Metadata of the chapter that will be visualized in
SpringerLink

Book Title

Transactions on Computational Science XXXI

Series Title

Chapter Title Combining Symbolic and Numerical Domains for Information Leakage Analysis
Copyright Year 2018
Copyright HolderName Springer-Verlag GmbH Germany
Corresponding Author Family Name Cortesi
Particle
Given Name Agostino
Prefix
Suffix
Division
Organization Ca’ Foscari University
Address Venice, Italy
Email cortesi@unive.it
ORCID http://orcid.org/0000-0002-0946-5440
Author Family Name Ferrara
Particle
Given Name Pietro
Prefix
Suffix
Division
Organization Julia srl
Address Verona, Italy
Email
Author Family Name Halder
Particle
Given Name Raju
Prefix
Suffix
Division
Organization Indian Institute of Technology Patna
Address Patna, India
Email
Author Family Name Zanioli
Particle
Given Name Matteo

Prefix
Suffix
Division

Organization

Alpenite srl

Address Venice, Italy

Email

Abstract

We introduce an abstract domain for information-flow analysis of software. The proposal combines
variable dependency analysis with numerical abstractions, yielding to accuracy and efficiency
improvements. We apply the full power of the proposal to the case of database query languages as well.
Finally, we present an implementation of the analysis, called Sails, as an instance of a generic static
analyzer. Keeping the modular construction of the analysis, the tool allows one to tune the granularity of
heap analysis and to choose the numerical domain involved in the reduced product. This way the user can
tune the information leakage analysis at different levels of precision and efficiency.

Author Proof

Combining Symbolic and Numerical Domains
for Information Leakage Analysis

1(=) 4

Agostino Cortesi , Pietro Ferrara?, Raju Halder®, and Matteo Zanioli

! Ca’ Foscari University, Venice, Italy
cortesi@unive.it
2 Julia srl, Verona, Ttaly
3 Indian Institute of Technology Patna, Patna, India
4 Alpenite srl, Venice, Italy

Abstract. We introduce an abstract domain for information-flow anal-
ysis of software. The proposal combines variable dependency analysis
with numerical abstractions, yielding to accuracy and efficiency improve-
ments. We apply the full power of the proposal to the case of database
query languages as well. Finally, we present an implementation of the
analysis, called Sails, as an instance of a generic static analyzer. Keeping
the modular construction of the analysis, the tool allows one to tune the
granularity of heap analysis and to choose the numerical domain involved
in the reduced product. This way the user can tune the information leak-
age analysis at different levels of precision and efficiency.

1 Introduction

Protecting the confidentiality is a relevant problem when sensitive information
flows through computing systems or transmits over public networks. Standard
protection mechanisms, such as encryption, access control, etc. can suitably be
applied at source level, but they are unable to protect the confidentiality once
the information is released from the source and is allowed to flow through the
computing systems.

The starting point of secure information flow analysis in software applications
is the classification of program variables into different security levels. In the
simplest case, two levels are commonly used: public (or low, L) and secret (or
high, H). The main purpose is to prevent the leakage of sensitive information
when flowing (implicitly or explicitly) from a high variable h to a lower one .
An explicit flow from h to [occurs when the content of h directly affects (e.g.,
through an assignment operator) [. On the other hand, an implicit flow from h
to [occurs when the content of [gets affected indirectly (e.g., through a boolean
condition in an if statement) by h, as stated in [17].

There is a widespread literature on methods and techniques for checking secure
information flows in software. Generally, works on information flow fall into two
categories: (i) dynamic, instrumentation based approaches (e.g., tainting), and (i)
static, language-based approaches (e.g., type systems). The dynamic approaches
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

M. L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XXXI, LNCS 10730, pp. 1-38, 2018.
https://doi.org/10.1007/978-3-662-56499-8_6

http://orcid.org/0000-0002-0946-5440

Author Proof

2 A. Cortesi et al.

introduce significant run-time overhead [10,33]. The static approaches typically
require some changes to the language and the run-time environment as well as non-
trivial type annotations [38], making their adoption too expensive in practice.

Nevertheless, despite of these deep and extensive works, their practical appli-
cations have been relatively poor. Usually these approaches work on an ad-hoc
programming language [4], and they do not support mainstream languages. This
means that one should completely rewrite a program in order to apply them to
some existing code.

Recently a new generic static analyzer (Sample!) based on the Abstract Inter-
pretation theory has been developed and applied to many different contexts and
analysis. Roughly, this analyzer splits and combines the abstraction of the heap
and the approximation of other semantic information, e.g. string [12], type [19]
abstractions.

In this paper?, we introduce a language-based information-flow analysis of
imperative and database query languages based on the Abstract Interpretation
framework, by combining symbolic and numerical domains; we present the tool
Sails (Static Analysis of Information Leakage with Sample); finally, we show
experimental results applying Sails on security benchmark programs.

In particular,

1. we represent variables’ dependences in the form of propositional formula ¢ =
x — y, where x, y are variables and value of y possibly depend on the value of
x; in order to detect possible information leakage, we check the satisfiability of
1) when assigning each variable the truth value corresponding to its sensitivity
level;

2. we define abstract semantics of (i) imperative and (i7) database query lan-
guages in the domain of propositional formulae, by considering an over-
approximation of variables’ dependences at each program point;

3. we enhance the accuracy of the technique by analysing programs over numer-
ical abstract domains, using reduced product of the symbolic propositional
formulae domain and numerical abstract domains;

4. finally, we show encouraging experimental results on a set of security bench-
marks using the tool Sails which is implemented based on our proposal.

The overall analysis combines a symbolic variable dependency analysis, based
on the propositional formulae domain [11], and a variable value dependency
analysis using numerical abstractions (e.g., intervals or polyhedra). Unlike other
works, our proposal provides an information flow analysis without any major
constraint on the target language, since it tracks information flows between vari-
ables and heap locations over programs written in mainstream object-oriented
languages like Java and Scala.

The rest of the paper is organized as follows. Section 2 introduces the depen-
dency analysis through the propositional formulae domain. Section 3 combines
the dependency analysis with numerical domains through a reduced product.

! http://www.pm.inf.ethz.ch /research/semper/Sample.
2 The paper is a revised and extended version of [25,47,48].

http://www.pm.inf.ethz.ch/research/semper/Sample

Author Proof

Combining Symbolic and Numerical Domains 3

An extension to the case of database query languages is discussed in Sect. 4.
Section 5 presents the main issues we solved in order to plug this information flow
analysis into Sample while developing Sails. Section 6 presents the experimental
results when applying Sails to a complex case study and to the SecuriBench-
micro suite. Finally, Sect. 7 presents the related work and Sect. 8 concludes.

2 Dependency Analysis

This section formalizes the dependency analysis and proves its soundness follow-
ing the abstract interpretation framework.
2.1 The Language

For the sake of simplicity, we consider a simple imperative language where pro-
grams consist of labeled commands (similar to [26]). The syntax is defined in
Table 13.

Table 1. Syntax of the language

Expressions
exp € E
exp = n where n € N
| %
| exp1 ® expz where & = {+,—, %, /}
Conditions
b € B
b u= true
| false
| b; ® by where ® = {V, A}
| -b
| exp; @ exp, where @ = {<, >, =}
Labeled commands
4 € L set of labels
c € C
c = ‘skip
| ‘v = exp
| if ‘b then ¢, else ¢, ¢ endif
| Cy,C2
| while ‘b do ¢ ¢ done
P n= ct program that ends
with label £

3 In the rest of the paper, we will omit the initial and final labels of statements when
not required.

Author Proof

4 A. Cortesi et al.

Table 2. Initial label function

def

inf[‘skip] £ ¢

inf[‘v = exp] & ¢

in[if ‘b then ¢, else ¢, ¢ endif] £ ¢
in[cy; c2] = infer]

in[[while ‘b do ¢ “done] £ ¢

Table 3. Final label function

P u=cf fin[Pl=¢
fin[[c] = fin[[P]
c = ‘skip fin[[*skip]l = fin[c]
| ‘v:=exp fin[’v := exp] = fin[c]
| if b then ¢y else ¢, endif fin[[if ‘b then ¢, else ¢, “endif] = fin[c]
fin[cq] =
fin[c,] = ¢
| ci;c finllcy; o] = fin[[c]]
fin[c1] = inf[c.]
finlleo]l = fin[lc]]
| while ‘b do ¢ “done fin[while ‘b do ¢ done] = fin[c]
finc] = ¢

Table 4. Action function

al[‘skip] & {‘skip}
a[’v := exp] £ {v := exp}
aflif b then ¢, else ¢, “endif] £ {‘b, ‘not b, endif} U a[ci] U a[c.]]
afci; ce]l = allcr] Ualc.]
a[while ‘b do ¢ “done] £ {‘b,’ not b, done} U a[c]]

Let in : C — L and fin : C — L be two functions. By in[c] and fin[c] we
denote the initial and final label of command c € C respectively. These two
functions are formally defined in Tables2 and 3.

Each command corresponds to one or more actions. The set of actions,
denoted by A, consists of {‘skip, ‘v := exp, b, ‘b, ‘endif, ‘done}. Let a : C —
©(A) be a function that, given a command, returns the set of actions involved
in it. The function a for various commands is defined in Table 4.

Without loss of generality, we assume that the variables appearing in a pro-
gram are implicitly declared. We denote by V(P) the set of variables in program
P and, similarly, by V(exp) and V(b) the variables contained in expression exp
and condition b respectively. The definition of V is reported in Table 5.

Author Proof

Combining Symbolic and Numerical Domains 5

Table 5. Variables functions

V) £ 0
V(v) £ {v}
V(exp; @ exp,) = V(exp,) U V(exp,)

V(true) £ 0
V(false) & 0

V(b ® bp) = V(by) U V(by)

def

V(exp, @ exp,) = V(exp;) U V(exp,)
V(skip) & 0
V(v := exp) £ {v} U V(exp)
V(if b then ¢, else ¢, endif) £ V(b) U V(c;) U V(cy)
V(cy;) = V(c1) U V(cy)

def

V(while b do ¢ done) = V(b) U V(c)

Table 6. Evaluation of expressions

EcE> E>N)

def

Elln]lp = n

E[vIp = p(v)
Ellexp, ® exp,llp = v1 ® v, (such that v; = E[exp;]p A v, = E[lexp,]p)

Table 7. Evaluation of boolean conditions

B € B — (& — {true, false})
B[truellp © true
B[false]p ~ false
B[b; ®b,]lp £ by ® b, (such that by = B[b,]p A b, = B[b,]p)
Bllexp, @ exp,]lp £ true if Jo; = E[lexp,]lp : v, = E[exp,]lp : v @ v
false if 3v; = E[lexp;]lp : v» = E[exp,lp : not(v; @ v,)

2.2 The Concrete Domain

An environment p € £ is a function p : V — N which assigns a value to each
variable. A state o € X = (L x £) is a pair (¢, p) where the program label ¢ is
the label of the action to be executed and the environment p defines the values
of program variables at /.

We denote by E[exp]o and B[b]o the evaluation of expression exp € E and
condition b € B respectively on the state o. The details can be found in Tables 6
and 7 respectively.

Given a program P, the set of possible initial and final states are defined as

I[P = {(in[P1,p) | p € £} and F[P] = {(fin[P]. p} | p € €}.

Author Proof

6 A. Cortesi et al.

Table 8. The transition function

Tl'skip"] = (€, p) =2, (finl'skip1,p) | p € €)

T['v = expi] = (¢, > Lvzensh, (finl‘v := exp'], p[v < o]y | p € E A v = E[[expllp)
T[if ‘b then ¢ else ¢, endif'] = T[[c,] U T[c.JU

) [—b> <in[[01]] oYl pe&A true = B[b]p}U
e, p} <1n[[cz]] Pl pe&n false = B[b]pju

endlf

(', py ——— (fin[[if ‘b then ¢, else ¢, ' endif], p) | p € E}
Tlici; el = Tle VU Tlea]l
T[while ‘b do ¢ * doneff]] (L, py 5 (¢,) | p € & Afalse = Blb]pju

{(¢, p> <m[[c]] p) | p € &EAtrue = B[b]lp} U T[[c]lu
(e, py 22, (Gnlwhile ‘b do ¢ “done’], p) | p € &)

The labeled transition semantics T[c] of a command ¢ € P is a set of
transitions (o7, a,02) between a state o1 and its next states oo by an action
a € a(c). The triple (01,a,03) is also denoted by o1 = ¢5. The transition func-
tion T: C — p(X x A x X) in Table8 tracks all reachable states.

A labeled transition system is a tuple (X, F, A, T), where X' is the set of
states, | C X' is a nonempty set of initial states, F C X is a set of final states,
A is a nonempty set of actions, and T € p(X x A x X)) is the labeled transition
relation.

We define the partial trace semantics of a transition system, similarly to [26],
as the set of all possible traces of elements in X' (denoted by X*), recording the
observation of executions starting from initial states and possibly reaching final
states in finite time.

Jrep(XxAxX)

An—1

Sr={o0 % ... o, [n>1Aco€lAYie[0,n—1]:0; 25 050 € T

Let mg, m1 € X* be two partial traces. We define the following lattice operators:

— my = if and only if 7y is a subtrace of 7y,

— mp A m = m such that (7 < m) A (7 X m) and (Vo' : (7' X m) A (7' =
m)). S .

27 equipped with the order relation “<” and the meet operator “A”, forms the

meet semi lattice (X*, <, A).
This partial trace semantics can be expressed in a fixpoint form as well.
TF = UpSF
FeX — X~
F(X)= {o oo eT|oel}u

An—2 an—1 a Ap—2 An—1
{o0 2% ... Lo, “So, o0 20, 1 €EXN0, 1 —50,€T}

Author Proof

Combining Symbolic and Numerical Domains 7

Let (p(X*), C, 0, X*,N,U) be a complete lattice of partial execution traces, where
“C” is the classical subset relation, “U” is the set union and “N” the set inter-
section.

2.3 Abstract Domain: Pos

Among all the abstract domains which are used in abstract interpretation of
logic programs, Pos has received considerable attention [2,11]. This domain is
most commonly applied to the analysis of groundness dependencies for logic
programs.

Let V = {X,¥,Z,--- } be a countably infinite set of propositional variables and
let FP(V) be the set of all finite subsets of variables of V. The set of propositional
formulae containing variables in V and logical connectives in I" C {A,V, —, =} is
denoted by £2(I'). Similarly, given U € FP(V), the set of propositional formulae
containing variables in U and connectives in I” is denoted by 2y (I).

A truth-assignment is a function 7 : V — {T, F} that assigns to each propo-
sitional variable the value true (T) or false (F). Given a formula f € Q(I'), T F f
means that 7 satisfies f, and f; E f, is a shorthand for “Y kE f; implies 7 F f,”.
2(I") is ordered by f; < f, < f; F f,. Two formulae f; and f, are logically
equivalent, denoted f; = f, iff f; < f, and f, < f;.

The unit assignment u is defined by u(x) = T for all X € V. We define the set
of positive formulae by Pos = {f € £2(I') | u E f}. Some obvious examples are
T,x; € Pos and F, —x; ¢ Pos.

We can consider the propositional formula v as a conjunction of subfor-
mulae ({o A ... A (). We denote the set of subformulae of ¢ as Suby. Let
V be the least upper bound operator on propositional formula defined by
V{0, ..., ¥n} = A{Suby,,...,Suby,}. (Pos,<,V) forms a join semi lattice.
Moreover, let © : Pos x Pos — Pos be a binary operator defined as “simplifi-
cation” between two propositional formulae: o & 11 = A(Suby, \ Suby,). This
“simplification” permits us to obtain all the implication in vy which are not
contained in).

2.4 Abstract Semantics

Our approach is based on the abstract domain of logic formulae representing
dependency between variables (which tracks the propagation of sensitive/insen-
sitive information). The detection of possible information leakages is performed
by evaluating formulae on truth-assignment functions. In particular, the analysis
involves the following steps:

— Constructs at each program point the propositional formula ¢ through a fix-
point algorithm which represents an over-approximation of variable’s depen-
dencies up to that program point.

— Partitions the variables into public and private privacy levels. Apply a truth-
assignment function 7" that assigns to each propositional variable the value T
(true) or the value F (false) if the corresponding variable is private or public,

Author Proof

8 A. Cortesi et al.

respectively. If T does not satisfy ¢ at all program points, then there could
be some information leakages.

The logic formulae, obtained from program’s instructions, are in the form:

/\ % — 9}

0<i<n 0<j<m

which means that the values of variable y; could depend on the values of
variable X;. For instance, the formula y — X represents variable dependency
in assignment statement x:=y; similarly, in case of conditional statement
if(x == 0) then y := z we obtain the formula (X — y) A (Zz — ¥). Notice that
the propositional variable v corresponds to the program variable v.

Formally, an abstract state of € X L x Pos is a pair (¢, ¢) where ¢ € Pos
represents the dependencies occurred among program variables up to label £ € L.
Given a pair o = (£, ¢), we define [(c*) = ¢ and 7(0*) = ¢. Let BV (c), defined
in Table 9, be the set of bound variables in command c.

g det

Table 9. BV function

BV (‘skip) = {0}

BV(‘v := exp) = (v}

BV(co;c1) = BV(cy) UBV(c1)

BV(if ‘b then ¢, else ¢; endif) = BV(cy) U BV(c;)
BV (while ‘b do ¢ “done) = BV(c)

Table 10. Abstract semantics

TIskip™1 = (<,) — (finl‘skip"], ¥)}

TIv = exp’i]l = (¢,) — (finll'v := exp'], o)}

I[[Co;C1]] = T[co] U T[c1] _ _

T[if ‘b then ¢ else ¢4 “endif] = T[[co] U T[ciJU
{6, ¢y — (inllcoll, Yo} U (K, ¢) — (inlled, ghtu
[, vy — (fin[lif ‘b then ¢, else ¢, “endif], 1)}
[, by — {fin[lif ‘b then ¢, else ¢4 “endif], v,))

Tlwhile ‘b do ¢ “'done’] = T[c] U {(¢,) — (in[c], p)}U
(€, ¥y — (fin[while ‘b do ¢ “done, v3)}

where

o= Ay > X7 € V(exp) AY #) L
Mz-oW|lzZoXX->wWeytAWo Aly - x|yeVAaxeV]expl})

1= /Ay > Xy e V() AXeBV(C) AY #X} Ay

Yo= A >XIYeVD) AR €BVE)AY R A Y

3= ANy 2> X|YyeVIO)AXEBV(EC)AY £XIAY

Author Proof

Combining Symbolic and Numerical Domains 9

The abstract semantics of a command c is defined by T[c]. Similar to the
concrete domain, we denote the transition from ag to ag by ag — ag. The
abstract semantics in the domain of propositional formulae is defined in Table 10.

Consider two sets of abstract states S; and Sy such that S; = {{¢},%d), ...,
(0L L)} and Sy = {(€2,42), ..., (£2,,92)}. The partial ordering is defined by
S1 C¥ Sy & n < mlVi € [0,n],0} = 2 AVi € [0,n],¢) <92 Let Sp,...S, €
©(X*) be sets of abstract states. (p(2*F), C*) forms a poset since it is reflexive,
antisymmetric, and transitive by basic properties of logic implication. The join

operator LI is defined by:

U*{So,...,Sn} = J(So, .- .. Sn)
U{(6) [=9 | (,¢") € J(So,---,Sn)}}
\{(60) €[J(So, -, Sa) | 30 € J(So, -, Sa) Ao £ 0}

and the meet operator M# by:

M*{So,...,Sn} ={(£,9) €S| S € {So,...,Sn}A
Vi € [0,n].3(¢, ;) € Si Ay D9}

Basically, the join operator consists in the union of all elements. When two
elements have the same label but different formula, the join operator takes the
biggest one. Instead, the meet operator considers only the abstract states, with
the same label, which are in all elements. In case of different formulae, the
meet operator takes the smallest one. By definition join and meet operator are
defined for every subset of elements of our domain. Therefore, we can conclude
that (p(X%),C4 0, 2%, L% M¥) forms a complete lattice.

Let I*[P] = {{(in[P],T)} be the set of possible initial abstract state of pro-
gram P. We define the abstract semantics as the set of all finite sets of abstract
states, denoted by X*#, reachable during one or more executions, in a finite time.
For each element S € X** we can denote by S™ the set of terminal states, defined
as ST = {0} | #o! € S.of — of € T} and by £(S) all labels of S. Let Sgg,ag
denote a set of states, called abstract sequence, that contains a starting state o'g
and an ending state ¢, such that contains one or more traces from O‘g to of . We
have that S:u o= {at}.

4,04

We express the abstract semantics in a fixpoint form.
2 =lfpE F* where F* € X*F — x**
def
FHX) “{o® |0 €} U{S,: s In=1A0f €FAS,: » €X

A gi_l — O'TﬁL c T} U {l_lﬁ{sagjmuz | SangL S X}}

Ezample 1. In order to better understand how our dependency analysis works,
consider the code in Fig. 1 and the program points 4, 5, 8, 10, 12 and 14. When we
apply the steps defined above we obtain the propositional formulae in Table 11.

Author Proof

10 A. Cortesi et al.

Table 11. Results of the analysis by Pos domain

Label | Propositional formula

4 X—=Yy

5 P — sum

8 (X —=y) A (p—sum) A (y — sum)

10 | (®R—)A(p— sum) A (x — sum)

12 (R—79)A(p— sum) A (X — 5um) A (y — sum

14 (X—=9y)A(p—sum)A(X—sum)A(y — sum) A (7 — sum)A
(i—sum) A —n)Ak—sum)Ak —n

Through our analysis we tracked all the relation between variables. Suppose that
variables {X,p} are private, while all other variables are public. Formally, the
correspondent truth-assignment function is defined by T = {X,p — T} U {V —
F:V e V\{Xp}} T does not satisfy the propositional formulae since in all
considered program points there are some public variables that depends on one
or more private variables.

Notice that we detect several spurious relations, too. For instance, in contrast
with the obtained result, the variable sum does not depend on n. Indeed at the
end of the both branches the variable sum has always the same value. In Sect. 3

we will refine the results through the domains combination.

2.5 An Instrumented Concrete Domain

To simplify the proof that our concrete and abstract domains from a Galois
connection, we introduce another domain, isomorphic to the concrete domain.
Let 0° € X° = L x A be the set of states of this intermediate domain. A pair
(£,a) € Lx A represents an action a which occurs at program label £. Consider the
set 3*° which contains all the possible traces of ¢ that can occur during a finite
computation. Given II§, II{ € p(X*°), we define that II§ C II7 if and only if for
each 7§ € II§ there exists a 7 € II7 such that 7§ <° 7. We have that 7§ <° 7}
if and only if 7 is a subsequence of 7§. Therefore (p(X*¢), C, 0, X*°, N, U) forms
a lattice. Moreover, we denote by 7°™ the last state of the sequence.
We can relate p(X*) and p(X*°) by an abstraction a® € p(X*) — p(X*°) and
a concretization v¢ € p(X*°) — p(X*) function.

Let X = {mo,...,mn} € ©(X*) be a set of partial traces and let Y =
{78, ..., 75} € p(X*°) be a set of sequences of ¢°.

a®(X) ={{lo,a0) — ... = m,am) | 00 Dz, Iram, Om+1 € X}
V(Y) ={m e (L") [a*({7}) S Y}

<

Lemma 1. p(X*) «J_O—» p(X*®) forms an isomorphism, that is, ¥° o a® =
(03

a®o~® =id (where id is the identity function).

Author Proof

Combining Symbolic and Numerical Domains 11

Proof. We have to prove that v° o a® = a® 0 4® = id, where id is the identity
function. Let X and Y be elements of p(X*°) and p(X*) respectively.

2, a Zmam
a®(4°(X)) = {{lo,a0) — ... = (lm,am) | 00 —2 ... —2" i1 € 7°(X)}

by definition of a®

o 0ag fman,
={{lo,a0) = ... = (m,am) |00 —> ... — Om+1

€ {r| a®({r}) C X}}by definition of v°
=){((éo,ao> — o= Umyam) | (Co,a0) — ... — (U, am) € X}

Y (@®(Y)) = {m € (L") [a°({m}) C °(Y)}
by definition of v°
={mepX) | a*({r}) C{a"{x'}) | 7" € Y}}
by definition of a°
:\{(WGW(E*HWGY}

O

Now we define the relation between p(X*°) and p(X**) by of and %, af :
P(X*°) — p(X*) is defined by of (X) = UH{0(7°) | 7° € X}, where 6 : £*° —
©(X**) is defined as follows.

Q(X) :{<€7f¢)> |V7T € X.V’/T, = <€0330> - <£mvam> joﬂ-:
mZOAL= b A =Fo Ao AT}

such that:

1. (V{l,v:=exp) e/ :V(l/,v:=exp') € 7/.l/ < {).3f; =y —V:y € V(exp)

2. V(({(li,b) — ... — (¢;,endif)) V ({(¢;,not b) — ... — (¢;,endif))) <° 7° which
represents an if statement and V{(€g,v:=expy) : i < k < jexists f, =y — V
such that y € V(b).

3. V(({¢;,b) — ... — (£;,done)) V ({¢;,not b) — ... — (¢;,done))) <° 7 which
represents a while statement and V(€,v := exp;) : i < k < jexists f, =y — ¥
such that y € V(b).

Intuitively, the function 6 transforms each action (or sequence of actions) in one
or more propositional formulae. The easiest (case 1) applies when the action is
an assignment statement (v := exp): we simply obtain the corresponding formula
as defined in the transition semantics T. Instead, for if statements (case 2), we
track all the assignment actions that are between if and endif. while statements
are treated in a similar way (case 3).

Notice that (¢;,b) — ... — (¢;,endif) (or (¢;,not b) — ... — (¢;, endif))
represents an if statement if and only if V({¢p,b) V ({,not b)) : i < p <
J.3((£g, endif) V (£4,done)) : p < ¢ < j and V(({4, endif) V (¢4,done)) : i < ¢ <
J.3((€p,b) V (€,,not b)) : i < p < ¢. Similarly for while statement.

Informally, the pair if and endif (or while and done) is an if (while) statement
if and only if between these two actions, there are only assignments or other pairs

Author Proof

12 A. Cortesi et al.

if-endif or while-done which correspond to nested if and while statements. To bet-
ter understand, consider the sequence - - - (€g, bg) — (€1,b1) — (lo,v :=exp) —
(L3, endif) - - - : the pairs (€y, bo) and (¢s3,endif) are not an if statement because
between these two actions there is (¢1,b1), which does not represent an assign-
ment action neither an if statement.

The concretization function 7# : p(X*) — ©(X*°) is defined by +#(Y) =
{m® € X | 9(n°) CFY A l(m®T) € £(Y7)} where Y € p(2*F).

Lemma 2. 0 : X* — o(X*%) is monotonic: x <°y = 0(x) CF 0(y)

Proof. Let xg = {og — ... = op} and x; = {0 — ... — 0/,,} be two elements
of E*° such that xg <° x; and consider 0(xo) = {ofg,...,0%,} and 0(x;) =
{o%, 0t}

By the definition of “<°” we know that n < m, Vi € [0, n].o0; = o}. Therefore,
by the definition of §, we have that Vi € [0,n].0%; = Uﬁ;. Then, by definition of
“CH0(xo) TF 0(x1). =

Lemma 3. of : p(2*°) — o(X**) is monotonic: X C Y = of(X) Cf af(Y)

Proof. Consider Xg,X; € p(£*°) such that Xo C Xy, a#(Xo) = UH{(n®) | 7° €
Xo} and of(X;) = LF{O(7°) | 7 € X1}. By definition of “C”, ¥7° € Xo,37° €
Xi. By Lemma 2, (7)) Cf 0(n$) for all n§ € Xo and 75 € X;. Then we have
a¥(Xo) CF a#(X1): af(X1) contains all the elements in af (Xp). O

Lemma 4. +* : o(X*) — o(2*°) is monotonic: X CF Y = ~v#(X) C ~¥(Y)

Proof. Consider Xo, X1 € p(2*¥) such that Xy C* Xy, v#(Xg) = {7° € p(Z*°) |
0(m°) TF Xo Al(7°) € £(Xg)} and +#(X1) = {7° € p(Z*°) | 6) CF Xy A
l(°) € £(X{"}. By definition of “C*” and by Lemma 2, for all 75 € v#(X;) exists
7$ € 4(Xy). Therefore 7% (Xg) T v#(Xy). O

Lemma 5. of oF is the identity: of(7#(X)) = X

Proof. Let X be an element of p(X**). By definition of of, af (4#(X)) = L*{0(7°) |
7° € 4#(X)}. By definition of v¥, af(7#(X)) = UH{O(7®) | O(=°®) CF X Al(7°) €
£(X™)}. Then, of (v¥#(X)) contains the least upper bound of all the abstract traces
that have the same last label of X and that are less or equal than X. Therefore
a4 (7#(X)) = X. 0

Lemma 6. 7% o of is extensive: X CF ¥ (af(X))

Proof. Consider X € p(X*°). By definition of ¥, 7#(af (X)) = {7° € p(X*°) |
O(7®) CF ¥ (X) A I(m°) € £(af(X))}. By definition of of, v¥(af(X)) = {n° €
P(X*) | O(=°) CF LH{O(r°) | 7° € X} A(T°) € £(a*(X)™)}. By definition of
“UB7) “C# and by Lemma 2, X Cf 4#(af(X)). O

#
Lemma 7. p(X*°) —

e

©(X*) is a Galois insertion.

Author Proof

Combining Symbolic and Numerical Domains 13

Proof. (X*°) and p(X**) are two complete lattices, 4# and af are monotonic
(Lemmas 3 and 4), af o 4 is the identity (Lemma 5) and 7% o af is extensive

(Lemma 6). Therefore p(X*) <;—u» ©(X*%) is a Galois insertion. O

Finally, we can express the relation between p(X*) and p(X*#) by the com-
position of above functions, & = af o a® and v = 7° o 4.
Since the composition of an isomorphism and a Galois insertion is a Galois

f
insertion, we can assert that go(X*) ‘—Lﬁ» ©(X**) is a Galois insertion.
2!

2.6 Properties

The aim of information flow analysis is to verify the confidentiality and the
integrity of the information in computer programs. An information flow analysis
can be carried out by considering different attacker abilities. In this context we
consider two different scenarios: when the attacker can read public variables only
at the beginning and at the end of the computation, and when the attacker can
read public variables after each step of the computation. Note that the attacker,
in both cases, knows the source code of the program.

Both the properties and the types of attacker are checked through the def-
inition and the satisfiability of the propositional formulae (Pos) with respect
to the truth-assignment function. Let 7p : V — {T,F} be a truth-assignment
function associated with the program P. The security properties are modeled
by the function definition, while the attacker is modeled by the set of propo-
sitional formulae we consider for the satisfiability. For the first case, in which
the attacker can read public variables only at the beginning and at the end of
the computation, the set of states to consider involves only the terminal states
of each sequence ({S € X** | Tp F r(S7)}). Whereas in the second case, when
the attacker can read public variables at each step of the computation, the
set of states to consider involves all the propositional formulae in the sequence
({Se x| Vot €S :Tp F r(ch)}).

Confidentiality. Confidentiality refers to limiting information access and dis-
closure to authorized users. For example, we require when we buy something
online that our private data (e.g., credit card number) can be read only by the
merchant.

Let p : V — {L,H} be a function which assigns to each variable of program
P a security class. P respects the confidentiality property, if and only if it does
not contain any information leakage with respect to the function 1p, i.e., there
is no information that moves from private to public variables. To verify this
property, we define the corresponding truth-assignment function Xp as follows.

T iTp(x) =H
Tp(x) = {F it Tp(x) = L

Author Proof

14 A. Cortesi et al.

Integrity. By integrity we mean that unauthorized people cannot modify a
message.

Let p : V — {L,H} be a function which assigns to each variable of program
‘P a security class. The integrity property is verified if and only if public variables
do not modify private variables, i.e., there is no information leakage from public
variables to private variables. The corresponding truth-assignment function 7p,
to check this property, is defined as follows.

(T T =L
Tp() = {F if Tp(x) = H

Notice that it is exactly the opposite of the truth-assignment function for the
confidentiality property.

3 Combination of Symbolic and Numerical Domains

In this Section, we combine the symbolic propositional formulae domain
described above with a numerical domain through reduced product, yielding
to a refinement of the results obtained by the dependency analysis. Our modu-
lar construction allows to tune efficiency and accuracy changing the numerical
domain. For instance, if we use intervals, we will be less precise than by using
polyhedra, but we will obtain a more efficient analysis.

Let us briefly recall the main features of some numerical domains already in
the literature.

Intervals. Intervals approximate a set of integers by an interval enclosing all of
them. Formally, a set V C Z is approximated with [a,b] where a = min V and
b = max V. If it is not possible to know precisely the upper and lower bound of
a set of integers a and b are —oo and +oo, respectively. This domain is a lattice,
and the ordering operator C is such that [a,b] C [c, d] if and only if the interval
[a, b] is contained by [c,d]. Therefore the top element is the interval [—oo, +00]
and the bottom element is an interval such that a > b. This lattice has infinite
height and contains infinite ascending chains. So it needs a widening operator.
Intervals scale up, but in some cases they are too rough.

Polyhedra. Convex polyhedra are regions of some n-dimensional space that are
bounded by a finite set of hyperplanes. A convex polyhedron in R™ describes
a relation between n quantities. P. Cousot and N. Halbwachs [15] applied the
theory of abstract interpretation to the static determination of linear equali-
ties and inequalities among program variables by introducing the use of convex
polyhedra as an abstract domain.

We denote by v = (vg,...v,—1) € R™ a n-tuple (vector) of real numbers;
v - w denotes the scalar product of vectors v,w € R™; the vector 0 € R has

Author Proof

Combining Symbolic and Numerical Domains 15

all components equal to zero. Let x be a n-tuple of distinct variables. Then
8 = (a-x > b) denotes a linear constraint, for each vector a € R"™, where
a#0,be R and x= {=,>,>}. A linear inequality constraint 3 defines an
affine half-space of R™, denoted by con({3}).

A set P € R" is a (convex) polyhedron if and only if P can be expressed
as the intersection of a finite number of affine half-spaces of R"”, i.e., as the
solution of a finite set of linear inequality constraints. The set of all polyhedra
on the vector space R" is denoted as P,. Let (P,,C, (0, R™ W, N) be a lattice
of convex polyhedra, where “C” is the set-inclusion, the empty set and R" as
the bottom and top elements, respectively. The binary meet operation returns
the greatest polyhedron smaller than or equal to the two arguments, correspond
to set intersection, and “@” is the binary join operation and returns the least
polyhedron greater than or equal to the two arguments. This abstract domain
has exponential complexity, and it does not scale up in practice.

For more details about polyhedra, many works in literature define abstract
domains based on polyhedra as Galois connection [6] and implement this domain
[5,27].

Octagons. A. Miné introduced Octagons [35] for static analysis by abstract inter-
pretation. The author extended a former numerical domain based on Difference-
Bound Matrices [34] and showed practical algorithms to represent and manip-
ulate invariants of the form +x +y < ¢ (where x and y are program variables
and c is a real constant) efficiently. Such invariants describe sets of point that
are special kind of polyhedra called octagons because they feature at most eight
edges in a two dimensional space.

The set of invariants which the analysis discovers is a subset of the ones
discovered by Polyhedra, but it is quite efficient. In fact, it infers the invariants
with a O(n?) worst case memory complexity per abstract state and a O(n?)
worst case time complexity per abstract operation, where n is the number of
variables in the program.

3.1 The Reduced Product

The best way to combine the propositional formulae domain (p(X*),CH,
0, X% Uf M¥) and a numerical domain (X, C®, 11X TX UN m®) is by using the
reduced product operator [14].

(a7

Let p(X2*) <j_—o, (X)) and p(X*) (’y——l> X be two Galois connections and
0 1

let 0 : p(X*) x R — p(Z**) x X be a reduce operator defined as follows: let
X € p(X**) be a set of partial traces, and 9t € R an element of the numerical
domain (a set of intervals, an octagon or a polyhedron). Notice that whatever
domain you choose, 91 can be seen as a set of relations among variables value.
The reduce operator g is defined as o((X,9)) = (X', M) where

X' ={0%ew | Yot € X.1(0%ew) = 1(0?)
A r(otuen) = (r(0) © (K~ F |y =2 € Mz € VUZ Az £x)))

Author Proof

16 A. Cortesi et al.

foo ()1
‘n=0; 'x=1; %2i =0; % = x-1; ‘sum = p;
while (<= k) do
if (°n%2 == 0) then

sum =y + p; 8

n=n +1;

else

sum = x +(p-1); n = n+3;

Hendif
2§ = j+1;
Bdone

Fig. 1. Reduced product example

The reduced operator is aimed at excluding pointless dependencies for all vari-
ables which have the same value during the execution, without loosing purpose-
ful relations (by the condition “x # z”). The reduce operator removes from the
propositional formulae, contained in X, the implications which have at the right
side a variable that has a constant value. In fact if the variable has a constant
value, it cannot depend on other variables.

Then, the reduced product D! is defined as follows:

D* = {o((X,0)) | X € p(X*), M € R}

Consider Xo,X; € @(X*) My, 9% € R and (Xo,Mo), (X1,9%) € DE Then
(Xo,Mo) CF (Xq,9My) if and only if Xg Cf X; and My TN N;. We define the
least upper bound and greatest lower bound operator by (Xo, M) L* (X1, 9) =
<X0 uﬁxl, mo UN‘JI1> and <X0, s]t()> |_|h <X1, ‘ﬁ1> = <X0 H“Xl, mo |_|N ‘ﬁ1>, respectively.
(DA, 5,0, o((£*¥,R™)), U5, M) forms a complete lattice. In order to better under-
stand the improvements yielded by the combination of the two domains consider
the following example.

Ezxample 2. Consider the code we introduced in Fig. 1. We adopt polyhedra as
numerical domain. Below we report the results of two analyses for some program
points.

Polyhedra
4in=02—-1=0;1=0;y =0
S|—p+sum=0y=02—-—1=0;—i+n>0;3t —n > 0;

8 —p+sum=0y=02—1=0;—i4+n>0;—i+k>0;3t —n > 0;
10-p+sum=0y=020—1=0;—i4+n>0;—i+k>0;3t —n > 0;
12/—p+sum=0y=02—1=0;—i+n—-1>0;—1+k > 0;
1>0;3i—n+3>0;
U4—p+sum=0y=02—1=0—-i+n>0;—t+k—12>0;3t —n > 0;

Author Proof

Combining Symbolic and Numerical Domains 17

Propositional formula

4lz—vy

5 |p— sum

8|(z = y) A (p— sum) A (y — sum)

10/(z — y) A (p — sum) A (x — sum)

12|(z = y) A (p — sum) A (x — sum) A (y — sum)

14|(z — y) A (p — sum) A (x — sum) A (y — sum) A (n — sum)A
(i = sum) A (i = n) A (kE — sum) A (k — n)

When we apply the reduce operator defined above we obtain the following propo-
sitional formulas:

4T

) ‘ p — sum

8 ‘ p — sum

10‘ p — sum

12‘ p — sum

14/(p — sum) A (i — n) A (k — n)

By using the reduce operator we simplified the propositional formulas, removing
some implications which could in fact generate false alarms when using the
direct product of the domains instead of the reduced product. For instance, in
Pos analysis we track the relation y — sum. At the same time, in the numerical
analysis, we detect that variable sum is always equal to p (namely it is constant).
This means that y — sum is a false alarm, hence by the reduce product we may
delete it. At the same time, we cannot remove the relation between sum and p
because it is detected also by the numerical analysis.

4 An Extension to Database Query Languages

In this section, we extend the full power of the proposed model to the case of
data-intensive applications embedding SQL statements, in order to identify pos-
sible leakage of sensitive database information as well. This is particular impor-
tant as in fact unauthorized leakage often occurs while propagating through
database applications accessing and processing them legitimately.

4.1 A Motivating Example

Consider the database of Table 12 where customer’s personal information and
journey-details are stored in tables “Customer” and “Travel” respectively. On
booking a particular flight by a customer, the journey details are added to the
table “Travel” and the source-destination distance is added to the corresponding
entry in ‘DistanceCovered’ attribute of the table “Customer”. Observe that 10
points on the journey each 100 Km are offered which is reflected in the attribute
‘Points’. In addition, a boarding-priority value in the attribute ‘BoardPriority’
is assigned to each journey based on the points acquired by the passenger. This
is depicted by procedure BookFlight () in program P in Fig. 2.

Author Proof

18 A. Cortesi et al.

Table 12. Database dB

(a) Table “Customer”

custID | custName | Address Age DistanceCovered | Points

1 Alberto | Athens 56 650 60

2 Matteo Venice 68 49 0

3 Francesco | Washington | 38 972 90

4 Smith Paris 42 185 10

(b) Table “Travel”

custID | Source Destination | FlightID | JourneyDate BoardPriority

1 A B F139 26-04-14 2

2 C D F28 16-11-13 0

3 A B F139 26-04-14 3

4 A B F139 26-04-14 1
Function BookFlight ()
1. $flight=checkAvailability($source, $dest);

2. if($flight # NULL){

3. $dist=computeDistance($source, $dest);

4 UPDATE Customer SET DistanceCovered = DistanceCovered +
$dist WHERE custID=$id;

5. UPDATE Customer SET Points = Points + 10 X
FLOOR($dist/100) WHERE custID=$id;

6. ResultSet rs = SELECT Points FROM Customer WHERE

custID=$id;
7. while(rs.next()){
8. $point=rs.next().Points;
9. $priority=getPriority($point);

10. INSERT INTO Travel(userID, Source, Destination,
FlightID, JourneyDate, BoardPriority) VALUES
($id, $source, $dest, $£light, $date, $priority) }}
End of Function BookFlight ()

Function Upgrade()

15. ResultSet rs = SELECT custID, DistanceCovered, Points FROM
Customer WHERE Points>50;

16. while(rs.next()){

17. $id=rs.next().custID;

18. $point=rs.next().Points;

19. UPDATE Travel SET BoardPriority=BoardPriority +
($point-50)/10 WHERE custID=$id; |

End of Function Upgrade ()

Fig. 2. Program P

Assume that values of the attributes ‘Address’, ‘Age’, ‘DistanceCovered’
and ‘Points’ in table “Customer” are private, whereas the information in Table
“Travel” is public. To distinguish from the database attributes, we prefix $ to the
application variables in P. Finally, suppose the company has decided to upgrade

Author Proof

Combining Symbolic and Numerical Domains 19

the customers having more than 50 ‘Points’ to the status of ‘BoardPriority’. This
is expressed in P by the activation of the Upgrade () function.

It is clear from the code that the values of ‘BoardPriority’ in tuples where
‘custID’ are equal to ‘1’ and ‘3’ will be upgraded from 2 to 3 and from 3 and 7
respectively. Therefore, an attacker can easily deduce the exact values of sensitive
attribute ‘Points’ in Table “Customer”, by observing the change that occurred
in the public attribute ‘BoardPriority’ in Table “Travel”.

The example above clearly shows that sensitive database information may
be leaked through database applications when public attribute values depend,
directly or indirectly, on private attribute values or private application variable
values in the program. For instance, in the given example, the leakage occurs
due to the dependence “Points— BoardPriority” at program label 19.

4.2 Labeled Syntax and Concrete Semantics

The labeled syntax description of the language, depicted in Table 13, includes
imperative statements embedding SQL. We express an SQL statement by a tuple
(0P, @), where ¢ is a precondition following first-order logic which is used to iden-
tify a set of tuples in the database on which the appropriate operation OP (either
select, or insert, or update, or delete) is performed. Each operation represents
a set of actions, e.g. select operation includes GROUP BY, aggregate functions,
ORDER BY, etc. Observe that applications embedding SQL statements involve
two distinct sets of variables: application variables V, and database variables
V4. Variables from V4 appear only in the SQL statements, whereas variables in
V, may appear in all types of instructions (either SQL or imperative).

We define the action function e and variable function V for the language in
Tables 14 and 15 respectively.

Lets recall from [23] the notion of environments correspond to the variables
in V, and V4 respectively.

An application environment p, € €, maps a variable x € dom(p,) C V, to
its value pq(z). So, £, £ V, — Dy where Dys is the semantic domain for V,.

Consider a database as a set of indexed tables {¢; | ¢ € I.} for a given set of
indexes I,.. A database environment is defined by a function p; whose domain is
I, such that for i € I,, pa(i) = t;.

Given a database environment pg and a table ¢ € d. Assume attr(t) =
{a1,a2,...;ar}. So, t C Dy x Dy X X Dy where a; is the attribute corre-
sponding to the typed domain D;. A table environment p; for a table ¢ is defined
as a function such that for any attribute a; € attr(t), pi(a;) = (m(l;) | ; € 1),
where 7 is the projection operator and m;(l;) represents it" element of the l;-th
row. In other words, p; maps a; to the ordered set of values over the rows of the
table t.

A state 0 € X 2 L x & x &, is denoted by a tuple (¢, pg, pa) where £ € L,
pa € €4 and p, € &, are the label of the statement to be executed, the database
environment and the application environment respectively.

The set of states of a program P is, thus, defined as X[P] £ L[P] x E4[P] x
E.[P], where L[P] is the set of labels in P, and £;[P] and &,[P] are the sets

20 A. Cortesi et al.

Table 13. Syntax of labeled programs embedding SQL

Constants
k € K Set of Constants
K:=n|s
where n € N, s € Strings

Author Proof

Variables
Va € V, Set of Application Variables
Vau=x|ylzl...
Vg € Vg Set of Database Attributes
VdZZ:ﬂ1|ﬂ2|ﬂ3|...

Expressions
exp € E Set of Arithmetic Expressions
exp :=k|vg|va|exp; @ exp,
where @ € {+,—,*,/}
beB Set of Boolean Expressions
b ::= true | false | exp; @ exp, | -b | b ® by
where @ € {<,>,==,>,%#,...}and ® € {V, A}

SQL Preconditions

TeT Set of Terms
T 2= K| vy | Val fu(T1, T2, o) T)

where f, is an n-ary function.
ar € A Set of Atomic Formulas
as = Ry(T1, T2, ..., Tp) | T1 == T2

where R, (71, T2, ..., T,) € {true, false}
¢ e W Set of Pre-conditions
Qu=a | P g1 ®P,| OV

where ® € {V,A}and © € {V¥,3} and v € (V5 U Vy)

SQL Functions
g(exp) ::= GROUP BY(exp) | id
where exp = (expy, ..., exp, | exp; € E)
e ::= DISTINCT | ALL
§ 1= AVG | SUM | MAX | MIN | COUNT
h(exp) ::= s o e(exp) | DISTINCT(exp) | id
h(*) ::= COUNT(*)
where * represents a list of database attributes denoted by vq
h(u) == (), .. 1 (1)
where h = (I, ..., h,y and u = (uy, ..., i, | 14; = €XP V u; = *)
f(exp) ::= ORDER BY ASC(exp) | ORDER BY DESC(exp) | id

Labeled Commands
el Set of Labels
geQ Set of Labeled SQL Statements
g = SELECT | UPDATE | INSERT | DELETE

SELECT := (sassign(Va), “f(exp’), Ge(h(u)), 2¢’, 11g(exp), ©p)

UPDATE ::= (“'vg 2 exp, ‘¢)

INSERT ::= (“vq "= exp, ‘true)
DELETE ::= (“del(vq), ‘¢)
ceC Set of Labeled Commands
c = skip | ‘vo = exp| g cy; Co
| if ‘b then ¢4 else ¢, “endif
| while ‘b do ¢ “done
Pu=cf Program that ends with label ¢.

Author Proof

Combining Symbolic and Numerical Domains 21

Table 14. Definition of action function a

a[SELECTI " (Sassign(va), flexp’), Se(h(w), =47, (1 g(exp), ©¢)
a[UPDATE] < {"vq 2 exp, ‘)
a[INSERT] Y (“'vyq "= exp)

a[DELETE] < (“del(va), ‘)

Table 15. Definition of variables function V

viel Y o

Vvl o {v}, where v € (V5 U Vq)
def
Vvl = U VIvil
ViEV
Vlexp; @ expil e Vlexp;] U V[exp;], where & € {+,—,%, /}
Viexpl Y U Viexpl
expjEexp

V[true] Y 0
V[faisel < 0
Vlexp; @ exp,ll “f Vlexp; U Vl[exp,ll, where @ € {<,>,==,>,#,...}
VI-b] < Vib]
VIb; @bl Y Vibi] U VIbz], where ® € {v, A}
VI fu(ti,..., 7))l “f VIt U---U V[1,]l, where f, is an n-ary function.
VIR (1, .., o) L V[T U--- U V[T,], where Ry (71, T2, .., 71) € [true, false)
VIt =)1 VIn U V]
Vo1 < Vigl
VIo1 ® 021 2 Vo1 U V2], where ® € (v, A}
Viev ¢l 2 (v} U V[o], where © < {¥,)
VISELECT] 2 V[va] U V[exp’] U VIu] U V[¢'] U Vexp] U V[]
VIUPDATE] ¥ V[va] U V[exp] U V[$]
VIINSERT] Y V[va] U Viexp]

VIDELETE] < Vlva] U Vo]

of database and application environments whose domain is the set of database
and application variables in P only.

The labeled transition relation T : X x A — p(X) specifies which successor
states o' = (¢, par,par) € X can follow when an action a € A executes on
state 0 = (£, pg, pa) € X. We denote a labeled transition by o 2 o’ or by
(€, pas pa) = (', pars par), or by (€, p) = (¢, p) where p and p' represent (pa, pa)
and (pa, par) respectively.

The labeled transition semantics T[P] € p(X[P] x a[P] — p(X[P])) of a
program P restricts the transition relation to program actions, i.e.

T[Plo={c' |0 20’ Na€ a[P] Ao,0’ € Z[P]}

The labeled transition semantics of various commands in database applica-
tions can easily be defined from the semantic description reported in [23].

Author Proof

22 A. Cortesi et al.

Given a program P, let | = {(in[[’P]],pd,pa> | pa € Ea A pa € Eq} be the set
of initial states of P. The partial trace semantics of P can be defined as

T[P)() = lps F(1) = | F*(1)

i<w
a an—1 an a an—1
where F(lg) = AX. lgU{0g > ... === 0y S 0pp1 | 00 = ... == 0, €X

Aoy s Oni1 € T[[P]]}

4.3 Abstract Semantics

In case of applications embedding SQL statements, we need to consider two addi-
tional dependences, called database-database dependence and program-database
dependence [24]. A program-database dependence arises between a database vari-
able and an application variable, where values of the database variable depend
on the value of the program variable or vice-versa. A database-database depen-
dence arises between two database variables where the values of one depend on
the values of the other.

Example 3. Consider the database of Table 12 in Sect. 4.1. Consider the following
SELECT query:

q1 = SELECT Points, avG(Age) INTO v, FROM Customer WHERE Points >=50
GROUP BY Points HAVING suM(DistanceCovered)>100 ORDER BY Points

Note that we use “INTO v,” in q; to mention that the result of the query is finally
assigned to v,, where v, is a Record or ResultSet type application variable with
fields w = (w1, wa). The type of w;, we are same as the return type of ‘Points’,
‘AVG(Age)’ respectively. Recall from Table 13 that the syntax of SELECT state-
ment is defined as:

(Bsassign(v,), “ flexp’), “e(h(u)), ¢, “g(exp), “¢)

According the syntax defined above, q; can be formulated as:

q1 = SELECT e(h(u)) INTO v,(w) FROM Customer WHERE ¢ GROUP BY(exp) HAVING
' ORDER BY ASC(exp’)

where

— ¢ = Points >=50

— exp = (Points)

— g(exp) = GROUP BY((Points))

— ¢ = (SUMoALL(DistanceCovered))>100

h = (DISTINCT, AVGOALL>

u = (Points, Age)

h(u) = (DISTINCT(Points), AVGoALL(Age))
— exp’ = (Points)

— f(exp’) = ORDER BY ASC({Points))

Author Proof

Combining Symbolic and Numerical Domains 23

— va = Record or ResultSet type application variable with fields w=(wi, ws).
The type of w1 and w2 are same as the return type of DISTINCT(Points) and
AVGoALL(Age) respectively.

From q; we get the following set of logical formula representing variable depen-
dences:
Points — vy.wy, Age — V03, Points — v;.ws
DistanceCovered — v;.wy, DistanceCovered — V,.ws

Below we depict variable dependences in other SQL commands.

q2=UPDATE Customer SET DistanceCovered = $y + 150 WHERE custI D=2
/* where $y is an application variable. */

The logical formula obtained from q, are: custID — DistanceCovered, $y —
DistanceCovered.

q3 = INSERT INTO T'r‘avel(custID,S'ource,Destination,FlightID,
JourneyDate,BoardPriority) VALUES (5,“D”,“E”,“F34”, $y,$z)
/* where $y and $z are application variables. */

The logical formula obtained from qs are: $y — JourneyDate, $z —
BoardPriority.

q4 = DELETE FROM Customer WHERE Age >60
The logical formula obtained from q4 are:

Age — custlD, Age — custName, Age — Address
Age — Age, Age — DistanceCovered, Age — Points

The dependences above indicate explicit-flow of information. An example of
implicit-flow that may occur in case of our application is, for instance, when
manipulation of any public database information is performed under the control
statements involving high variables.

Table 16 depicts abstract labeled transition semantics of various statements in
database applications. The abstract semantics of the program is obtained by
fix-point computation over the abstract domain.

4.4 Enhancing the Analysis

The dependences that we considered so far are syntax-based, and may yield false
positives in the analysis. For instance, let us consider the database in Table 17
and the query gs.

Js = SELECT Type INTO v, FROM Emp, Job WHERE Sal = BASIC+(BASIC *
(DA/100))+(BASIC x (HRA/100))

Author Proof

24 A. Cortesi et al.

Table 16. Definition of abstract transition function T

T[SELECT]]
o Tl assign(va), 4 f(exp’), Be(h(u)), 2¢’, (1 g(exp), Vh)]
(o, vy SEEECL, (aISELECTT, ¢'))
where ¢ = A [V - Va0, |V € (V@] U VIexp] U V[¢'] U V[exp') A Var; € Va.w AV # Va0 | A
AV = V2w 1 € VIud A i € u AVaw; € Va.w) A (06 AV — Va0, |V €V AVZw; € Vaw))
TIUPDATE]]
YT va "L exp, ‘)]
Y ey UPPATE, o [UPDATE], ')
where ¢ = A\ [V1 = V5 | V1 € V[¢] A V2 € Va)A
/\{Vi — V; |V € V[expil A expi € exp A Y, eVd} At
TIINSERT]
YT va " exp, ‘rue)]
Y e, p) NERL, i [INSERT,)
where ¢/ = A {Vi — Vj | Vi € V[[expi] A exp; € exp AV € Vd} AY
T[DELETE]
YT del(va), ‘D)1

“ e vy PELETE, o IDELETE], v/}

where ' = A {V1 = Vo | V1 € VIpI A Vo € Vg| A9

Table 17. Database dB

(a) Table “Emp” (b) Table “Job”

ID|Name Sal Type Rank|BASIC|HRA|DA
1 |Alberto |1110 Security [S1 [800 [20 |65

2 |Matteo [1638 Security [S2 [600 |20 |65
3 |Francesco|2255 Security [S3 [520 [15 |65
4 |[Smith 1840 Technical[T1 [1000 [25 |75
Technical|[T2 [920 [25 |75
Technical|T3 [880 |20 |75
Technical|T4 [840 |20 |75
Admin [Al [1240 [25 |80
Admin [A2 [1100 [25 |80

The following logical formulae representing PD-dependences exist in gs:

¥s= Sal — vywi, BASIC — vywi, DA — vawn, HRA — Vya0m,
Type — Vy. w1

Assuming ‘Sal’, ‘BASIC’, ‘HRA’, ‘DA’ are private and at least one employee in
each job-type must exist, we see that although syntactic PD-dependences above
indicating the presence of information leakage, but in practice nothing about
these secrets is leaked through v,.w;.

Here is an another example of PD-dependence that is indicating false alarm
on leakage: consider the code {$z = 4 % $w * log 2; UPDATE ¢ SET a = a + $x;}.
Assuming $z is private and $w, a are public, we see that the dependence $x — @
generates false alarm as because $x is always equal to 0.

Author Proof

Combining Symbolic and Numerical Domains 25

Table 18. Database dB*

(a) Table “Emp*” (b) Table “Job#”

IDF[Namef [Sal Type? [Rank* |BASICF [HRA? [DAF
T |Alberto |[1110,1110]| [Security |[S1,S3] |[520,800] |[15, 20]|[65, 65]
2 |Matteo |[1638,1638]| |Technical|[T1, T4] |[840, 1000] |[20,25]|[75, 75]
3 |Francesco|[2255,2255]] [Admin |[A1, A2]|[1100, 1240]|[25, 25]|[80, 80]
4 |Smith |[1840, 1840]

To remove all such false alarms and to increase the accuracy of the anal-
ysis, we analyze programs by using the semantic-based abstract interpretation
framework.

Consider an abstract domain N where numerical attributes and numerical
application variables are abstracted by the domain of intervals*. The abstrac-
tion yields an abstract query qef corresponding to qe¢ and an abstract database
depicted in Table 18.

g6’ = SELECT! Typer INTO! ¢ FROM' Empt,
Job® WHERE! Salt =f BASIC'+(BASIC! «
(DA¥/[100,100]))+(BASIC* « (HRA* /[100, 100]))

The right-hand side expression of the condition in WHERE? is evaluated to abstract
values [936, 1480], [1638, 2000], and [2255, 2542] respectively corresponding to the
three abstract tuples in “Job®”. Observe that, according to the assumption that
at least one employee must exist in each job-type, there exist at least one ‘Sal®’
in “Emp*” for which “Sal* =* [936,1480]” is true, according to the following:

true if (I; > lj Nhy < hj)
Wiy hi] = (1, hy] & { false if hy <1 VI > hj
T otherwise

Similar for “Sal* =% [1638,2000]" and “Sal* =* [2255,2542]". Therefore, the
evaluation of q¢ on dB always gives the same result w.r.t. the property N, irre-
spective of the states of “E'mp”.

We can perform similar analysis of the code {$z = 4 * $w x log 2; UPDATE ¢
SET a = a+$=z;} in the domain of intervals, yielding to “no update” of the values
in public attribute a.

The interaction of the logical and numerical domains can be formalized by
using the reduced Product D! as follows:

D* = {o({X,9)) | X € p(X*), 9 € R}

where o((X,9) = {(€i,vn) | (€, 10;) € XA = (¥ & {V1 = V2 | y €7(M})}.

In the example above, by analyzing qg in the abstract domain X where numer-
ical variables are abstracted by the domain of intervals, we see that the value
of v,.wy generated by qe is always constant throughout the program execution

4 For other type of variables, the abstraction function represents identity function.

Author Proof

26 A. Cortesi et al.

w.r.t. N. As 1) € Pos and v,.w; € N, the reduced product operator g removes
from 14 all dependences in the form “x — v,.w;” (that are representing false
alarms), and makes the analysis more accurate and efficient.

5 Implementing the Analysis in Sails

In this section, we present Sails. The tool is an instance of the generic analyzer
Sample. This is why we discuss the main issues we have to solve in order to deal
with information leakage analysis within Sample.

5.1 Sample

Sample (Static Analyzer of Multiple Programming LanguagEs) is a generic ana-
lyzer based on the abstract interpretation theory. Relying on compositional anal-
yses, Sample can be plugged with different heap abstractions, approximations of
other semantic information (e.g., numeric domains or information flow), prop-
erties of interest, and languages. Several heap analyses, semantic and numerical
domains have been already plugged. The analyzer works on an intermediate lan-
guage called Simple. Up to now, Sample supports the compilation of Scala and
Java bytecode to Simple.

Figure 3 depicts the overall structure of Sample. Source code programs are
compiled to Simple. A fixpoint engine receives a heap analysis, a semantic
domain, and a control flow graph (whose blocks are composed by a sequence
of Simple statements), and it produces an abstract result over the control flow
graph of each method. This result is passed to a property checker that produces
some output (e.g., warnings) to the user. The integration of an analysis in Sample
allows one to take advantage of all aspects not strictly related to the analysis
but that can improve its final precision (e.g., heap or numerical abstractions).
For instance, Sample is interfaced with the Apron library [28] and contains a
heap analysis based of TVLA [39].

5.2 Heap Abstraction

In Sample heap locations are approximated by abstract heap identifiers. While
the identifiers of program variables are fixed and represent exactly one con-
crete variable, the abstract heap identifiers may represent several concrete heap
locations (e.g., if they summarize a potentially unbounded list), and they can
be merged and split during the analysis. In particular we have to support (i)
assignments on summary heap identifiers, and (ii) renaming of identifiers.

In order to preserve the soundness of Sails, we have to perform weak assign-
ments on summary heap identifiers. Since a summary abstract identifier may rep-
resent several concrete heap locations and only one of them would be assigned in
one particular execution, we have to take the upper bound between the assigned
value, and the old one.

Author Proof

Combining Symbolic and Numerical Domains 27

Simple program

x.>(1);

HeaE analzsis | true \l/false

head j=3.*(2);

Semanticanalisis I-

! next 2o (QE x » [0..4]
.‘2’,'-‘\ - i [-w..40]
..;\‘,' | return j; I @_, [1..3]

x > [1..1] x > [1..2]

x > [1..+00]

j=(3+1)*2; Property checker]

[12. w1] check(x/y, {y » [1..1]1}) — % |

Warning: possible division by @
Warning: possible null dereferencing

Fig. 3. The structure of Sample

The heap abstraction could require to rename, summarize or split exist-
ing identifiers. This information is passed through a replacement function
rep : p(ld) — p(ld), where Id is the set containing all heap identifiers. For
instance, in TVLA two abstract nodes represented by identifiers a; and as may
be merged to a summary node ag, or a summary abstract node b; may be splitted
to by and bs. Our heap analysis will pass {ai,a2} — {as} and {b;} — {b2,bs}
to Sails in these cases, respectively. Given a single replacement S; +— S, Sails
removes all subformulae dealing with some of the variables in S;, and for each
removed subformula s it inserts a new subformula s’ renaming each of the vari-
ables in S; to each of the variables in So. Formally:

rename : (Pos x (p(ld) — p(Id))) — Pos
7’ename(crrj rep) ={(i"1,"2) : (i1,i2) € oA
V= () tip € Ry
ky if 3Ry € dom(rep) : i1 € Ry Aky € rep(Ry)
., [y if IRy € dom(rep) : iz € Ry
()IiQERQ/\kQETep(RQ)}

Author Proof

28 A. Cortesi et al.

5.3 Propositional Formulae

We have to introduce some slight modifications on the domain for information
leakage analysis described in Sect. 2 to work with object oriented languages. We
can consider a propositional formula ¢ as a conjunction of subformulae ({y A
... A (n). In the implementation, each subformula is an implication between
two identifiers. Then we represent a subformula as a pair of identifiers and a
formula as a set of subformulae. Consider the statement if(x > 0) y = z;. The
formula obtained after the analysis of this statement is represented by the set
{(¥,2), (X,¥)}, where we denote the identifier of the variable u by 4. The order
relation “<” is defined by the subset relation (¢¢ < ¢1 < ¢ C @1).
Consequently, in the implementation the set of propositional variables V consists
in the set of identifier Id, a single propositional formula is represented by (Id x
Id) and an abstract state of € X* is a conjunction of propositional formulae
represented by p(p(ld x 1d)).

5.4 Implicit Flow Detection

An implicit information flow occurs when there is an information leakage from
a variable in a condition to a variable assigned inside a block dependent on that
condition. For instance, in if(x > 0) y = z; there is an explicit flow from z to vy,
and an implicit flow from x to y. To record these relations we relate the variables
in the conditions to the variables that have been assigned in the block. When
we join two blocks coming from the same condition, we discharge all implicit
flows on the abstract state. Observe that Sails does not support all cfgs that can
be represented in Sample but only the ones coming from structured programs,
i.e., that corresponds to programs with if and while statements and not with
arbitrary jumps like goto.

5.5 Property

An information flow analysis can be carried out by considering different attacker
abilities. We implemented two scenarios: when the attacker can read public vari-
ables only at the beginning and at the end of the computation, and when the
attacker can read public variables after each step of the computation®. Moreover,
we implemented two security properties for each attacker: secrecy (i.e., informa-
tion leakage analysis) and integrity.

The verification of these properties happens after the computation of the
analysis and the declaration of private variables (at run time, by a text files
writing the variables name or by a graphical user interface selecting the vari-
ables in a list).

5 Notice that, as in [47], we assume that the attacker, in both cases, knows the source
code of the program.

Author Proof

Combining Symbolic and Numerical Domains 29

5.6 Numerical Analysis

The information flow analysis is based on the reduced product of a dependency
and a numerical analysis. Thanks to the compositional structure of Sample, we
can plug Sails with different numerical domains. In particular, Sample supports
the Apron library. In this way, we can combine Sails with all numerical domains
contained in Apron (namely, Polka, the Parma Polyhedra Library, Octagons,
and a deep implementation of Intervals).

In addition, we can apply different heap abstractions. For instance, if we are
not interested to the heap structure, we can use a less accurate domain that
approximates all heap locations with one unique summary node, as we will do
in Sect. 6.2.

5.7 Complexity of the Analysis

The complexity of variables dependency analysis showed in Sect.2 is strictly
correlated to the complexity of propositional formulae. Logical domains, in lit-
erature, are widely treated and generally, the logical equivalence of two boolean
expression is a co-NP-complete problem. However, this complexity issue may
not matter much in practice because the size of the set of variables appearing
in the program is reasonably small. Hence, on the one hand, work with proposi-
tional formulae requires the solving of a co-NP-complete problem, while on the
other hand, in many frameworks (included our system), Pos only deal with the
variables appearing in the programs, reducing in this way the complexity. Gen-
erally, it is possible to increase the efficiency of the computation using the binary
decision diagrams (BDDs) for the implementation of propositional formulae. For
more information about binary decision diagrams see [1].

The simplification adopted in the implementation, i.e. the definition of “<”
by the subset relation (¢g <¢1 < ¢ C ¢1), permits to decrease the complexity.
In fact, decreasing the precision of the analysis, we can compare two propositional
formulae in polynomial time.

About polyhedra analysis, the complexity is well and completely treated in
many works [5] and heavily depends on its implementation. For example many
implementations, e.g. Polylib and New Polka, use matrices of coefficients, that
cannot grow dynamically, and the worst case space complexity of the methods
employed is exponential. In PPL library, instead, all data structures are fully
dynamic and automatically expanded (in amortized constant time) ensuring the
best use of available memory. Comparing the efficiency of polyhedra libraries is
not a simple task, because the pay-off depends on the targeted applications: in
[5] the authors presented many test results about it.

The complexity of reduced product, and more precisely of reduction operator
presented in Sect. 3.1, is strictly connected with the complexity of the operations
on the domains we combine.

Author Proof

30 A. Cortesi et al.

6 Experimental Results

In this section, we present the experimental results of Sails. First of all, we
present the results in terms of precision when we analyze a case study involving
recursive data structures. Then, we present the results obtained when applying
Sails to the SecuriBench-micro suite.

6.1 Case Study

Consider the Java code in Fig. 4. Class ListWorkers models a list of workers of an
enterprise. Each node contains the salary earned by the worker, and some other
data (e.g., name and surname of the person). Method updateSalaries is defined
as well. It receives a list of employees and a list of managers. These two lists
are supposed to be disjoint. First method updateSalaries computes the maximal
salary of an employee. Then it traverses the list of managers updating their
salary to the maximal salary of employees if manager’s salary is less than that.

Usually managers would not like to leak information about their salary to
employees (secrecy property). This property could be expressed in Sails spec-
ifying that we do not want to have a flow of information from managers to
employees. More precisely, we want to prove the absence of information leakage
from the content of field salary of any node reachable from managers to any node
reachable from employees.

class ListWorkers {
int salary;
ListWorkers next;

)

public void updateSalaries
(ListWorkers employees, ListWorkers managers){
int maxSalary = 0;
ListWorkers it=employees;
while (it!=null) ({
if (it .salary>maxSalary)
maxSalary=it .salary;
it=it.next;
}
it=managers;
while (it!=null) {
if (it.salary < maxSalary)
it.salary=maxSalary;
it=it.next;
}
}

Fig. 4. A motivating example

Author Proof

Combining Symbolic and Numerical Domains 31

. nhext
JAY e
|employeesi i nl } i n2
et salary “. .. ’

next
S
| managers I i n3 i nd
e salary ’

Fig. 5. The initial state of the heap abstraction

We combine Sails with a heap analysis that approximates all objects cre-
ated by a program point with a single abstract node [20]. We start the anal-
ysis of method updateSalaries with an abstract heap in which lists managers
and employees are abstracted with a summary node and they are disjoint.
Figure 5 depicts the initial state, where n2 and n4 contains the salary values of
the ListWorkers nl1 and n3, respectively. In the graphic representation we adopt
dotted circles to represent summary nodes, rectangles to represent local vari-
ables, and edges between nodes to represent what is pointed by local variables
or fields of objects. Note that the structure of these two lists does not change
during the analysis of the program, since method updateSalaries does not modify
the heap structure.

Sails infers that, after the first while loop at line 15, there is a flow of infor-
mation from n2 to maxSalary. This happens because variable it points to nl
before the loop (because of the assignment at line 9), and it iterates following
field next (obtaining always the summary node nl) perhaps assigning the con-
tent of it.salary (that is, node n2) to maxSalary. Therefore, at line 15 we have the
propositional formula n2 — maxSalary.

Then updateSalaries traverses the managers list. For each node, it could assign
maxSalary to it.salary. Similarly to what happened in the previous loop, variable
it points to n3 before and inside the loop, since field next always points to the
summary node n3. Therefore the assignment at line 18 could potentially affects
only node n4. For this reason, Sails discovers a flow of information from maxSalary
to n4, represented by the propositional formula maxSalary — n4.

At the end of the analysis, Sails soundly computes that (n2 — maxSalary) A
(maxSalary — n4). By the transitive property, we know that there could be a
flow of information from n2 to n4, that is, from employees to managers. This flow
is allowed by our security policy. On the other hand, we also discovered that
there is no information leakage from list managers to list employees, since Sails
does not contain any propositional formula with this flow. Therefore Sails proves
that this program is safe.

“Noninterference of programs essentially means that a variable of confidential
(high) input does not cause a variation of public (low) output” [38]. Thanks to

Author Proof

32 A. Cortesi et al.

the combination between a heap abstraction and an abstract domain tracking
information flow, Sails deals directly with the structure of the heap, extending the
concept of noninterference from variables to portions of the heap represented by
abstract nodes. This opens a new scenario since we can prove that a whole data
structure does not interfere with another one, as we have done in this example.
As far as we know, Sails is the only tool that performs a noninterference analysis
over a heap abstraction, and therefore it can prove properties like “there is
no information flow from the nodes reachable from v; to the nodes reachable
from vy”.

6.2 Benchmarks

A well-established way of studying the precision and the efficiency of informa-
tion flow analyses is the SecuriBench-micro suite [45]. We applied Sails to this
test suite; the description and the results of these benchmarks are reported in
Table 19. Column fa reports if the analysis did not produce any false alarm.
We combined Sails with a really rough heap abstraction that approximates all

Table 19. SecuriBench-micro suite

Hh
[

Name Description

Aliasingl | Simple aliasing

Aliasing?2 | Aliasing false positive

Basicl Very simple XSS

Basic2 XSS combined with a conditional
Basic3 Simple derived integer test
Basich Test of derived integer

Basic6 Complex test of derived integer
Basic8 Test of complex conditionals
Basic9 Chains of value assignments

Basic10 | Chains of value assignments

Basicl1 A simple false positive

Basic12 | A simple conditional

Basic18 Protect agains simple loop unrolling

Basic28 Complicated control flow

Predi Simple if(false) test

Pred2 Simple correlated tests

Pred3 Simple correlated tests

Pred4 Test with an integer variable
Predb Test with a complex conditional
Pred6 Test with addition

SIS IENENENEN NN ENENENENENENENENENENENEN

Pred7 Test with multiple variables

Author Proof

Combining Symbolic and Numerical Domains 33

Table 20. Jif case studies

Name Description fa
A Simple explicit flow test v
Account Simple explicit flow test v
ConditionalLeak | Explicit flow in if statement | v
Do Implicit flow in the loop v
Do2 Implicit flow if and loop v
Do3 Implicit flow loop and if v
Do4 Implicit flow loop and if v
Do5 Implicit flow loop and if v
If1 Simple implicit flow v
Implicit Simple implicit flow v

concrete heap locations with one abstract node. Sails detected all information
leakages in all tests, but in three cases (Predl, Pred6 and Pred?7) it produced
false alarms. This happens because Sails abstracts away the information pro-
duced when testing to true or false boolean conditions in if or while statements.

Since these benchmarks cover only problems with explicit flows, we performed
further experiments using some Jif [36] case studies. The results are reported in
Table 20: we discovered all flows without producing any false alarm.

These results allow us to conclude that Sails is precise, since in 90% of the
cases (28 out of 31 programs) it does not produce any false alarm.

About the performances, the analysis of all case studies takes 1.092s (0.035 s
per method in average) without combining it with a numerical domain. When we
combine it with Intervals it takes 3.015 s, whereas it takes 6.130 s in combination
with Polka. All tests are performed using a MacBook Pro Intel Core 2 Duo 2.53
GHz with 4 GB of RAM memory. Therefore the experimental results underline
the efficiency of Sails as well.

7 Related Work

In a security-typed language Volpano et al. [46] were the first ones to develop
a type system to enforce information flow policies, where a type is inductively
associated at compile-time with program statements in such a way that well-
typed programs satisfy the non-interference property. The authors formulated
the certification conditions of Denning’s analysis [18] as a simple type system
for a deterministic language: basically, a formal system of type inference rules
for making judgments about programs. More generally, type-based approaches
are designed such that well-typed programs do not leak secrets. A type is induc-
tively associated at compile-time with program statements in such a way that any

Author Proof

34 A. Cortesi et al.

statement showing a potential low disclosing secrets is rejected. Type systems
that enforce secure information flow have been designed for various languages
and they have been used in different applications. Some of these approaches are,
for example, applied to specific programs, e.g., written in VHDL [44], where the
analysis of information flow is closely related to the context. Moreover, the secure
information flow problem was also handled in different situation, for example
with multi-threaded programs [42] or with programs that employ explicit cryp-
tographic operations [3,21].

A different approach is the use of standard control flow analysis to detect
information leakage, e.g., [9,29,30]. The idea, of this technique, is to conser-
vatively find the program paths through which data may flow. Generally, the
data flow analysis approach to secure information flow as a translation from a
given program that captures and facilitates reasoning about the possible flows.
For example, Leino and Joshi [29] showed an application based on semantics,
deriving a first-order predicate whose validity implies that an attacker cannot
deduce any secure information from observing the public inputs, outputs and
termination behavior of the program.

The use of abstract interpretation in language-based security is not new, even
though there aren’t many works that use the lattice of abstract interpretations
for evaluating the security of programs (for example [49]).

Probably, the main work about information flow analysis by abstract inter-
pretation was done by Giacobazzi and Mastroeni [22] that generalizes the notion
of non-interference making it parametric relatively to what an attacker can
observe, and using it to model attackers as abstractions. A program seman-
tics was characterized as an abstract interpretation of its maximal trace seman-
tics in the corresponding transition system. The authors gave a method for
checking abstract non-interference and they proved that checking abstract non-
interference is a standard static program analysis problem. This method allows
both to compare attackers and program secrecy by comparing the corresponding
abstractions in the lattice of abstract interpretations, and to design automatic
program certification tools for language-based security.

There are not so many implementations of secure information flow. In early
2000, some works began the control of sensitive information in realistic languages
[7,37]. Jif [4] and Flow CAML [40] are, as far as we know, the two main imple-
mentations about information flow analysis. Notice that, in the last years other
language-based tools are developed for some specific language, e.g., Fabric [32]
for distributed computing, the LIO library in haskell [43] and FlowFox [16] a
tool for JavaScript.

According to [41], it seems be helpful to distinguish between two different
application scenarios: developing secure software and stopping malicious soft-
ware. The first scenario is based on to secure information flow analysis to help
the development of software that satisfies some security properties. In this case,

Author Proof

Combining Symbolic and Numerical Domains 35

the analysis serves as a program development tool. The static analysis tool would
alert the programmer to potential leaks and the developer could rewriting the
code as necessary. An example of this scenario can be found in [4], where Askarov
and Sabelfeld discusses the implementation of a “mental poker” protocol in Jif.
The second scenario, instead, the secure information flow analysis is used as a
kind of filter to stop malicious software. In this case, we might imagine analyzing
a piece of untrusted code before executing it, with the goal of guaranteeing its
safety. This is much more challenging than first scenario: probably we would
not have access to the source code and we would need to analyze the binary
code. Analyzing binaries is more difficult than analyzing source code and has
not received much attention in the literature (a Java bytecodes analysis is per-
formed, for instance, by Barthe and Rezk in [8]).

Given this overall context, the approach adopted in Sails is quite different
from existing tools that deal with information flow analysis. Jif, for example,
is a security-typed programming language that extends Java with support for
information flow and access control, enforced at compile time and it is an ad
hoc analysis that requires to annotate the code with some type information. If
on the one hand Jif is more efficient than Sails, on the other hand Sails does
not require any manual annotation, and it takes all advantages of compositional
analyzers (e.g., we can combine Sails with a TVLA-based heap abstraction).

Our approach does not require to change the programming language, since it
infers the flow of information directly on the original program, and it asks what
are the private data that have not to be leaked to the user during the analysis
execution.

8 Conclusions

In this paper we presented an information flow analysis through abstract inter-
pretation based on a new domain that combines a variable dependency analysis
and a numerical domain. We then introduced Sails that applies and implements
this analysis on object-oriented programs. Sails is an extension of Sample, there-
fore it is modular with respect to the heap abstraction, and it can verify nonin-
terference over recursive data structures using simple and efficient heap analyses.
The experimental results underline the effectiveness of the analysis, since Sails
is in position to analyze several benchmarks in few milliseconds per program
without producing false alarms in more than 90% of the programs. Moreover,
our tool does not require to modify the original language, since it works with
mainstream languages like Java, and it does not require any manual annotation.

Acknowledgments. This work has been partially supported by CINI Cybersecurity
National Laboratory within the project “FilieraSicura: Securing the Supply Chain of
Domestic Critical Infrastructures from Cyber Attacks” funded by CISCO Systems Inc.
and Leonardo SpA, and by MIUR-MAE within the Project “Formal Specification for
Secured Software System”, under the Indo-Italian Executive Programme of Coopera-
tion in Scientific and Technological Cooperation Project number IN17MOO07.

Author Proof

AQ2

36 A. Cortesi et al.
References
1. Andersen, H.R.: An introduction to binary decision diagrams. Technical report,

10.

11.

12.

13.

14.

15.

16.

Course Notes on the WWW (1997)

Armstrong, T., Marriott, K., Schachte, P., Sgndergaard, H.: Two classes of boolean
functions for dependency analysis. Sci. Comput. Program. 31, 3-45 (1998)
Askarov, A., Hedin, D., Sabelfeld, A.: Cryptographically-masked flows. Theor.
Comput. Sci. 402, 82-101 (2008)

Askarov, A., Sabelfeld, A.: Security-typed languages for implementation of crypto-
graphic protocols: a case study. In: di Vimercati, S.C., Syverson, P., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 197-221. Springer, Heidelberg (2005).
https://doi.org/10.1007/11555827_12

Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72, 3-21 (2008)

. Bagnara, R., Hill, P.M., Zaffanella, E.: Applications of polyhedral computations to

the analysis and verification of hardware and software systems. Theor. Comput.
Sci. 410, 4672-4691 (2009)

Banerjee, A., Naumann, D.A.: Secure information flow and pointer confinement
in a Java-like language. In: Proceedings of the 15th IEEE Workshop on Com-
puter Security Foundations, CSFW 2002. IEEE Computer Society, Washington,
DC (2002)

Barthe, G., Rezk, T.: Non-interference for a JVM-like language. In: Proceedings of
the 2005 ACM SIGPLAN International Workshop on Types in Languages Design
and Implementation, TLDI 2005, pp. 103-112. ACM, New York (2005)

. Bodei, C., Degano, P., Nielson, F., Nielson, H.R.: Static analysis for secrecy and

non-interference in networks of processes. In: Malyshkin, V. (ed.) PaCT 2001.
LNCS, vol. 2127, pp. 27-41. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44743-1_3

Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: Proceedings of the 2007 International Symposium on Software Testing and
Analysis, ISSTA 2007, pp. 196-206. ACM, New York (2007)

Cortesi, A., Filé, G., Winsborough, W.H.: Prop revisited: propositional formula as
abstract domain for groundness analysis. In: LICS, pp. 322-327 (1991)
Costantini, G., Ferrara, P., Cortesi, A.: Static analysis of string values. In: Qin, S.,
Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 505-521. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24559-6_34

Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M.,
Steinbriiggen, R. (eds.) Calculational System Design. NATO ASI Series F. I0S
Press, Amsterdam (1999)

Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 1979, pp. 269-282. ACM, New York (1979)

Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL 1978, pp. 84-96. ACM, New York
(1978)

De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F.: FlowFox: a web browser
with flexible and precise information flow control. In: Proceedings of the 19th ACM
Conference on Computer and Communications Security (CCS 2012). ACM (2012)

https://doi.org/10.1007/11555827_12
https://doi.org/10.1007/3-540-44743-1_3
https://doi.org/10.1007/3-540-44743-1_3
https://doi.org/10.1007/978-3-642-24559-6_34

Author Proof

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Combining Symbolic and Numerical Domains 37

Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19,
236-243 (1976)

Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20, 504-513 (1977)

Ferrara, P.: Static type analysis of pattern matching by abstract interpretation.
In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE-2010. LNCS, vol. 6117, pp.
186—200. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13464-
715

Ferrara, P.: A fast and precise alias analysis for data race detection. In: Proceedings
of the Third Workshop on Bytecode Semantics, Verification, Analysis and Trans-
formation (Bytecode 2008), Electronic Notes in Theoretical Computer Science.
Elsevier, April 2008

Focardi, R., Centenaro, M.: Information flow security of multi-threaded distributed
programs. In: Proceedings of the third ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, PLAS 2008, pp. 113-124. ACM, New York
(2008)

Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-
interference by abstract interpretation. In: Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2004, pp. 186-197. ACM, New York (2004)

Halder, R., Cortesi, A.: Abstract interpretation of database query languages. Com-
put. Lang. Syst. Struct. 38, 123-157 (2012)

Halder, R., Cortesi, A.: Abstract program slicing of database query languages.
In: Proceedings of the 28th Annual ACM Symposium on Applied Computing,
Coimbra, Portugal, pp. 838-845. ACM Press (2013)

Halder, R., Zanioli, M., Cortesi, A.: Information leakage analysis of database query
languages. In: Proceedings of the 29th Annual ACM Symposium on Applied Com-
puting, Gyeongju, Korea, pp. 813-820. ACM Press, 24—28 March 2014

Hennessy, M.: The Semantics of Programming Languages: An Elementary Intro-
duction Using Structural Operational Semantics. Wiley, New York (1990)
Jeannet, B.: Convex polyhedra library, March 2002. Documentation of the
“New Polka” library. http://www.irisa.fr/prive/Bertrand.Jeannet /newpolka.html
Jeannet, B., Miné, A.. APRON: a library of numerical abstract domains for
static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 661-667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02658-4_52

Joshi, R., Rustan, K., Leino, M.: A semantic approach to secure information flow.
Sci. Comput. Program. 37, 113-138 (2000)

Laud, P.: Semantics and program analysis of computationally secure informa-
tion flow. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 77-91. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45309-1_6

Li, P., Zdancewic, S.: Arrows for secure information flow. Theor. Comput. Sci. 411,
1974-1994 (2010)

Liu, J.D., George, M.D., Vikram, K., Qi, X., Waye, L., Myers, A.C.: Fabric: a
platform for secure distributed computation and storage. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009,
pp- 321-334. ACM, New York (2009)

Liu, Y., Milanova, A.: Static information flow analysis with handling of implicit
flows and a study on effects of implicit flows vs explicit flows. In: Proceedings of
the 2010 14th European Conference on Software Maintenance and Reengineering,
CSMR 2010, pp. 146-155. IEEE Computer Society, Washington, DC (2010)

https://doi.org/10.1007/978-3-642-13464-7_15
https://doi.org/10.1007/978-3-642-13464-7_15
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/3-540-45309-1_6

Author Proof

38

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

A. Cortesi et al.

Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155-172. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44978-7_10

Miné, A.: The octagon abstract domain. In: Proceedings of the Workshop on Analy-
sis, Slicing, and Transformation (AST 2001), pp. 310-319. IEEE CS Press, October
2001

Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: JIF: Java infor-
mation flow. Software release, July 2001-2004

Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. Program.
Lang. Syst. 25, 117-158 (2003)

Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5-19 (2003)

Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24, 217-298 (2002)

Simonet, V.: The flow Caml System: documentation and user’s manual. Technical
report 0282, Institut National de Recherche en Informatique et en Automatique
(INRIA), July 2003

Smith, G.: Principles of secure information flow analysis. In: Malware Detection,
pp. 297-307 (2007)

Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 1998, pp. 355-364. ACM, New York
(1998)

Stefan, D., Russo, A., Mitchell, J.C., Mazieres, D.: Flexible dynamic information
flow control in Haskell. SIGPLAN Not. 46(12), 95-106 (2011)

Tolstrup, T.K., Nielson, F., Nielson, H.R..: Information flow analysis for VHDL. In:
Malyshkin, V. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 79-98. Springer, Heidelberg
(2005). https://doi.org/10.1007/11535294 8

Stanford University. Stanford SecuriBench Micro. http://suif.stanford.edu/
~livshits/work/securibench-micro/

Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4, 167-187 (1996)

Zanioli, M., Cortesi, A.: Information leakage analysis by abstract interpretation.
In: Cern4, I., Gyiméthy, T., Hromkovi¢, J., Jefferey, K., Kralovié, R., Vukolié, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 545-557. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-18381-2_45

Zanioli, M., Ferrara, P., Cortesi, A.: Sails: static analysis of information leakage
with sample. In: Proceedings of the 2012 ACM Symposium on Applied Computing,
pp. 1308-1313. ACM Press (2012)

Zanotti, M.: Security typings by abstract interpretation. In: Hermenegildo, M.V,
Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 360-375. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45789-5_26

https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/11535294_8
http://suif.stanford.edu/~livshits/work/securibench-micro/
http://suif.stanford.edu/~livshits/work/securibench-micro/
https://doi.org/10.1007/978-3-642-18381-2_45
https://doi.org/10.1007/3-540-45789-5_26

Author Proof

Author Queries

IChapter 6

the text. Please cite them in text or delete them from
the list.

Query Details Required Author’s
Refs. response
AQ1 Please confirm if the corresponding author and mail id
are correctly identified. Amend if necessary.
AQ2 References [13, 31] are given in the list but not cited in

