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Abstract This paper deals with simultaneous prediction for time series models. In
particular, it presents a simple procedure which gives well-calibrated simultaneous
predictive intervals with coverage probability equal or close to the target nominal
value. Although the exact computation of the proposed intervals is usually not feasi-
ble, an approximation can be easily obtained by means of a suitable bootstrap sim-
ulation procedure. This new predictive solution is much simpler to compute than
those ones already proposed in the literature based on asymptotic calculations. An
application of the bootstrap calibrated procedure to first order autoregressive models
is presented.
Abstract Questo lavoro riguarda la costruzione di intervalli di previsione simul-
tanei per serie storiche. In particolare, presenta una semplice procedura per ot-
tenere intervalli di previsione simultanei calibrati con probabilità di copertura
uguale o molto vicina al valore nominale. Sebbene il calcolo esatto di questi inter-
valli non sia sempre possibile, essi si possono approssimare tramite un’opportuna
procedura bootstrap. Le approssimazioni cosı̀ ottenute hanno il vantaggio di essere
molto più semplici da calcolare delle soluzioni asintotiche già note. Viene infine pre-
sentata un’applicazione della procedura di calibrazione bootstrap per la previsione
in modelli autoregressivi del primo ordine.
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1 Introduction

In the statistical analysis of time series, a key problem concerns prediction of future
values. Although, in the literature, great attention has been received by pointwise
predictive solutions, in this paper we deal with the notion of prediction intervals,
which explicitly takes account of the uncertainty related to the forecasting proce-
dure. In particular, we assume a parametric statistical model and we follow the fre-
quentist viewpoint, with the aim of constructing prediction intervals having good
coverage accuracy.

It is well-known that the estimative or plug-in solution, though simple to derive,
is usually not adequate. In fact, it does not properly take account of the sampling
variability of the estimated parameters, so that the (conditional) coverage probabil-
ity of the estimative prediction intervals may substantially differ from the nominal
value.

Improved prediction intervals based on complicated asymptotic corrections have
been proposed in a general framework by Barndorff-Nielsen and Cox (1996) and
Corcuera and Giummolè (2006) and, for the case of time series models, by Gium-
molè and Vidoni (2010) and Vidoni (2004). A calibrating approach has been sug-
gested by Beran (1990) and applied, for example, by Hall et al. (1999), using a
suitable bootstrap procedure. Fonseca et al. (2011, 2014) extended this proposal
and presented applications to one-step ahead prediction intervals for stationary time
series models. Simulation-based prediction intervals for autoregressive processes
are also considered by Kabaila and Syuhada (2007). Finally, there is an extensive
literature on non-parametric bootstrap prediction intervals for autoregressive time
series (see, for example, Clements and Kim, 2007 and references therein).

In this paper we extend the bootstrap calibration procedure proposed in Fonseca
et al. (2011, 2014) to the multidimensional case. In particular this work is dedicated
to the construction of joint prediction regions which are expected to contain a fu-
ture sequence of observations with the required coverage probability. Although the
specification of a multivariate prediction region may be quite general, we restrict our
attention to joint regions of rectangular form, which are usually considered for fore-
casting future paths of time series observations. Recently, Wolf and Wunderli (2015)
introduce a similar system of simultaneous prediction limits. In the last section, an
application to simultaneous prediction within AR(1) models is presented.

2 Simultaneous calibrated prediction intervals

Given a discrete-time stochastic process {Yt}t≥1, we assume that Y = (Y1, . . . ,Yn),
n > 1, is observable, while Z = (Z1, . . . ,Zm) = (Yn+1, . . . ,Yn+m), m ≥ 1, is a future
or not yet available random vector, corresponding to an m-dimensional sequence of
future observations. The vector (Y,Z) is continuous with g(z|y;θ) and G(z|y;θ), θ ∈
Θ , the conditional multivariate density and distribution function of vector Z given
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Y = y. In the presence of a transitive statistic U , y is substituted by the observed
value u of U .

Given the observed sample y=(y1, . . . ,yn), a system of simultaneous α-prediction
limits for vector Z is a set of functions c j

α(y), j = 1, . . . ,m, such that, exactly or ap-
proximately,

PY,Z{Z j ≤ c j
α(Y ), j = 1, . . . ,m;θ}= α, (1)

for every θ ∈Θ and for any fixed α ∈ (0,1). In the presence of a finite dimensional
transitive statistic, we usually consider the conditional coverage probability

PY,Z|U{Z j ≤ c j
α(Y ), j = 1, . . . ,m|U = u;θ}= α. (2)

An α-level joint prediction region of rectangular form is readily obtained by speci-
fying two suitable systems of lower and upper simultaneous prediction limits.

As we can see, for example in Ravishanker et al. (1991) and Alpuim (1997), si-
multaneous prediction limits for vector Z in a time series context are usually defined
as

z j,α = z j,α(Y ;θ) = Pj +hα(θ)se j(θ), j = 1, . . . ,m, (3)

evaluated at θ = θ̂ , where θ̂ = θ̂(Y ) is the maximum likelihood estimator for θ , or
an asymptotically equivalent alternative. Here Pj = Pj(Y ;θ) is a suitable unbiased
point predictor for Z j, such that EY,Z j(Z j−Pj) = 0, with prediction standard error

se j(θ) =
√

VY,Z j(Z j−Pj). Indeed, hα(θ) is a quantity satisfying

PZ|Y{E j ≤ hα(θ), j = 1, . . . ,m|Y = y;θ}= F{hα(θ), . . . ,hα(θ)|y;θ}= α,

with E j = (Z j−Pj)/se j(θ), j = 1, . . . ,m, the standardized forecast errors with joint
distribution function F(e1, . . . ,em|y;θ), conditional on Y = y.

In order to compute the prediction limits specified by relation (3), we need a
vector of unbiased point predictors P = (P1, . . . ,Pm), the associated vector of pre-
diction standard errors se(θ) = {se1(θ), . . . ,sem(θ)} and the quantity hα(θ) =
ϕ−1(α|y;θ), where ϕ−1(·|y;θ) is the inverse of function ϕ(x|y;θ)=F(x, . . . ,x|y;θ),
which corresponds to the conditional distribution function F(e1, . . . ,em|y;θ) con-
strained to {(e1, . . . ,em) ∈ Rm|e1 = · · ·= em = x}. For stationary linear models, we
usually consider the optimal predictors Pj = E(Z j|Y ), j = 1, . . . ,m. Indeed, with this
choice for the point forecasts, provided that we have a linear or a Gaussian process,
the vector of the (standardized) forecasts errors (E1, . . . ,Em) is independent of Y .

The (unconditional) coverage probability of the estimative simultaneous predic-
tion limits ẑ j,α = z j,α(Y ; θ̂), j = 1, . . . ,m, corresponds to

PY,Z{Z j ≤ ẑ j,α , j = 1, . . . ,m;θ}= EY [PZ|Y{Z j ≤ ẑ j,α , j = 1, . . . ,m|Y ;θ};θ ]

= EY [PZ|Y{E j ≤ (ẑ j,α −Pj)/se j(θ), j = 1, . . . ,m|Y ;θ};θ ]

= EY [F{a1 +hα(θ̂)b1, . . . ,am +hα(θ̂)bm|Y ;θ};θ ] = D(α,θ),
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where a j = a j(Y,θ) = (P̂j −Pj)/se j(θ) and b j = b j(Y,θ) = se j(θ̂)/se j(θ), j =
1, . . . ,m, with P̂j = Pj(Y ; θ̂).

Following the calibrating procedure proposed in Fonseca et al. (2014) for uni-
variate prediction limits, we may consider function

ϕc(x|y; θ̂ ,θ) = D{F(x, . . . ,x|y; θ̂),θ}= D{ϕ(x|y; θ̂),θ} (4)

instead of ϕ(x|y; θ̂), in order to specify the quantity

hc
α(θ̂ ,θ) = ϕ

−1
c (α|y; θ̂ ,θ) = ϕ

−1(D−1(α,θ)|y; θ̂) = hD−1(α,θ)(θ̂),

with ϕ−1
c (·|y; θ̂ ,θ) and D−1(·,θ) the inverse functions of ϕc(·|y; θ̂ ,θ) and D(·,θ),

respectively. It is easy to show that the calibrated simultaneous prediction limits thus
obtained, namely

zc
j,α(Y ; θ̂ ,θ) = P̂j +hc

α(θ̂ ,θ)se j(θ̂), j = 1, . . . ,m, (5)

present a coverage probability equal to the target nominal value α . Indeed, the spec-
ification of quantities hc

α(θ̂ ,θ) from (4) determines simultaneous prediction limits
satisfying relation (1) exactly for all α ∈ (0,1).

Whenever a closed form expression for ϕc(x|y; θ̂ ,θ) is not available, we may
consider a suitable parametric bootstrap estimator. Let yb, b = 1, . . . ,B, be para-
metric bootstrap samples generated from the estimative distribution of the data and
let θ̂ b, b = 1, . . . ,B, be the corresponding maximum likelihood estimates. Since
D(α,θ) is defined as an expectation, we define the following bootstrap estimator
for (4)

ϕ
b
c (x|y; θ̂) =

1
B

B

∑
b=1

F{âb
1 +hα(θ̂

b)b̂b
1, . . . , â

b
m +hα(θ̂

b)b̂b
m|Y ; θ̂}|

α=ϕ(x|y;θ̂),

where âb
j = (P̂b

j − P̂j)/se j(θ̂) and b̂b
j = se j(θ̂

b)/se j(θ̂), j = 1, . . . ,m, with P̂b
j =

Pj(Y ; θ̂ b). In this case, the associated α-level quantity permits the definition of a
system of simultaneous prediction limits with coverage probability equal to α , apart
from an error term depending on the efficiency of the bootstrap procedure.

3 Example: AR(1)

Let {Yt}t≥1 be a first-order Gaussian autoregressive process with

Yt = µ +ρ(Yt−1−µ)+ εt , t ≥ 1,

where µ and ρ are unknown parameters and {εt}t≥1 is a sequence of indepen-
dent Gaussian random variables with zero mean and unknown variance σ2. We
assume |ρ| < 1 so that the process is stationary. The observable random vector is
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Y = (Y1, . . . ,Yn) and the next m realizations of the process are Z = (Yn+1, . . . ,Yn+m).
The conditional distribution of Z given Y = y is Gaussian with mean µZ|Y =
(µn+1, . . . ,µn+m), where µn+1 = µ + ρ(yn− µ), µn+k = µ + ρ(µn+k−1− µ), k =
2, . . .m, and variance-covariance matrix Σ where Σi j = σ2ρ |i− j|. Indeed, Yn is a
transitive statistic and we evaluate the performance of simultaneous prediction lim-
its by means of their coverage probability conditioned on the observed value yn of
Yn, as in (2).

A simulation study shows the performance of the proposed predictive solution
(5). Conditional coverage probabilities for estimative and bootstrap calibrated pre-
diction limits of level α = 0.9 are calculated by means of the simulation technique
presented in Kabaila (1999), keeping the last observed value fixed to yn = 1. The re-
sults for m= 2,5 future variables are collected in Table 1 and show that the bootstrap
solution remarkably improve on the estimative one.

Table 1 AR(1) Gaussian model. Conditional coverage probabilities for simultaneous estimative
and bootstrap calibrated prediction limits of level α = 0.9, conditioned on yn = 1; m = 2,5 future
observations are predicted; µ is considered to be known and equal to 0; ρ = 0.5,0.8, σ2 = 1 and
n = 20. Estimation is based on 1,000 Monte Carlo replications. Bootstrap procedure is based on
500 bootstrap samples. Estimated standard errors are always smaller than 0.011.

m ρ Estimative Calibrated

2 0.5 0.872 0.898
0.8 0.859 0.895

5 0.5 0.859 0.893
0.8 0.857 0.884
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