 〈∅〉 Ause(Qins, ρ) = 〈∅〉

Select
〈
ρFM , ρTM , ρTM

〉
Ade f (Qsel, ρ) = 〈∅, ∅〉

〈
mF,mT ,mT

〉
Ade f (Qsel, ρ) = 〈∅, ∅〉

〈
PF, PT , PT

〉
Ade f (Qsel, ρ) = 〈∅, ∅〉

〈
ρFM, ρTM, ρTM

〉
Ade f (Qsel, ρ) = 〈∅, ∅〉

Qsel Ause(Qsel, ρ) = 〈ρTM〉 Ause(Qsel, ρ) = 〈mT〉 Ause(Qsel, ρ) = 〈PT〉 Ause(Qsel, ρ) = 〈ρTM〉

TABLE 9: Abstract defined- and used-part of database by SQL statements in various abstract domains

UQ2 = Ause(Q2, ρ
Q2 ) = 〈ρQ2

�
〉

The semantic dependency and independency of Q2 on Q1
are determined based on the following four cases:

Case − 1. ρQ1

�
u ρQ2

�
, ∅ ∧ ρQ1

�
u ρQ2

�
= ∅

Case − 2. ρQ1

�
u ρQ2

�
= ∅ ∧ ρQ1

�
u ρQ2

�
, ∅

Case − 3. ρQ1

�
u ρQ2

�
, ∅ ∧ ρQ1

�
u ρQ2

�
, ∅

Case − 4. ρQ1

�
u ρQ2

�
= ∅ ∧ ρQ1

�
u ρQ2

�
= ∅

The pictorial representation of the above cases are depicted
in Figure 12. Observe that only case 4 indicates a semantic
independency between Q1 and Q2 whereas all other cases
indicate a semantic dependency between them. Therefore,
Q2 is DD-independent on Q1 iff DQ1 u UQ2 = ∅; that is

ρQ1

�
u ρQ2

�
= ∅ ∧ ρQ1

�
u ρQ2

�
= ∅ (14)

Theorem 1 states that, given an abstract domain, equation
14 is necessary and sufficient condition for abstract DD-
independency. Observe that this theorem does not establish
anything about its soundness w.r.t. its concrete counterpart.
Theorem 1. Given an abstract domain, the necessary and

sufficient condition for a SQL statement Q2 to be abstract
DD-independent on another statement Q1 is ρQ1

�
u ρQ2

�
=

∅ ∧ ρQ1

�
u ρQ2

�
= ∅.

Proof 1. Consider two database statements Q1 = 〈A1, φ1〉

and Q2 = 〈A2, φ2〉. Given the abstract states ρ and ρ′

at Q1 and Q2 respectively which are obtained in step
25 of Algorithm 1. Let the abstract semantics applying
T dep in step 26 be T dep[[Q1]]ρ = 〈ρQ1

o , ρ
Q1

�
, ρQ1

�
〉 and

T dep[[Q2]]ρ′ = 〈ρQ2

o , ρ
Q2

�
, ρQ2

�
〉. Intuitively, we can say that

Q2 is abstract DD-dependent on Q1 when any modifica-
tion on the abstract database by Q1 affects the abstract
database-part to be accessed by Q2. The following three
kinds of affects may happen on Q2 due to Q1:

1) Inclusion of new information: Because of the
modification by Q1 some new data may be
accessed by Q2 satisfying φ2. This is captured in
Case-2.

2) Removal of existing information: As a result of the
modification done by Q1 some information (which
was previously accessed by Q2) now can not be
accessed by Q2 due to the unsatisfiability of φ2. This
is captured in Case-1.

3) Access of modified information: Q2 can access now
modified values, instead of their original values, of

some attributes due to the application of Q1. This is
captured in Case-3.

Therefore, we can say Q2 is semantically abstract DD-
independent on Q1 when the above three affects do not
take place. In other words, the abstract database-part
ρQ2

�
accessed by Q2 overlaps with the parts ρQ1

�
and ρQ1

�
referred by Q1 operations. This is captured in Case-4.

Algorithm to Compute Semantics-based DD-
dependencies. The algorithm semDOPDG in Algorithm
2 takes a list of used- and defined-parts at each program
point of the database program P and computes semantic-
based DD-dependency among database statements. The
algorithm, in step 2, first identifies all database statements
present in the program. Step 5 inside the loops checks
whether the defined-part by Qi overlaps with the used-part
by Q j, and accordingly DD-dependency edge is created
between them in step 6 and the flag is set to true in step
7. If dependency exists between Qi and Q j and flag is true,
then in the next step 11 the algorithm checks the condition
DQi v DQ j in order to verify whether defined-part at program
point Qi is fully covered by the defined-part at program
point Q j. If yes, the execution immediately breaks the inner
loop and does not check for dependency of the subsequent
database statements (after Q j) on Qi, and hence disregards
the false dependencies which may occur due to redefinition
of attributes values by Q j.

7 Illustration on the Running Example
Now we illustrate our approach on the running example
“Prog” in section 2. The semantic-based data independen-
cies are computed applying the following steps in different
abstract domains:

• Compute abstract semantics using Algorithm 1 at
each program point of “Prog”.

• Compute defined- and used-parts based on the ab-
stract semantics.

• Refinement of syntactic dependencies in “Prog”
based on the semantics-based independencies using
Algorithm 2.

A comparative result of the analysis in various abstract
domains is depicted in Table 10. Let us explain briefly few
scenarios by illustrating our approach.

For the sake of simplicity, since statements 5 and 6 in-
volve only the attribute ‘purchase_amt’ and the applications
variables ‘x’ and ‘y’, let us consider the abstract initial state ρ
taking those variables into account with an assumption that
purchase_amt is typed with unsigned smallint. Therefore, ρ =
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ρQ1

�

ρQ2

�

ρQ1

�

ρQ2
�

x

y

(a) case 1

ρQ1
�

ρQ2
�

ρQ1
�

ρQ2
�

x

y

(b) case 2

ρQ1
�

ρQ2
�

ρQ1
�

ρQ2
�

x

y

(c) case 3

ρQ1
�

ρQ2
�

ρQ1
�

ρQ2
�

x

y

(d) case 4 (Independency exist)

Fig. 12: Representations of independencies and dependencies

Algorithm 2: semDOPDG
Input: used- and defined-parts at each program point

in the database program P.
Output: Semantic-based DD-dependency

1 Set flag=true
2 Identify database statements present in P. Let m be

the number of database statements.
3 for i =1 to m-1 do
4 for j=i+1 to m do
5 if DQi u UQ j , ∅ then
6 Add edges from ith statement to jth

statement (i→ j)
7 Set flag = true;

8 else
9 Set flag = false;

10 if flag==true then
11 if DQi v DQ j then
12 break;

13 End

(ρdB , ρa) and T dba[[4]](ρ) = ρ4 where ρ4
dB

= 〈purchase_amt 7→
[0, 65000]〉. and ρa = 〈x 7→ [0.1, 0.1], y 7→ [0.05, 0.05]〉.

The abstract semantics of statement 5 is

T dba[[5]](ρ4) = ρ5 and T dep[[5]](ρ4) =
〈
ρ5

FM
, ρ5

TM
, ρ5

TM′

〉
where ρ5

FM
is obtained from ρ4

dB
where the condition is

not satisfied. This creates two intervals (purchase_amt ←
[0, 999]) and (purchase_amt ← [3001, 65000]). Therefore,
ρ5

FM
is represented using two abstract tuples l1 and

l2 such that ρ5
FM

=ρ4
dB

[
l1(purchase_amt ← [0, 999]),

l2(purchase_amt ← [3001, 65000])
]
. The part for

which the condition evaluates to true is ρ5
TM

=

ρ4
dB

[
purchase_amt ← [1000, 3000]

]
and therefore ρ5

TM′

= ρTM

[
purchase_amt← [950, 2850]

]
.

Similarly, abstract semantics of the statement 6 is

T dba[[6]](ρ5) = ρ6 and T dep[[6]](ρ5) =
〈
ρ6

FM
, ρ6

TM
, ρ6

TM′

〉
where ρ6

FM
=ρ5

dB

[
purchase_amt ← [0, 3000]

]
, ρ6

TM
= ρ5

dB

[
purchase_amt ← [3001, 65000]

]
and ρ6

TM′
=

ρTM

[
purchase_amt← [2701, 58500]

]
.

The defined-part by statement 5 and the used-part by
statement 6 are defined as follows:

D5 = Ade f (ρ
5, 5) = 〈ρ5

TM
, ρ5

TM′
〉 and U6 = Ause(ρ

6, 6) = 〈ρ6
TM
〉

Therefore, the dependency 5 6 does not exist seman-
tically as

D5
u U6 = ∅ =⇒ ρ5

TM
u ρ6

TM
= ∅ ∧ ρ5

TM′
u ρ6

TM
= ∅

This way one can easily capture semantics independen-
cies. Note that interval analysis is not yet an optimal setting
to capture all such independencies in “Prog”, for instance
15 16 .

On the other hand, consider the domain of polyhedra.
Consider the statements 15 and 16 which involve attributes
‘purchase_amt’, ‘wallet_bal’ and ‘point’. Let us consider the
abstract initial database state in the form of polyhedron PdB
based on the assumption that purchase_amt is typed with
unsigned smallint and the integrity constraints 0 6 point 6
100 and 100 6 wallet_bal 6 90000 are defined on ‘point’ and
‘wallet_bal’. Therefore, the abstract state at program point 4
is:

P11
dB =

{
purchase_amt > 0,−purchase_amt > −65000, point > 0,

− point > −100,wallet_bal > 100,−wallet_bal > −90000
}

The abstract semantics of statement 15 is defined as:

T dba[[15]](P11
dB) = P15

dB and T dep[[15]](P11
dB) =

〈
P15

F , P
15
T , P

15
T′

〉
where

P15
F =

{
purchase_amt > 0,−purchase_amt > −65000, point > 0,

− point > −100,wallet_bal > 100,−wallet_bal > −90000
}

P15
T =

{
purchase_amt > 0,−purchase_amt > −9899, point > 0,

− point > −100,wallet_bal > 100,−wallet_bal > −9999,

5000 6 purchase_amt + wallet_bal 6 9999
}

P15
T′ =

{
purchase_amt > 0,−purchase_amt > −9899, point > 2,

− point > −102,wallet_bal > 100,−wallet_bal > −9999,

5000 6 purchase_amt + wallet_bal 6 9999
}

Similarly, abstract semantics of statement 16 is:

T dba[[16]](P15
dB) = P16

dB and T dep[[16]](P15
dB) =

〈
P16

F , P
16
T , P

16
T′

〉
where

P16
F =

{
purchase_amt > 0,−purchase_amt > −9899, point > 0,

− point > −100,wallet_bal > 100,−wallet_bal > −9999

purchase_amt + wallet_bal 6 9999
}
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data de-
pendency

pure syntax-based Improved syntax-based Condition-Action
rule-based

Interval domain Octagon domain Polyhedra domain

DD-
dependency

4 {5, 6, 7, 11, 15, 16}

5 {6, 7, 11, 15, 16}

6 {7, 11, 15, 16}

7 {11, 15, 16}

15 16

4 {5, 6, 7, 11, 15, 16}

5 {6, 7}

6 7

7 {11, 15, 16}

15 16

4 {5, 6, 7, 11, 15, 16}

5 {7, 11, 15, 16}

6 {7, 11, 15, 16}

7 {11, 15, 16}

4 {5, 6, 7, 11, 15, 16}

5 7
6 7

7 {11, 15, 16}

15 16

4 {5, 6, 7, 11, 15, 16}

5 7
6 7

7 {11, 15, 16}

4 {5, 6, 7, 11, 15, 16}

5 7
6 7

7 {11, 15, 16}

PD-
dependency

2 6 , 3 5 2 6 , 3 5 2 6 , 3 5 2 6 , 3 5 2 6 , 3 5 2 6 , 3 5

TABLE 10: Representation of dependency results on “Prog” in various approaches

P16
T =

{
purchase_amt > 0,−purchase_amt > −65000, point > 0,

− point > −100,wallet_bal > 100,−wallet_bal > −90000

purchase_amt + wallet_bal > 10000
}

P16
T′ =

{
purchase_amt > 0,−purchase_amt > −65000, point > 4,

− point > −104,wallet_bal > 100,−wallet_bal > −90000

purchase_amt + wallet_bal > 10000
}

The defined-part by statement 15 and the used-part by state-
ment 16 are computed as follows:

D15 = Ade f (P15, 15) = 〈P15
T , P15

T′ 〉 and U16 = Ause(P6, 16) = 〈P16
T 〉

Therefore the dependency 15 16 does not exist seman-
tically, as

D15
u U16 = ∅ =⇒ P15

T u P16
T = ∅ ∧ P15

T′ u P16
T = ∅

This way other data independencies can also be captured
under polyhedral analysis.

8 Soundness of the Analysis
Lemma 1. Given an abstract state ρ = (ρt , ρa), the abstract

semantics function T dba is sound w.r.t. the concretization
function γ if ∀Q ∈ Q,∀ρt ∈ γ(ρt), ∀ρa ∈ γ(ρa) :
Tdba[[Q]](ρt, ρa) ⊆ γ(T dba[[Q]](ρt, ρa)).

Proof 2. Given an abstract state ρ, the abstract semantics
of Q = 〈A, φ〉 ∈ Q w.r.t. ρ is defined as T dba[[Q]]ρ =

T dba[[〈A, φ〉]]ρ = T dba[[〈A〉]]ρTM t ρFM = ρTM′ t ρFM = ρ′,
where ρTM represents abstract database state which
satisfies φ and ρFM represents abstract database state
which does not satisfy φ. Abstract state which, due to
abstraction, may satisfy φ is included in both ρTM and
ρFM. The state ρTM′ is obtained by performing A on
ρTM. Now let us consider a concrete state ρ ∈ γ(ρ). The
concrete semantics of Q = 〈A, φ〉 w.r.t. ρ is Tdba[[Q]]ρ =
Tdba[[〈A, φ〉]]ρ = Tdba[[〈A〉]]ρT ∪ ρF = ρT′ ∪ ρF = ρ′,
where ρT and ρF represent concrete database states based
on the satisfaction and dissatisfaction of φ respectively.
As φ in the abstract domain considers three valued logic
due to the imprecision introduced in the abstraction, and
since both ρTM and ρFM include the database state for
which φ evaluates to “may be true or false”, assuming local
correctness of the functions and relations involved in φ
we get ρT ∈ γ(ρTM) and ρF ∈ γ(ρFM). Similarly, the local
correctness of the operations involved in A guarantees
ρT′ ∈ γ(ρTM′ ) [39]. Considering the Galois connection
between concrete and abstract database and application

domains, we therefore get (ρT′ ∪ ρF) ∈ γ(ρTM′ t ρFM)
and so ρ′ ∈ γ(ρ′). This is depicted below:

ρ
Tdba[[Q]]// ρ′ ⊆ γ(ρ′))

ρ
T dba[[Q]]

//

γ

OO

ρ′

γ

OO

Lemma 2. Let ρ be an abstract state. The abstract seman-
tic function T dep is sound w.r.t. γ if ∀Q ∈ Q, ∀ρ ∈

γ(ρ): Tdep[[Q]]ρ ⊆ γ(T dep[[Q]]ρ).

Proof 3. Given an abstract state ρ and a database statement
Q = 〈A, φ〉 ∈ Q, the abstract semantic function T dep on
ρ computes abstract database state in the form of three-
tuple as follows:

T dep[[Q]]ρ = T dep[[〈A, φ〉]]ρ = 〈ρo, ρ�, ρ�〉

where ρo represents abstract database state which must
(or may) not satisfy φ, whereas ρ� represents abstract
database state which must (or may) satisfy φ. ρ� is
obtained after performing an action A on ρ�. Now let
ρ be a concrete state such that ρ ∈ γ(ρ), the concrete
semantics similarly is defined as

Tdep[[Q]]ρ = Tdep[[〈A, φ〉]]ρ = 〈ρo, ρ�, ρ�〉

where ρo, ρ� represent concrete database state based
on the satisfaction and dissatisfaction of φ respectively,
and ρ� is obtained after performing A on ρ�. Like in
lemma 1, because of three-valued logic of φ due to
the imprecision introduced in the abstract domain and
the local correctness of the operations in A, we get
ρo ∈ γ(ρo), ρ� ⊆ γ(ρ�) and ρ� ⊆ γ(ρ�), which implies
that Tdep[[Q]]ρ ⊆ γ(T dep[[Q]]ρ.

Lemma 3. Let ρ be an abstract state. The abstract function
Adef is sound w.r.t. γ if ∀ρ ∈ γ(ρ), ∀Q ∈ Q: γ(Adef(Q, ρ)) ⊇
Adef(Q, ρ)

Proof 4. Given a database statement Q = 〈A, φ〉 ∈ Q and
an abstract state ρ, the abstract semantics (based on
equation 9) is defined as T dep[[Q]]ρ = T dep[[〈A, φ〉]]ρ =
〈ρo, ρ�, ρ�〉. As per the equation 12, the abstract defined-
part is

Adef(Q, ρ) = 〈ρ�, ρ�〉

Now given a concrete state ρ = (ρt , ρa) ∈ γ(ρ), we
get the concrete semantics of Q, according to equation
5, as Tdba[[Q]]ρ = Tdba[[〈A, φ〉]](ρt , ρa) = (ρt′ , ρa).
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Alternatively, Tdep on ρ computes concrete semantics of
Q as Tdep[[Q]]ρ = Tdep[[〈A, φ〉]]ρ = 〈ρo, ρ�, ρ�〉. As per the
equation 6, we can define the defined-part in the concrete
domain by defining ∆, which computes the difference
between database states before and after applying Q, in
the form below:

Adef(Q, ρt) = ∆(ρt′ , ρt) = 〈ρ�, ρ�〉

Assuming the local correctness of φ and A, we get
ρ� ⊆ γ(ρ�) and ρ� ⊆ γ(ρ�) respectively. Therefore,
γ(Adef(Q, ρ)) ⊇ Adef(Q, ρ).

Lemma 4. Let ρ be an abstract state. The abstract function
Ause is sound w.r.t. γ if ∀ρ ∈ γ(ρ), ∀Q ∈ Q: γ(Ause(Q, ρ)) ⊇
Ause(Q, ρ)

Proof 5. Proof is same as lemma 3.

Soundness. The semantics-based independency computa-
tion is sound if and only if an absence of dependency in the
abstract domain guarantees that no dependency is present
in the concrete domain.
Theorem 2 (Soundness of semantic independencies). Given

two database statements Q1 and Q2, let ρ and ρ′ be the
abstract states at Q1 and Q2 respectively. The computa-
tion of semantic independency is sound if

∀X ∈ γ(Adef(Q1, ρ)),∀Y ∈ γ(Ause(Q2, ρ
′)) :

X ∩ Y ⊆ γ(Adef(Q1, ρ) uAuse(Q2, ρ
′))

which implies Adef(Q1, ρ) uAuse(Q2, ρ
′) = ∅ ⇒ X ∩ Y = ∅.

Proof 6. Consider two database statements Q1 and Q2. Let
ρ = 〈ρo, ρ�, ρ�〉 and ρ′ = 〈ρ′o, ρ

′

�
, ρ′
�
〉 be the abstract

states at Q1 and Q2 respectively, which are obtained by
applying Algorithm 1. According to equations 12 and 13,
we get the defined-part by Q1 and the used-part by Q2 as
Adef(Q1, ρ) = 〈ρ�, ρ�〉 and Ause(Q2, ρ

′) = 〈ρ′
�
〉 respectively.

Now, the semantics independency in abstract domain
can be defined as ρ� u ρ′� = ∅ ∧ ρ� u ρ

′

�
= ∅. Given the

concrete states ρ = 〈ρo, ρ�, ρ�〉 and ρ′ = 〈ρ′o, ρ
′
�, ρ

′
�〉where

ρ ∈ γ(ρ) and ρ′ ∈ γ(ρ′), the semantics independency
between Q1 and Q2 in the concrete domain is defined
as ρ� ∩ ρ′� = ∅ ∧ ρ� ∩ ρ′� = ∅. From lemma 3 and 4, we
get γ(Adef(Q1, ρ)) ⊇ Adef(Q1, ρ) and γ(Ause(Q2, ρ

′)) ⊇
Ause(Q2, ρ′) respectively. This implies that γ(Adef(Q1, ρ)u
Ause(Q2, ρ

′)) ⊇ Adef(Q1, ρ) ∩ Ause(Q2, ρ′). Therefore,
Ade f (Q1, ρ) u Ause(Q2, ρ

′) = ∅ ⇒ X ∩ Y = ∅ where
X = Adef(Q1, ρ) ∈ γ(Adef(Q1, ρ)) and Y = Ause(Q2, ρ′) ∈
γ(Ause(Q2, ρ

′)).

9 Implementation and Experimental Evaluation
We have implemented a prototype tool SemDDA6 – Semantics-
based Database Dependency Analyzer – following the Algo-
rithms 1 and 2, to perform experimental evaluation on a set
of open-source database-driven JSP web applications as part
of the GotoCode project [37]7, 8.

6. The source code is available on github: https://github.com/
angshumanjana/SemDDA.

7. The original website ‘‘http://www.gotocode.com’’ does no longer
exist at this moment. We have archived the benchmark codes at ‘‘https:
//github.com/angshumanjana/GotoCode’’.

8. These benchmark codes are used by many authors in their experi-
ments, such as [57], [58], [59], [60].

9.1 The SemDDA Tool
The aim of designing SemDDA is to provide a user-friendly
interface for the users to compute both syntax and semantic-
based DD-dependency in various abstract domains of inter-
est. The current implementation is in its preliminary stage
which accepts only database-driven JSP codes. We provide
a modular-based design and implementation of our tool,
facilitating an easy expansion in future. The tool consists
of two major components: (i) Syntax-based module, and
(ii) Semantic-based module. Figure 13 depicts the over-
all architecture of the tool, where database program and
underlying database are provided as input and a set of
syntax-based dependencies and its refinement based on the
abstract semantics are generated as output. The code is
implemented in Java version 1.7. We used Eclipse version
4.2 as the development platform and Java applet technology
for designing User Interfaces of semSSA.
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Fig. 13: Architecture of SemDDA

(i) Proformat: The module “Proformat” accepts database
code written in JSP embedding SQL, and preprocesses it
to add line numbers (starting from zero) to all statements,
ignoring comments. Assuming input programs syntactically
correct, the module separates program’s statements based
on the predefined delimiters and right braces. During this
process, it also computes Non-Comment Lines of Code
(NCLOC) and the number of SQL statements present in the
program. In particular, the presence of Data Manipulation
Language (DML) statements is identified based on the pres-
ence of keywords such as SELECT, UPDATE, DELETE and INSERT

in the statements.

(ii) ExtractInfo: This module extracts detail information
about input programs, i.e. control statements, defined
variables, used variables, etc. for all statements in the
program.

Modules “Proformat” and “ExtractInfo” currently support
only JSP embedded database code. The extension of these
modules to support other programming languages does not
require major design efforts, and it is currently in the to-do
list for the next version of our analyser.

(iii) Dependency: The “Dependency” module computes
syntax-based dependencies among program statements us-
ing the information computed by “ExtractInfo” module.

(iv) Tuning: At this preliminary stage of implementation,
this module supports three abstract domains (Interval, Oc-
tagon, and Polyhedra). The module automatically picks the
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best domain based on the attribute relationships present
in SQL statements. If none of the statements contains any
relationship among attributes, then "Tuning" module auto-
matically picks interval domain. On the other hand, either
octagon or polyhedra abstract domain is chosen if at least
one SQL statement contains respectively octagonal or poly-
hedral form of constraint. Moreover, users can also select
one of the abstract domains of her choice based on the
importance of computational cost and analysis-precision.

(v) Abstraction: The module “Abstraction” computes ab-
stract semantics in the chosen abstract domain based on the
data-flow analysis. Currently the module supports intervals,
octagons, polyhedra, and powerset of intervals abstract
domains.

(vi) Overlap: Finally this module identifies false depen-
dency (if any) based on the semantics-based approximation
of used and defined parts and their overlapping.

9.2 Experimental Results

We have used semDDA to perform experiments on a set
of benchmark programs which are open-source database-
driven web applications in JSP as part of the GotoCode
project [37]. A brief description of these benchmark codes
are mentioned in Table 11. The experiment is performed on
a system configured with Intel i3 processor, 1.80GHz clock
speed, Windows 7 Professional 64-bit Operating System
with 8GB RAM.

In the following sections, we provide experimental
results in various approaches on a set of benchmark codes
under consideration.

9.2.1 DD-dependency results in pure syntax-based ap-
proach

The DD-dependency results on the benchmark codes in pure
syntax-based approach is depicted in the 5th column of Table
12. It is worthwhile to mention that, for the given bench-
mark codes, the improved syntax-based approach generates
same results as that by pure syntax-based approach.

9.2.2 DD-dependency results in Condition-Action rules-
based approach

We implemented Condition-Action rules using Satisfiability
Modulo Theories (SMT). In particular, we used Z3 [61], a
high-performance SMT Solver implemented in C++ and
developed by Microsoft Research. For this purpose, we
performed the following steps: (i) Selection of database
statements in pairs according to their order of occurrences
in the program, (ii) Conversion of these database statements
into Static Single Assignment (SSA) form, (iii) Generation
of Verification Condition (VC) from each pair by extracting
predicates from the action- and condition-parts of the first
statement and the condition-part of the second statement in
the pair, and finally (iv) Dependency verification based on
the satisfiability of VCs using Z3 tool. We used the online
version of the Z3 tool available at “https://rise4fun.com/z3”.
We encoded VCs by following Z3 language syntax (which

is an extension of the one defined by the SMT-LIB 2.0 stan-
dard). After compilation and execution by Z3, the output
“UNSAT” for a pair indicates that the second database
statement is not dependent on the first one in the pair. Let
us explain this with the following simple example.
Example 21. Consider the following pair of database state-

ments:

Q1 : UPDATE emp SET hra = hra + 100 WHERE da + hra > 1000
Q2 : SELECT hra FROM emp WHERE da + hra 6 5000

The equivalent SSA form of these statements are:

Q1 : UPDATE emp SET hra2 = hra1 + 100
WHERE da1 + hra1 > 1000

Q2 : SELECT hra2 FROM emp WHERE da1 + hra2 6 5000

The VC of this pair of statements is:

Vc = (hra2 == hra1 + 100) ∧ (da1 + hra1 > 1000)
∧ (da1 + hra2 6 5000)

The encoded version of Vc in Z3 is:

1. (declare − const hra1 Int)
2. (declare − const hra2 Int)
3. (declare − const da1 Int)
4. (push)
5. (assert (= (+ hra1 100) hra2))
6. (assert (>= (+ hra1 da1) 1000))
7. (assert (<= (+ hra2 da1) 5000))
8. (check − sat)

As the Z3 reports this formula as satisfiable (Z3 output is
“SAT”), this indicates that Q2 depend on Q1.

The DD-dependency results on the benchmark codes
using this approach is depicted in the 6th column of Table
12. This shows an improvement in the precision over the
syntax-based results. In fact, on the given benchmark codes,
an average of 12% improvement is observed as compared
to the syntax-based approach.

9.2.3 Results based on the Abstract Semantics
Columns 7th, 8th, 9th and 10th of Table 12 depict DD-
dependency results in the domains of intervals, octagons,
polyhedra and powerset of intervals respectively. It is
worthwhile to note that the analysis-results for five bench-
mark codes (’EditOfficer’, ’EditMember’, ’BookMaint’, ’Ed-
itorialsRecord’, ’BugRecord’) in the interval domain im-
proves w.r.t. their syntax-based results. On the other hand,
analysis in the domain of octagons for ’EmployeeMaint’,
’ProjectMaint’, ’EventNew’ and ’EmployeeMaint’ results in
more precise dependency information compared to that in
the interval domain, due to the presence of restricted at-
tributes relationship (which involves at most two attributes)
in SQL statements. Similarly, polyhedra domain analysis
captures more precise DD-dependency results, shown in
the case of ’LedgerRecord’ and ’EmpsRecord’, compared
to their interval and octagon counterparts, as they allow
unrestricted relationship among attributes. We obtain an
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Applications
Names

Number of
Files Tested

Descriptions

Events 1 It is a basic online event management system. It includes many features like event informa-
tion (event name, year, presenter, etc.), users administration, etc.

Ledger 1 It is an example implementation of a web-based ledger which allows a user to track bank
deposits, withdrawals, commission and view current balance.

Portal 2 It is a fully functional online web-based Portal which is useful for small organizations,
clubs, user groups, and schools. It provides several functionalities like user registration, news
section, list of club officers and etc. The considering files mainly work on the administration
of club officers and members.

EmplDir 2 It is a basic employee directory that may use as an online system for small companies. It
serves deferent searching facilities (e.g. by name, email) to the user. The selected files are
dealing to store the employee and departmental information.

Bookstore 2 It is an online store system that keeps various books information, articles and other items. It
has many features like user registrations, shopping cart, administration of credit card types
and etc. It utilizes VeriSign’s payflow link system to verify and charge credit cards.

BugTrack 3 It is a basic fully functional web-based bug tracking system which may useful for small teams
working on software projects. It keeps projects information and its associated employee’s
detail (consider files work for this purpose), also provides many searching options.

TABLE 11: Description of the benchmark programs [37]

Applications
(File Names)

N
C

LO
C

N
um

be
r

of
SQ

L
St

m
ts

N
um

be
r

of
A

tt
ri

bu
te

s Number of DD-dependencies
Pure
Syntax-
based

Condition-
Action
Rule-
based

Interval
Domain

Octagon
Domain

Polyhedra
Domain

Powerset
of
Intervals

Events(EventNew.jsp) 334 6 5 8 6 8 6 6 8
Ledger(LedgerRecord.jsp) 436 9 8 22 18 22 22 16 22
Portal(EditOfficer.jsp) 300 7 4 21 21 19 19 19 19
Portal(EditMembers.jsp) 362 10 5 16 15 14 14 14 14
EmplDir(DepsRecord.jsp) 285 4 3 9 8 9 8 8 9
EmplDir(EmpsRecord.jsp) 435 9 7 23 21 23 22 14 23
Bookstore(EditorialsRecord.jsp) 294 6 3 5 4 4 4 4 4
Bookstore(BookMaint.jsp) 357 6 5 10 7 7 7 7 6
BugTrack(ProjectMaint.jsp) 307 7 4 15 13 15 13 13 15
BugTrack(EmployeeMaint.jsp) 316 6 5 12 11 12 10 10 12
BugTrack(BugRecord.jsp) 336 6 4 9 8 8 8 8 7

TABLE 12: DD-dependency results in various approaches (NCLOC denotes Non-Comment Lines of Code)

improvement in the precision for two benchmark codes
’BugRecord’ and ’BookMaint’ w.r.t. the analysis-results in
other domains when we consider an abstract representation
of initial databases in the powerset of intervals domain.
Overall, we achieved an improvement in the precision on an
average of 6% in the interval domain, 11% in the octagon,
21% in the polyhedra domain and 7% in the powerset of in-
tervals domain, as compared to the syntax-based approach
for the chosen set of benchmark codes. Figure 14 compares
all DD-dependency results.

Table 13 reports the execution time (in milliseconds) of
the analysis in the interval, octagon, polyhedra and pow-
erset of intervals abstract domains. This is to mention that
we do not observe any notable variation in the execution
time across multiple trials. The variation of execution time
for various benchmarks is depicted in Figure 15. Observe
that we represent along y-axis the execution time (in mil-
liseconds) in log10 scale, as the data range over several
orders of magnitude. The reason behind the massive growth

of execution time in polyhedra domain for ’EmpsRecord’
and ’LedgerRecord’ is exponential time complexity of the
analysis w.r.t. the number of attributes (as reported in Table
12).

To finally conclude, our observation on the experimental
evaluation results indicates that proper tuning of abstract
domains from coarse to fine level in precision, perhaps
compromising the computational costs, plays a crucial role
to meet the analysis-objectives.

10 Case Study
Program slicing [13] is an effective static analysis technique
which extracts from programs a subset of statements rele-
vant to a given behavior. This allows engineers to address
several software-related problems, including program un-
derstanding, debugging, maintenance, testing, paralleliza-
tion, integration, software measurement, etc. Since the pio-
neer work of Mark Weiser [23] who introduces the notion
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Fig. 14: Comparative analysis of DD-dependency results in
various approaches.

File Names
(.jsp)

Abstract Domains
Interval Octagon Polyhedra Powerset

of Inter-
vals

EventNew 167 194 345 171
LedgerRecord 204 312 7943737 211
EditOfficer 86 91 201 87
EditMembers 116 178 354 119
DepsRecord 96 110 163 98
EmpsRecord 192 254 366314 197
EditorialsRecord 76 103 160 77
BookMaint 110 162 432 113
ProjectMaint 80 81 189 81
EmployeeMaint 126 169 986 129
BugRecord 94 97 157 97

TABLE 13: Execution time (in milliseconds) in various Ab-
stract Domains.

of static program slicing using program dependency graph,
different algorithms to compute slice and different slicing
variants (e.g. dynamic, conditioned, amorphous) are pro-
posed by tuning them towards specific program analysis
aim [26], [27], [62], [63], [64].

Let us apply our proposed dependency refinement in
computing a slice of our running example program “Prog”.

Consider the slicing criterion ψ= 〈16, point〉 where point
is an attribute of interest at program point 16. The objective
of the backward slicing is to extract only semantically rel-
evant statements affecting the values of point at 16. Let us
perform the below steps:

• Construction of syntax-based DOPDG of “Prog”.
• Refinement based on our proposed approach.
• Finally, computation of backward slicing w.r.t. ψ on

the refined DOPDG.

According to the first step, the syntax-based DOPDG of
“Prog” is depicted in Figure 3 (Section 3). Following our
semantics-based refinement analysis in polyhedra abstract
domain, we identify the following false dependencies:
5 6 , 4 11 , 5 11 , 6 11 , 4 15 ,
5 15 , 6 15 , 4 16 , 5 16 , 6 16
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and 15 16 . The refined DOPDG discarding all these
false dependencies is depicted in Figure 16(a). Finally, ac-
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(a) Refined DOPDG of the syntax-based DOPDG in Figure 3
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(b) Sub-DOPDG by traversing backward w.r.t. 〈16, point〉

Fig. 16: DOPDG and sub-DOPDG of “Prog” (F denotes
purchase_amt)

cording to the third step, we traverse the DOPDG in a
backward direction starting from node 16 considering point
as the variable of interest which produces a sub-DOPDG
shown in Figure 16(b). The corresponding slice code is
shown in Figure 17. Observe that the resultant slice is more
precise as it is able to capture statement 15 as semantically
irrelevant compared to other syntactic approaches.
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0. public class saleOffer
{

1. public static void main(String[] args) throws SQLException
{

2. float x = 0.1;
3. float y = 0.05;
4. try

{
Statement con = DriverManager.getConnection("jdbc mysql: . . . ", "scott", "tiger").createStatement();

5. con.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − y ∗ purchase_amt WHERE purchase_amt BETWEEN 1000 AND 3000 ");

6. con.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − x ∗ purchase_amt WHERE purchase_amt > 3000 ");

7. con.executeQuery("UPDATE Sales SET purchase_amt = purchase_amt − delivery_charge ");

16. con.executeUpdate("UPDATE Sales SET point = point + 4 WHERE (purchase_amt + wallet_bal) > 10000 ");
}

catch (Exception e)
{
. . .

} }}

Fig. 17: Program “Prog”

11 RelatedWorks

Ferrante et al. [14] first introduced the notion of Pro-
gram Dependency Graph (PDG) aiming program optimiza-
tion. Since then, PDG is playing crucial roles in a wide
range of software-engineering activities, e.g. program slic-
ing [13], code-reuse [16], language-based information flow
security analysis [11], [12], [29], code-understanding [17].
Over the time, various forms of dependency graphs for
various programming languages are proposed in order to
address several language-specific problems. In [65], Zhao
proposed a static dependency analysis algorithm for con-
current Java programs based on Multi-thread Dependency
Graph (MDG). An MDG consists of a collection of TDGs
(Thread Dependency Graphs) each of which represents a
single thread. Cheng [66] proposed a PDG for parallel
and distributed programs. In [67], the authors introduced
the notion of Concurrency Program Dependency Graph
(CPDG) to represent concurrent programs written using
Unix primitives. It represents various aspects of concur-
rent programs in a hierarchical fashion. Horwitz et al.
[20] introduced System Dependency Graph (SDG) in case
of inter-procedural programs. Class Dependency Graph
(ClDG) is introduced for Object Oriented Programming
(OOP) languages in [21]. Willmor et.al. [22] introduced a
variant of program dependence graph, known as Database-
Oriented Program Dependence Graph (DOPDG), by consid-
ering two additional types of data dependences: Program-
Database and Database-Database dependencies. The au-
thors observed that, although the generation of used and
defined sets of variables is straightforward, but the identifi-
cation of overlap of database parts by different statements is
more challenging. To this aim, they refer to the Condition-
Action rules introduced by Baralis and Widom in [35].
The propagation algorithm based on Condition-Action rules
predicts how the action of one rule can affect the condition
of another. In other words, the analysis checks whether the
condition sees any data inserted or deleted or modified due
to the action.

Mastroeni and Zanardini [34] first introduced the notion
of semantic data independencies following the Abstract
Interpretation framework at expression-level. This leads to
generate more precise semantics-based PDGs by removing
false data dependencies w.r.t. the traditional syntactic PDGs.
Our previous attempts to refine dependencies and hence
more precise code analysis for database programs are re-

ported in [27], [36], [38]. [38] applied predicate transformer
(weakest precondition) to apply on dependency tree among
a series of attribute-defining statements, whereas [27], [36]
formalized the semantics for dependency refinement in a
simple setting following the Abstract Interpretation as an
initial attempt.

The authors in [68] and [69] addressed a closely related
problem, known as query containment problem, which
checks whether, for every database, the result of one query
is a subset of the result of another query. For instance, a
query Q1 is contained in a query Q2 if and only if the result
of applying Q1 to any database D is contained in the result
of applying Q2 to the same database D. Formally, a query
Q1 is said to be contained in a query Q2, denoted Q1 v Q2
⇐⇒ ∀D Q1(D) ⊆ Q2(D) and Q1 ≡ Q2 ⇐⇒ Q1 v Q2 ∧

Q2 v Q1, where Q(D) represents the result of query Q on
database D. The computational complexity of conjunctive
query containment is NP-complete [68]. Query containment
is useful for the various purposes of query optimization,
detecting independency of queries from database updates,
rewriting queries using views, etc. As dependency compu-
tations of database applications consider DML commands
(INSERT, UPDATE, DELETE), the solutions proposed in [68], [69]
for only conjunctive queries is, therefore, unable to provide
a complete solution in our case which involves both write-
write and write-read operations.

The authors in [70] addressed an undecidable problem
which aims to identify all possible values that may occur
as results of string expressions. Few interesting applications
of the solution, among many others, include static analy-
sis of validity of dynamically generated XML documents
in the JWIG extension of Java, static syntax checking of
dynamically generated queries in database programs. The
authors proposed a static analysis technique for extracting
context-free grammar from a given program and applied
a variant of the Mohri-Nederhof approximation algorithm
to approximate the possible values of string expressions
in Java programs. A static analysis framework is proposed
in [71] to automatically identify possible SQL injection at-
tacks, SQL query performance optimization and data in-
tegrity violations in database programs. For this purpose,
the framework adapts data and control flow analysis of
traditional optimizing compilers techniques by leveraging
understanding of data access APIs. [72] proposed a sound
static analysis technique for verifying the correctness of



31

dynamically generated SQL query strings in database ap-
plications. The technique is based on a combination of
automata-theoretic techniques and a variant of the context-
free language reachability algorithm. A new framework
[73] is proposed for context-sensitive program analysis. The
concept of deductive database technology is used here to
create a higher abstraction for this cloning-based approach
to context sensitivity. The framework allows users to express
whole-program analysis succinctly with a small number of
Datalog rules that operate on a cloned call graph. In [74],
the authors proposed the constraint coverage criteria and
the column coverage criteria for testing the specification of
integrity constraints in a relational database schema. They
expressed integrity constraints as predicates with constraint
coverage, whereas they generated test requirements with
the column coverage for checking integrity constraints.

12 Conclusion and FutureWorks
Dependency analysis of database programs plays a cru-
cial role in different fields of software engineering. Some
applications among many others include Program Slicing,
Language-based Information Flow Security Analysis, Data
Provenance, Concurrent System Modeling, Materialization
View Creation. Although syntax-based dependency com-
putation is straightforward, its semantics-based refinement
is quite challenging when considering attributes’ values in
possible database instances. This paper proposes a novel ap-
proach to compute semantics-based independencies among
database statements, based on the Abstract Interpreta-
tion framework. This steers construction of semantic-based
DOPDGs with more precise set of dependencies. Most
importantly, this serves as a powerful basis to give solu-
tion even in case of undecidable scenario when no initial
database state is provided. The comparative study among
various approaches and various abstract domains in terms
of precision and efficiency clearly indicates that a trade-off
in choosing appropriate abstract domains or their combina-
tion is very crucial to meet the objectives. There are many
application areas where false dependence information could
lead to huge financial loss while proving crucial properties
of software products. Information flow security analysis
of critical softwares is one such example. In such case,
precision dominates over the analysis cost and a choice of
stronger abstract domain, e.g. polyhedra domain, may be a
good choice. On the other hand, when development speed is
an important factor, choice of weakly relational or even non-
relational abstract domain may be a wise decision. Experi-
mental evaluation on the benchmarks set reports a precision
improvement in the range of 6% - 21% under various levels
of abstractions. This proves that the approach may impact
significantly when to deal with large-scale complex software
systems involving huge variables set and millions of lines of
codes.

Some interesting future research scopes identified in
this direction are designing suitable reduced products on
multiple abstract domains, designing new ad-hoc abstract
domains in the context of database states, extending the
analysis to a distributed scenario with multiple transactions
and heterogeneous database systems. As our future work,
we shall extend our tool SemDDA to support some popular

languages, such as C, Python, Java, in its next release.
Besides, we shall also consider string data-type [75] along
with numerical attributes.
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