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Abstract

Background

Cholera prevention and control interventions targeted to neighbors of cholera cases (case-

area targeted interventions [CATIs]), including improved water, sanitation, and hygiene, oral

cholera vaccine (OCV), and prophylactic antibiotics, may be able to efficiently avert cholera

cases and deaths while saving scarce resources during epidemics. Efforts to quickly target

interventions to neighbors of cases have been made in recent outbreaks, but little empirical

evidence related to the effectiveness, efficiency, or ideal design of this approach exists.

Here, we aim to provide practical guidance on how CATIs might be used by exploring key

determinants of intervention impact, including the mix of interventions, “ring” size, and tim-

ing, in simulated cholera epidemics fit to data from an urban cholera epidemic in Africa.

Methods and findings

We developed a micro-simulation model and calibrated it to both the epidemic curve and the

small-scale spatiotemporal clustering pattern of case households from a large 2011 cholera

outbreak in N’Djamena, Chad (4,352 reported cases over 232 days), and explored the

potential impact of CATIs in simulated epidemics. CATIs were implemented with realistic

logistical delays after cases presented for care using different combinations of prophylactic

antibiotics, OCV, and/or point-of-use water treatment (POUWT) starting at different points

during the epidemics and targeting rings of various radii around incident case households.

Our findings suggest that CATIs shorten the duration of epidemics and are more resource-

efficient than mass campaigns. OCV was predicted to be the most effective single interven-

tion, followed by POUWT and antibiotics. CATIs with OCV started early in an epidemic
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focusing on a 100-m radius around case households were estimated to shorten epidemics

by 68% (IQR 62% to 72%), with an 81% (IQR 69% to 87%) reduction in cases compared to

uncontrolled epidemics. These same targeted interventions with OCV led to a 44-fold (IQR

27 to 78) reduction in the number of people needed to target to avert a single case of chol-

era, compared to mass campaigns in high-cholera-risk neighborhoods. The optimal radius

to target around incident case households differed by intervention type, with antibiotics hav-

ing an optimal radius of 30 m to 45 m compared to 70 m to 100 m for OCV and POUWT.

Adding POUWT or antibiotics to OCV provided only marginal impact and efficiency improve-

ments. Starting CATIs early in an epidemic with OCV and POUWT targeting those within

100 m of an incident case household reduced epidemic durations by 70% (IQR 65% to 75%)

and the number of cases by 82% (IQR 71% to 88%) compared to uncontrolled epidemics.

CATIs used late in epidemics, even after the peak, were estimated to avert relatively few

cases but substantially reduced the number of epidemic days (e.g., by 28% [IQR 15% to

45%] for OCV in a 100-m radius). While this study is based on a rigorous, data-driven

approach, the relatively high uncertainty about the ways in which POUWT and antibiotic

interventions reduce cholera risk, as well as the heterogeneity in outbreak dynamics from

place to place, limits the precision and generalizability of our quantitative estimates.

Conclusions

In this study, we found that CATIs using OCV, antibiotics, and water treatment interventions

at an appropriate radius around cases could be an effective and efficient way to fight cholera

epidemics. They can provide a complementary and efficient approach to mass intervention

campaigns and may prove particularly useful during the initial phase of an outbreak, when

there are few cases and few available resources, or in order to shorten the often protracted

tails of cholera epidemics.

Author summary

Why was this study done?

• The risk of cholera around households of cholera cases is higher than in the general pop-

ulation in the days after cholera symptoms start.

• Rapid targeting of cholera interventions to neighbors of cholera cases may provide an

effective and resource-efficient way to avert cholera cases and deaths and reduce the

duration of epidemics.

• Interventions targeted to neighbors of cases using combinations of antibiotics, oral chol-

era vaccine, and/or water, sanitation, and hygiene measures have been used in Africa

and the Americas to fight cholera, yet limited evidence exists on the potential impact of

this approach, the optimal mix of interventions, and the extent of the target population.

Case-area targeted interventions in response to cholera outbreaks
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What did the researchers do and find?

• Using computational models, we simulated cholera epidemics similar to a large urban chol-

era outbreak in Chad and evaluated the potential impact of targeted interventions adminis-

tered to people living within a fixed radius (e.g., 100 m) around reported cholera cases.

• Targeted interventions with oral cholera vaccine were predicted to have the largest

impact on reducing cases and shortening epidemics, followed by water treatment inter-

ventions and by prophylactic antibiotics, regardless of when interventions started dur-

ing epidemics.

• The combined use of oral cholera vaccine and water treatment within 100 m around

cases starting early in epidemics were estimated to lead to 70% (interquartile range

[IQR] 65% to 75%) fewer epidemic days and 82% (IQR 71% to 88%) fewer cases than

uncontrolled epidemics.

• Compared to traditional mass intervention campaigns, targeted interventions can have

a similar or larger impact on epidemics and use less resources.

• The optimal radius to target around incident case households differed by intervention

type, with antibiotics having an optimal radius of 30 m to 45 m compared to 70 m to

100 m for oral cholera vaccine and point-of-use water treatment.

What do these findings mean?

• Interventions targeted to neighbors of cholera cases can be an effective and resource-

efficient strategy to fight cholera epidemics; they may be particularly useful during the

early phase of an outbreak, when the number of cases is still low, and to truncate the

tails of outbreaks, after a mass intervention campaign.

• While field studies and/or clinical trials are needed to measure the effectiveness of tar-

geted interventions, these results provide a rationale to focus efforts on interventions

with oral cholera vaccine and water treatment interventions in a roughly 100-m radius

around case households.

Introduction

With over 130,000 cases and 2,400 deaths reported globally in 2016, cholera continues to be a

major public health threat, particularly in sub-Saharan Africa [1]. These numbers likely repre-

sent an underestimate of the true burden due to poor access to health care, insensitive surveil-

lance systems, and political sensitivities around reporting cases and deaths [2,3]. Cities in sub-

Saharan Africa are regularly struck by cholera outbreaks, causing disruption and hindering

social and economic development [4,5]. These cities may act as local, national, and/or interna-

tional hubs of disease spread due to regular travel and migration, and quickly controlling chol-

era outbreaks in these areas may significantly reduce the number of cholera cases both within

the cities and elsewhere.

The cornerstone of cholera prevention and control is improved access to safe water, sanita-

tion, and hygiene (WaSH) and appropriate case management. WaSH includes a heterogeneous

Case-area targeted interventions in response to cholera outbreaks
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mix of interventions, ranging from provision of safe water through infrastructure or point-of-

use water treatment (POUWT) tools to latrine building and hygiene behavior change measures

[6]. Antibiotics have been used to shorten the duration of shedding in cholera cases and, in

some instances, to provide short-term prophylaxis for household contacts, although their pro-

phylactic use is not part of current guidelines by WHO, Médecins Sans Frontières (MSF), the

US Centers for Disease Control and Prevention, or icddr,b [7,8]. Recently, oral cholera vac-

cines (OCVs) have been added to this arsenal and are widely available as a result of the global

cholera vaccine stockpile and the addition of new, affordable WHO-prequalified vaccines to

the stockpile [9,10]. However, supply of these vaccines remains limited, and countries must

often contend with fewer doses than needed to cover the population at risk [11]. OCVs have

been shown to be safe, immunogenic, and protective, with 2-dose protection (the standard reg-

imen) lasting at least 3 years, and single-dose protection at least 6 months [12,13], a similar

time scale to many cholera epidemics.

These tools are used preventively [14] in areas deemed at high risk for cholera transmission,

or reactively in response to a cholera outbreak [15–17]. Control measures are typically given to

the population at-large through mass campaigns within high-risk areas, although targeted

interventions to households or neighborhoods of cases, including delivery of OCV, antibiotics,

and POUWT [7,8,18–20], are common. In Haiti and other countries, efforts to establish rapid

response teams tasked with implementing highly targeted interventions are currently under-

way [21]. The benefits of this type of approach remain unclear, and there is little understand-

ing about when in an epidemic these interventions may have a greater impact than more

traditional community-wide interventions, how large an area to target around case house-

holds, or the best mix of interventions.

Spatiotemporal clustering of cholera cases—at distances ranging from tens to hundreds of

meters—has been observed during numerous cholera outbreaks in endemic and epidemic

areas [22–28]. A previous analysis showed that suspected cholera cases were significantly clus-

tered up to distances of at least 200 m from incident case households within the first 5 days of

a case presenting for care during epidemics in 2 urban African settings in Chad and the Demo-

cratic Republic of the Congo [29]. This clustering has been attributed to common risk factors

in those living close to one another, in addition to the risk of transmission often being higher

the closer one lives to an infected individual. Intervention strategies targeting disease hotspots

[30], particularly vulnerable neighborhoods and camps [31] and other communities, have

been successfully applied in the past. Limited literature exists, however, on reactive case-area

targeted interventions (CATIs), which take advantage of the inherent spatiotemporal cluster-

ing of cholera cases by targeting people living within a given distance around reported cholera

cases. Such a strategy could not only present efficient alternatives to reactive mass intervention

campaigns in outbreak situations, where resources may be limited or their availability delayed,

but may also be used as a complementary approach to mass campaigns when cholera incidence

is low, such as during the initial phase or declining tail of an epidemic.

Here we aim to understand the potential impact of CATIs on epidemic cholera using

computational transmission models fit to data from a 2011 cholera epidemic in Chad. We aim

to provide practical guidance on the best mix of interventions (OCV, POUWT, and/or pro-

phylactic antibiotics), ring size, and timing to maximize efficiency and impact.

Methods

Case study and data

During the 2011 cholera epidemic in N’Djamena, Chad, field staff from MSF collected the

household coordinates of all suspected cholera cases presenting at the main cholera treatment

Case-area targeted interventions in response to cholera outbreaks
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center starting on June 22 by visiting people at their home (S1 Fig). From August—when the

case load began to increase rapidly—through the end of the epidemic in December, household

coordinates were collected for every third patient. To minimize potential selection biases,

every third patient was identified at the cholera treatment center by an epidemiologist from

MSF/Epicentre (NN) who then provided the address to a team of data collectors who visited

each household. The resulting dataset, combining the overall epidemic curve of suspected

cholera cases (citywide) with GPS coordinates of patient’s homes, has been described previ-

ously [29] (S2 Fig). The epidemic totaled 4,352 reported cases (within a population of 993,500)

and lasted for 232 days. The attack rate varied between 11.6 and 59.6 per 10,000 among the 10

districts (arrondissements) of the city (S2 Fig). As these data were originally collected for oper-

ational purposes, this study did not have a prospective protocol, and it was deemed to be

exempt research by the Johns Hopkins Bloomberg School of Public Health Institutional

Review Board.

Quantification of spatiotemporal clustering

To quantify the spatiotemporal clustering of cholera cases, we used the τ statistic, a measure of

the relative risk that a person living at a given distance from a known cholera case also

becomes a case compared to any person in the entire population becoming a case within the

same time frame [32–36] (S1 Text). In the presence of spatiotemporal clustering at a particular

distance and time, τ is greater than 1.

Epidemiological model

We developed an individual-based, spatially explicit stochastic model (S1 Text) and calibrated

it to the 2011 cholera outbreak in N’Djamena. All 993,500 inhabitants of the city were assigned

a geographical location according to the population density estimated using remotely sensed

built-up density as a proxy [37,38] (S2 Fig). Demographic processes, like births and deaths,

were assumed to be negligible during the short time course of the outbreak. In the model, each

individual’s state (e.g., susceptible, exposed, infectious, or recovered) is tracked during the out-

break (Fig 1A). Susceptible individuals are exposed to a spatially distributed force of infection

originating from infectious individuals and decreasing with distance (Fig 1B). The force of

infection is modulated by rainfall, which has been shown to be an important environmental

driver of cholera epidemics in several settings [39–43]. Exposed individuals can become either

symptomatically infected, after an incubation period with a mean duration of 2 days [44], or

mildly/asymptomatically infected, in which case it is assumed that they do not significantly

contribute to the force of infection [45,46]. Symptomatic infection lasts for an average of 5

days before individuals recover [47].

The 4 free parameters of our model are the ratio of symptomatic to asymptomatic infec-

tions, a kernel-independent transmission rate, a shape parameter of the power-law transmis-

sion kernel, and a coefficient governing the influence of rainfall. Model calibration was

performed using an approximate Bayesian computation population Monte Carlo (ABC-PMC)

approach (S1 Text) [48]. Specifically, we calibrated the model to the number of newly reported

cases per day (i.e., the epidemic curve; Fig 2A) and the spatiotemporal clustering of the case

households, as captured by the τ statistic. We estimated τ at 3 different representative distance

windows (15 to 45 m, 45 to 105 m, and 105 to 225 m)—chosen to fit the spatial discretization

of the model domain—and focused on cases occurring within 5 days after each case (Fig 2B).

For simplicity and interpretability, we used the sum of squared errors as a goodness of fit mea-

sure for both criteria. The calibration was run with 512 particles, which were accepted if the

Case-area targeted interventions in response to cholera outbreaks
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sums of squared errors of both criteria were lower than predefined thresholds adapted after

every calibration step (S1 Text).

Intervention strategies

To evaluate the benefits (e.g., averted symptomatic cases) and resource needs (e.g., number of

people targeted and number of clusters targeted through CATI) of different types of interven-

tions, we simulated a total of 111 scenarios (and several sensitivity analyses), combining differ-

ent intervention types, modes of allocation, and intervention starting times (S1 Table). Out of

an initial 1,000 epidemics simulated without interventions, the ones with at least 10 new chol-

era cases during the week preceding the initiation time (833, 836, and 829 for interventions

starting on day 50, 130, and 180 of the epidemic, respectively) were resimulated for every inter-

vention scenario. This threshold of 10 was selected through trial and error to ensure that

Fig 1. Schematic representation of the epidemiological model and evolution of the infectious state of inhabitants of a neighborhood. (A) Flow chart of the

model representing the different epidemiological states a person can be in and the processes that lead to a change of state. The force of infection acting on a

susceptible individual depends on the number of infected individuals and the distance to each of them as well as on rainfall during the last 10 days. Orange

boxes represent pathways through which interventions (antibiotics, oral cholera vaccine, and point-of-use water treatment) influence the processes in the

model. (B) Schematic representation of the evolution of the epidemiological state of the inhabitants of a neighborhood in N’Djamena during 3 timesteps. The

closer susceptible people (blue dots) live to an infected individual (red dots), the higher the force of infection (red contours) they face. Susceptible individuals

can get symptomatically infected, which means that they get exposed (green dots) and go on to become infectious after their incubation period (red dots), and

thus contribute to the force of infection, or asymptomatically infected, in which case they are assumed to recover (purple dots). Infected individuals recover

after a given duration. Between timesteps 1 and 2, 1 infected person recovered, 4 susceptible individuals got exposed, and 14 susceptible individuals contracted

an asymptomatic infection. At timestep 3, the individuals infected at timestep 1 have recovered, and all exposed individuals have become symptomatic.

https://doi.org/10.1371/journal.pmed.1002509.g001
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simulated epidemics reflected those where interventions were likely to be put in place (e.g., in

epidemics with clear evidence of ongoing transmission) and to reduce the number of compari-

sons where the differences between uncontrolled and intervention simulations was largely a

result of stochastic effects rather than the interventions. Simulations were run up to 1 year

from the first cases to stay within the realm of historic outbreak durations. For each interven-

tion scenario we then computed the median and interquartile range for the number of averted

cases and the number of epidemic days reduced, over all simulations. These interquartile

ranges (or prediction intervals) capture the uncertainty related to the model parameters (inter-

vention- and disease-transmission-related parameters) and stochastic variations. Note that,

using this method, some simulations may generate a higher number of cases and/or a longer

epidemic with interventions than without, because the course of the simulated epidemic trajec-

tories is subject to stochastic processes.

We evaluated 3 types of interventions both individually and in combination: the adminis-

tration of a single dose of antibiotics (e.g., azithromycin), the administration of a single dose of

OCV, and a POUWT intervention (Fig 1A). We reconstructed probability distributions (S14

Fig) for each of the intervention effects, with mean effect sizes and measures of variability

derived from the literature (Table 1), and drew from these distributions in simulations. A

detailed description of the effects of the 3 types of interventions and their implementation is

Fig 2. Calibrated model fit. (A) shows the distribution of daily incident cholera cases from uncontrolled epidemic

simulations. The shaded areas represent the marginal interquartile range (dark blue) and the 2.5th and 97.5th

percentiles (light blue) from 1,000 simulated epidemics with the true number of daily reported cases shown as red dots.

Red ticks at the top represent the 3 times when interventions start. (B) shows the interquartile range (dark blue) and

2.5th and 97.5th posterior percentiles (light blue) of the relative risk (τ statistic) of the next case being within a specific

distance from a case within 5 days of his/her symptom onset. Red dots and bars (95% confidence intervals) represent

the computed τ from the data.

https://doi.org/10.1371/journal.pmed.1002509.g002
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given in S1 Text. Antibiotics and OCV were assumed to reduce an individual’s probability of

becoming symptomatic if infected [49,50]. In addition, we assumed that antibiotics reduce a

symptomatic individual’s infectious period [51]. Given the limited cholera-specific effective-

ness data for POUWT (or any WaSH intervention [52]), we based our estimate of effectiveness

on a meta-analysis of POUWT interventions in urban/peri-urban areas on all cause diarrhea

[6]. We assumed that POUWT leads to a 26% reduction in exposure to Vibrio cholerae and

thus reduces the probability of getting infected [6]. While we assumed that antibiotics and

POUWT provide immediate protection, we considered OCV to be fully effective after a lag of

7 days (with 0 efficacy before), based on the design of a clinical trial assessing its efficacy [50].

The effects of antibiotics were assumed to last for 2 days [53], whereas protection from OCV

and POUWT was assumed to last through the end of each epidemic. In our main analyses, a

person can receive prophylactic antibiotics only once during the entire epidemic even if they

live within overlapping targeted areas at different times. In secondary analyses, we included a

scenario where a person is eligible for antibiotics each time he/she is in a targeted cluster, pro-

vided there has been at least a 2-week gap since the last time he/she was targeted with antibiot-

ics (S1 Text).

In our model, CATIs are implemented by targeting people within a given radius (15, 30, 45,

70, or 100 m; S13 Fig) around each reported (i.e., symptomatic) case. In N’Djamena, rings of

those radii contain an average (range) of 9 (2 to 21), 42 (5 to 76), 75 (10 to 120), 167 (14 to

263), and 295 (55 to 456) people, respectively (S12 Fig).

To account for the fact that an intervention team visiting a target cluster would not be able

to reach all inhabitants because they might be absent, be unwilling to receive the intervention,

not comply with interventions, or be under 1 year of age (minimum age for antibiotics and

OCV), we assumed that a random sample of 70% of the target population can be effectively

reached [18]. We accounted for a variable delay between the onset of symptoms of the initial

case and the deployment of an intervention team to the target area based on data from South

Sudan and other settings [18]; the delay was drawn from a distribution ranging from 0 to 7

days with a mode of 2 (S16 Fig). Of note, our mechanistic modeling approach implicitly

accounts for the fact that with longer intervention delays, the proportion of case neighbors

already immune to cholera increases.

To understand the relative value of CATIs, we compared their impact and efficiency with

(1) small mass campaigns within the entire city, assuming that the same total number of people

Table 1. Effects of the 3 types of interventions as implemented in the model.

Measure Intervention

Antibiotics Oral cholera vaccine Point-of-use water treatment

Relative risk of symptomatic infectiona 0.045 (0.001, 0.296)c 0.37 (0.18, 0.76)c —

Relative risk of exposurea — — 0.74 (0.65, 0.85)c

Reduction of the infectious period (days)b 2.74 (2.40, 3.07)c — —

Lag to onset of the effect (days) 0 7 0

Duration of the effect 2 days Full epidemic Full epidemic

References [8,49,51,53,54] [50] [6]

All relative measures are comparing those receiving the intervention to those not receiving the intervention.
aRelative reductions of symptomatic fraction and exposure with respect to no intervention are multiplied by the corresponding model parameter (σ and β, respectively).

One minus the relative reduction can be interpreted as the efficacy of the intervention.
bThe reduction of the infectious period is subtracted from the value without intervention.
c95% confidence intervals are given in parentheses.

https://doi.org/10.1371/journal.pmed.1002509.t001
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gets targeted, (2) mass intervention campaigns reaching 70% of the city population, and (3)

mass intervention campaigns targeted to the 3 districts with the highest attack rate at the start

of the campaign with 70% coverage in each (S1 Text). To provide an estimate of the logistical

implications, we also computed the number of rings that were targeted per day with different

CATIs.

As timing is key in controlling outbreaks, we considered 3 different scenarios for the start

of interventions (CATIs and mass campaigns). Interventions started during the early (stable)

phase in the epidemic (day 50 of the epidemic, May 31), around the peak of the epidemic (day

130, August 19), or late, as the epidemic is declining after the peak (day 180, October 8) (Fig

2). Whereas randomly allocated interventions and mass campaigns were presumed to take 2

weeks to complete (with the same number of interventions administered every day), we

assumed that CATIs continue until the end of the simulated epidemic (e.g., no more exposed

nor infected individuals in the model) or until the maximum simulation time of 1 year.

Results

Calibration

The calibrated model reproduced key characteristics of the 2011 epidemic in N’Djamena,

including the epidemic curve and the spatiotemporal clustering of cases (τ; Fig 2). In simulated

uncontrolled epidemics, a median of 3,381 (IQR 1,535 to 5,811) cases occurred, with epidemics

lasting a median of 262 (IQR 218 to 311) days. In the calibrated model, individuals living

within 15 m to 45 m of a cholera case had a 12.1-fold (IQR 10.1 to 13.9) greater risk than the

general population of becoming a cholera case within 5 days of the primary case developing

symptoms (Fig 2B). The posterior distributions of fitted parameters are shown in S3 Fig.

Individual interventions

Each of the primary interventions—POUWT, OCV, and antibiotics—rapidly decreased inci-

dence when targeted to individuals living within 100 m of a case (Fig 3) and reduced the dura-

tion of epidemics. Antibiotics led to the sharpest short-term reduction in incidence due to the

high degree of short-term protection. However, the rate of incidence reduction was not sus-

tained due to the short-lasting protection of antibiotics.

POUWT and OCV led to faster extinction of outbreaks than antibiotics (Fig 4; Table 2).

When interventions started early (day 50; Fig 2), OCV reduced epidemic durations by 68%

(IQR 62% to 72%), POUWT by 21% (IQR 7% to 35%), and antibiotics by 2% (IQR −11% to

8%). When interventions started around the peak (day 130), epidemics were shortened by 35%

(IQR 26% to 44%) using OCV, by 15% (IQR 4% to 24%) using POUWT, and by 2% (IQR −9%

to 14%) using antibiotics. Even when intervening late in epidemics (day 180), each of the inter-

ventions truncated the epidemic, with a 24% (IQR 14% to 35%) reduction from OCV, 11%

(IQR 2% to 21%) from POUWT, and 3% (IQR −7% to 14%) from antibiotics. We found simi-

lar qualitative results when interventions were targeted to different radii around incident chol-

era cases (S1 Table).

The number of cases averted by CATIs focused within 100 m from cases varied and

depended on the timing and type of intervention (Table 2; Fig 5A). When interventions started

close to the peak of the epidemic, the reduction in cases compared to uncontrolled epidemics

for CATIs within 100 m was 43% (IQR 35% to 49%) with OCV alone, 20% (IQR 14% to 27%)

with POUWT alone, and 14% (IQR 6% to 21%) with antibiotics alone. Regardless of the inter-

vention type, more cases were averted when interventions were initiated earlier in the epi-

demic. Interventions that averted more cases in a shorter period of time reduced the duration
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Fig 3. Comparison of the simulated evolution of epidemics with and without case-area targeted interventions.

Upper panels in each pair of panels show the simulated evolution of the epidemics without intervention and with case-
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of epidemics and ultimately required less resources (i.e., number of people and clusters tar-

geted) (Fig 5B and 5C).

Combined interventions

Combinations of the different interventions, each with its own mechanism of protection, led

to larger, quicker, and more robust impacts on the epidemic (Table 2). CATIs with OCV and

antibiotics in a radius of 100 m from case households led to 70% (IQR 64% to 74%) shorter

epidemics when started early, 37% (IQR 28% to 46%) shorter epidemics when started around

the peak, and 25% (IQR 16% to 36%) shorter epidemics when started late (Fig 6). When com-

bining OCV and POUWT in a 100-m radius, epidemics were shortened by 70% (IQR 65% to

75%), 38% (IQR 29% to 47%), and 25% (IQR 16% to 36%) when starting interventions early,

around the peak, and late, respectively. CATIs with antibiotics and POUWT reduced epidemic

durations by 26% (IQR 11% to 45%), 15% (IQR 5% to 25%), and 15% (IQR 5% to 23%) starting

early, around the peak, and late, respectively.

Interventions in a radius of 100 m combining OCV with antibiotics and/or POUWT led to

a similar number of cases averted. CATIs starting early during the epidemics reduced the cases

by 83% (IQR 72% to 88%) using OCV and antibiotics, by 82% (IQR 71% to 88%) using OCV

and POUWT, by 8% (IQR 5% to 13%) using POUWT and antibiotics, and by 83% (IQR 72%

to 89%) when using all 3 types of intervention. When starting at the epidemic peak, OCV and

antibiotics led to a 50% (IQR 41% to 55%) reduction in cases, with OCV and POUWT leading

to a 47% (IQR 38% to 52%) reduction, antibiotics and POUWT to a 30% (IQR 24% to 36%)

area targeted allocation of antibiotics, OCV, or POUWT within a 100-m radius starting at the epidemic peak. Lower

panels in each pair of panels show the corresponding number of people targeted daily and the number of people

protected by each intervention. Solid lines designate the median over all simulations, shaded areas the 2.5th and 97.5th

percentiles. The red bars at the top of the panels mark the period during which interventions were applied. OCV, oral

cholera vaccine; POUWT, point-of-use water treatment.

https://doi.org/10.1371/journal.pmed.1002509.g003

Fig 4. Reduction of epidemic duration with case-area targeted interventions. Reduction of epidemic duration

predicted by the model for the 3 main intervention types with case-area targeted allocation in a 100-m radius starting

at 3 different times. Whiskers mark the 2.5th and 97.5th percentiles. Negative numbers of days, such as visible for

antibiotics, are due to stochastic effects that arise when an intervention alters the course of a particular epidemic

without halting it and leads to a higher number of cases at a later point in time. OCV, oral cholera vaccine; POUWT,

point-of-use water treatment.

https://doi.org/10.1371/journal.pmed.1002509.g004
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reduction, and all 3 types of intervention to a 51% (IQR 42% to 57%) reduction. Starting late

during the epidemic, a combination of OCV and antibiotics resulted in 10% (IQR 6% to 16%)

fewer cases, OCV and POUWT in 9% (IQR 5% to 14%) fewer cases, POUWT and antibiotics

in 8% (IQR 5% to 13%) fewer cases, and all 3 interventions in 11% (IQR 7% to 16%) fewer

cases.

Intervention ring size

For OCV and POUWT, the number of averted cases steadily increased with the CATI radius

until 70 to 100 m. For CATIs with antibiotics, the curves of averted cases by ring radius peaked

at 30 m, roughly 2 to 3 times as high as at 100 m, and similar to OCV at 100 m (Fig 7A–7C).

This effect results from the short-lasting protection from antibiotics in combination with the

limitation that every person can only be targeted once. The epidemic wave arrives at distances

farther from the primary case after the protective effect from antibiotics has already vanished.

For all 3 types of intervention, the ring size that led to the most efficient reduction in cases was

Table 2. Cases averted and reduction in epidemic duration from different case-area targeted interventions with ring size of 100 m starting early, around the peak,

and late in the epidemic (median (IQR)).

Intervention Reduction in epidemic duration (%) Averted cases (%)

Early Peak Late Early Peak Late

Antibiotics 2 (−11, 18) 2 (−9, 14) 3 (−7, 14) 24 (0, 45) 14 (6, 21) 5 (1, 9)

OCV 68 (62, 72) 35 (26, 44) 24 (14, 35) 81 (69, 87) 43 (35, 49) 8 (4, 13)

POUWT 21 (7, 35) 15 (4, 24) 11 (2, 21) 51 (33, 64) 20 (14, 27) 5 (2, 10)

Antibiotics and OCV 70 (64, 74) 37 (28, 46) 25 (16, 36) 83 (72, 88) 50 (41, 55) 10 (6, 16)

Antibiotics and POUWT 26 (11, 45) 15 (5, 25) 15 (5, 23) 61 (45, 72) 30 (24, 36) 8 (5, 13)

OCV and POUWT 70 (65, 75) 38 (29, 47) 25 (16, 36) 82 (71, 88) 47 (38, 52) 9 (5, 14)

Antibiotics, OCV, and POUWT 72 (67, 76) 39 (30, 48) 26 (17, 37) 83 (72, 89) 51 (42, 57) 11 (7, 16)

OCV, oral cholera vaccine; POUWT, point-of-use water treatment.

https://doi.org/10.1371/journal.pmed.1002509.t002

Fig 5. Outcome of the 3 main interventions with case-area targeted allocation in a 100-m radius. Boxplots of (A) the number of averted cases, (B) the number

of targeted persons, and (C) the number of targeted clusters predicted by the model for the 3 main intervention types with case-area targeted allocation in a 100-m

radius starting at 3 different times. Whiskers mark the 2.5th and 97.5th percentiles. Negative numbers of averted cases, such as those given for antibiotics, are due

to stochastic effects that arise when an intervention alters the course of a particular epidemic without halting it and leads to a higher number of cases at a later

point in time. OCV, oral cholera vaccine; POUWT, point-of-use water treatment.

https://doi.org/10.1371/journal.pmed.1002509.g005
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similar regardless of the intervention timing. However, the number of clusters targeted

decreased with increasing ability to rapidly stop epidemics (Fig 7G–7I). The number of per-

sons targeted over different radii was governed by 2 contrasting effects, a decrease with better

performing interventions and an increase with larger cluster radii (Fig 7D–7F).

Efficiency of CATIs and comparison to mass intervention campaigns

The most efficient type of CATI in a radius of 100 m was OCV, with 1.6 (IQR 1.0 to 2.6) people

targeted per case averted when starting interventions early, 7.4 (IQR 5.8 to 10) when starting

around the peak, and 31 (IQR 17 to 53) when starting late (Fig 8B). For POUWT, the number

of people targeted per case averted was 7.1 (IQR 4.0 to 12) when starting interventions early,

23 (IQR 15 to 35) when starting around the peak, and 47 (IQR 26 to 90) when starting late. For

antibiotics, it was 16 (IQR 7.1 to 33) when starting early, 33 (IQR 20 to 58) when starting

around the peak, and 46 (IQR 27 to 79) when starting late.

Mass intervention strategies, where a large proportion (i.e., 70% in our case, corresponding

to approximately 700,000 people) of the city population was targeted in a short time period,

achieved similar numbers of averted cases (S6 Fig), but typically required hundreds to tens of

thousands of people to be targeted in order to avert a single case. For an intervention campaign

starting around the epidemic peak, CATIs within a radius of 100 m were 58 times (IQR 36 to

112) more efficient than a mass intervention campaign using OCV and 43 times (IQR 25 to

85) more efficient using POUWT.

To gauge the relative value of spatial targeting of interventions, we simulated small mass

campaigns allocating the same number of doses as used by CATIs throughout the entire city.

This mode of intervention did not effectively stop epidemics nor reliably avert significant

numbers of cases (S7 Fig), with almost 50% of the simulated epidemics with interventions

showing no improvement. When taking into account only simulated epidemics with a positive

Fig 6. CATIs within a radius of 100 m combining antibiotics and OCV. The upper panel shows the simulated

evolution of the epidemics without intervention (blue) and with simultaneous CATIs (red) using antibiotics and OCV

within a 100-m radius starting around the epidemic peak. The lower panel shows the number of people targeted each

day (purple), and the number of people protected by antibiotics (green) and OCV (blue). Solid lines show the median

over all simulations; shaded areas represent the 2.5th and 97.5th percentiles. The red bar at the top of the figure marks

the period during which the intervention was applied. CATI, case-area targeted intervention; OCV, oral cholera

vaccine; POUWT, point-of-use water treatment.

https://doi.org/10.1371/journal.pmed.1002509.g006
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number of averted cases, CATIs starting around the epidemic peak in a 100-m ring around a

primary case led to a 6-fold (IQR 3 to 11) higher reduction in cases using OCV and a 3-fold

(IQR 2 to 7) higher reduction using POUWT than their non-targeted counterparts.

As mass interventions are not often applied to an entire city (due to limited resources, espe-

cially of OCV [11]), we simulated mass campaigns targeting 70% of the population of the 3

(out of 10) districts with the highest attack rate at the time of intervention (district-targeted

campaigns). The number of cases averted using this approach was similar to that achieved

with CATIs, but the number of people targeted was considerably higher (up to 300,000 people;

S6 Fig) and epidemics typically lasted longer. District-targeted campaigns with OCV shortened

Fig 7. Intervention outcomes as a function of distance in case-area targeted allocations. The numbers of (A–C) averted cases, (D–F) targeted persons, and

(G–I) targeted clusters predicted by the model for the 3 main intervention types with case-area targeted allocation and variable radius, starting at 3 different

times. The error bars cover the range between the 25th and the 75th quantile over all simulations.

https://doi.org/10.1371/journal.pmed.1002509.g007
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epidemics by 37% (IQR 12% to 61%) when started early, by 21% (IQR 11% to 32%) when

started at the epidemic peak, and by 15% (IQR 4% to 25%) when started late. In campaigns

with POUWT alone, epidemics were shortened by 9% (IQR −5% to 24%), 8% (IQR −2% to

18%), and 6% (IQR −3% to 17%) starting early, at peak, and late, respectively. Combining both

OCV and POUWT led to 38% (IQR 11% to 62%) shorter epidemics when starting early, 24%

(IQR 12% to 33%) shorter epidemics when starting at peak time, and 15% (IQR 5% to 25%)

shorter epidemics when starting late. The number of people needed to target per case averted

with a district-targeted campaign starting early was 44 (IQR 27 to 78) times higher than for

CATIs within a radius of 100 m with OCV, 18 (IQR 8 to 40) times higher than for CATIs with

POUWT, and 50 (IQR 33 to 93) times higher than for CATIs with OCV and POUWT com-

bined (Fig 8).

Operational considerations

The maximum number of rings needed to target per day varied with intervention type and

timing of the start of interventions and was lower for interventions that truncated epidemics

faster (Table 3). For CATIs with OCV alone, a maximum of 13 (IQR 9 to 19) rings per day

needed to be targeted when starting early in a radius of 100 m. Adding POUWT to this

reduced the maximum number of rings to 11 (IQR 8 to 16). The average number of rings

needed to target each day was considerably lower, at 4.1 (IQR 2.7 to 6.0) rings per day for

OCV and 3.7 (IQR 2.5 to 5.3) rings per day for OCV and POUWT, starting early with a radius

of 100 m around reported cases.

Sensitivity analyses

We performed several sensitivity analyses to explore the impact of key model assumptions

on our results. These analyses related to assumptions about the natural history of cholera,

Fig 8. Persons needed to target per case averted for district-targeted mass campaigns, CATIs, and city-wide mass campaigns. Boxplots show the number of

persons needed to target to avert 1 case when using antibiotics, OCV, and POUWT using different allocation approaches. (A) illustrates campaigns targeting 70%

of the population of the 3 districts with the highest attack rate at the time of intervention. Mass allocation of antibiotics was not considered as it is unlikely to be a

realistic approach. (B) illustrates CATIs at a radius of 100 m. (C) illustrates campaigns targeting 70% of the population of the entire city. Whiskers mark the 2.5th

and 97.5th percentiles. Only model runs with a positive number of cases averted were considered, with the grey numbers aligned with each box illustrating the

percentage of such runs among all simulations. CATI, case-area targeted intervention; OCV, oral cholera vaccine; POUWT, point-of-use water treatment.

https://doi.org/10.1371/journal.pmed.1002509.g008
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transmission pathways, and mechanisms by which interventions protect, and assumptions

related to more practical elements. Detailed descriptions of the implementation and results of

the sensitivity analyses are reported in S1 Text.

In our primary analyses, we assumed that asymptomatically infected individuals are not

infectious, based on the evidence that they produce far less stool and that the stool they do pro-

duce contains V. cholerae for less time and of orders of magnitude lower concentration than

symptomatic cases [45,46,55]. To explore if the shedding of V. cholerae by asymptomatic indi-

viduals may have an influence on intervention outcomes, we recalibrated the model and ran

additional simulations assuming that each asymptomatic person was 10% as infectious as a

symptomatic patient for a single day after infection. The results suggest that allowing asymp-

tomatic individuals to be infectious reduced the overall impact of CATIs, both in terms of

cases averted and epidemic time reduced. However, the overall rank order of different inter-

ventions did not change (S23 Fig). For example, using CATIs with OCV in a 100-m radius

around the peak of an epidemic in a model with infectious asymptomatic individuals led to a

21% (IQR 15% to 31%) reduction in cases averted compared to a 43% (IQR 35% to 49%)

reduction in our primary analysis.

In our main analysis, all symptomatic cases were assumed to be detected and followed with

a CATI deployment. However, this is unlikely to be the case in reality for a variety of reasons

related to inadequacies in surveillance, care-seeking behavior, and logistical constraints. To

explore how imperfect CATI response could impact our main findings, we reran simulations

targeting OCV at a 100-m radius around a fraction (5%–100%) of symptomatic cases. Results

suggest that CATIs responding to as few as 40% of symptomatic cases led to similar impact in

terms of cases averted and epidemic days truncated (S20 and S21 Figs). Targeting 100-m rings

around 40% of all symptomatic cases with OCV around the peak of an epidemic led to 38%

(IQR 30% to 44%) fewer cases than simulations without interventions, and the epidemic dura-

tion was reduced by 31% (IQR 22% to 41%). As expected, when targeting CATIs within 100 m

around very few symptomatic cases (5%), we saw a significant decrease in the intervention

effect.

In our primary analyses, we assumed that POUWT interventions reduce the likelihood of

infection by reducing exposure to V. cholerae. However, it may be that POUWT reduces the

likelihood of becoming symptomatic given the clear dose–response relationship seen in a

human challenge model of V. cholerae O1 [46,56,57]. To understand how this mechanistic

assumption impacts our primary results, we reran simulations assuming POUWT reduced the

risk of symptomatic infection by 74% (95% CI 65% to 85%) instead of reducing exposure.

Table 3. Number of rings needed to target per day when implementing different case-area targeted interventions in a 100-m radius starting early, around the peak,

and late in the epidemic (median (IQR)).

Intervention Maximum number of rings needed to target per day Average number of rings needed to target per day

Early Peak Late Early Peak Late

Antibiotics 37 (20, 60) 43 (23, 71) 27 (14, 44) 10.1 (5.4, 16.7) 12.1 (6.6, 18.9) 5.0 (3.0, 7.4)

OCV 13 (9, 19) 40 (22, 63) 28 (15, 45) 4.1 (2.7, 6.0) 11.7 (6.6, 18.7) 9.1 (4.9, 14.3)

POUWT 22 (13, 38) 41 (24, 67) 28 (15, 44) 6.7 (3.8, 11.9) 13.3 (7.4, 21.9) 6.2 (3.8, 9.1)

Antibiotics and OCV 9 (6, 13) 34 (18, 55) 27 (14, 44) 2.8 (2.0, 4.1) 7.9 (4.5, 12.1) 6.9 (4.0, 10.6)

Antibiotics and POUWT 17 (10, 29) 36 (19, 59) 27 (14, 43) 4.7 (2.7, 8.7) 9.7 (5.2, 16.7) 4.8 (2.9, 7.1)

OCV and POUWT 11 (8, 16) 37 (20, 59) 28 (15, 44) 3.7 (2.5, 5.3) 11.0 (6.2, 16.9) 9.1 (5.0, 14.5)

Antibiotics, OCV, and POUWT 9 (6, 13) 34 (18, 56) 27 (14, 44) 2.7 (1.8, 3.9) 7.7 (4.6, 12.1) 7.2 (3.9, 11.1)

OCV, oral cholera vaccine; POUWT, point-of-use water treatment.

https://doi.org/10.1371/journal.pmed.1002509.t003
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With this alternative POUWT mechanism, CATIs implemented within 100 m around case

households led to a larger impact (cases and epidemic days averted) than in our primary analy-

sis (S22 Fig). For example, when intervening around the peak of an epidemic in a radius of 100

m, the number of cases was reduced by 39% (IQR 31% to 44%) and the epidemic duration was

reduced by 25% (IQR 16% to 34%), compared with 20% (IQR 14% to 27%) and 15% (IQR 4%

to 24%), respectively, in the primary analyses.

Finally, the structure of our model makes long-distance transmission events, which cause

the rapid spread of the disease from one neighborhood to another by the means of travelers

and commuters [30,42], unlikely to occur. We thus performed sensitivity analyses investigat-

ing the influence of adding long-distance transmission events to the model and found that the

results were qualitatively similar to those of the primary analyses (S1 Text; S16–S19 Figs).

Discussion

Using a spatially explicit transmission model fit to data from a large cholera outbreak in Chad,

we found that CATIs using OCV, antibiotics, and/or POUWT have the potential to efficiently

and effectively mitigate the impact of cholera epidemics in similar urban areas. Of the 3 inter-

vention types explored, OCV most effectively stopped epidemics (e.g., simulated epidemic

durations were cut by a third when CATIs started around the epidemic peak and by a fourth

when started late in the epidemic), whereas antibiotics had a more pronounced short-term

impact. Combinations of the 3 types of interventions can be used to further reduce cases and

deaths, although the combinations, as modeled, did not lead to synergistic effects. Our findings

suggest that CATIs, which require targeting tens to hundreds of persons per case averted, are

far more resource-efficient than mass intervention campaigns, which typically require hun-

dreds to tens of thousands of people to be targeted per case averted. The optimal ring size

around a case depends on the type of intervention. For antibiotics, which offer only short-term

protection, the optimal CATI radius is around 30 m to 45 m, whereas for OCV and POUWT,

which offer longer-lasting protection, the intervention impact increases until CATI radii reach

70 m to 100 m.

Visiting case households is not new to public health [58–60] nor to cholera control [7]. In a

number of countries, it is standard practice to visit the households of cholera cases to provide

health hygiene education, soap, and sometimes water and or latrine disinfectants and antibiot-

ics [7,18]. While our findings suggest that CATIs work well even when only a fraction of cases

are targeted, rapid detection and confirmation of cases is key to maximizing impact. The use

of cholera rapid tests may provide one avenue for improving the precision and timeliness of

CATIs given that traditional diagnostics (i.e., culture) require days to complete for some

patients [61]. CATIs are logistically complex to implement and require well-trained, highly

mobile teams that rapidly visit case households, delimit target areas, transport necessary sup-

plies, and deliver interventions.

Knowing that an average of 295 (range 55 to 456) people live in each 100-m ring in N’Dja-

mena (and similar African cities with cholera like Conakry, Monrovia, Lubumbashi, or Nai-

robi [62]; S12 Fig), and that several rings may overlap, the number of rings that are to be

targeted each day during different variants of CATIs can provide understanding of the number

of teams required to implement interventions. Other challenges to CATI implementation

include finding cases’ households and negotiating with local leaders to efficiently deliver the

interventions.

While our study suggests that CATIs can be effective and efficient, it remains unclear when

this approach should be used, particularly in contrast to mass campaigns, the current standard

for outbreak response. As shown, early CATIs can have profound impacts on the trajectory of
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an epidemic. If resources such as OCV are limited, as they are at the time of writing this paper,

CATIs may be the most appropriate strategy to target those at highest risk. When only a few

cases are detected, especially when they are spatially dispersed, ministries of health may want

to initiate CATIs to efficiently quell the epidemic with supplies already in the country, while

making contingency plans for mass interventions if the epidemic continues to grow. Finally,

these strategies may be used late in epidemics or epidemic seasons, possibly after a mass cam-

paign, to quickly stop the often protracted tails of epidemics [18,63], which can ultimately save

scarce health system resources used during time periods when an epidemic is officially ongo-

ing. CATIs with POUWT interventions, focused on larger geographical units (villages) than

simulated in this paper, are currently being deployed to fight the cholera epidemic in Haiti

through rapid response teams, although their effectiveness in reducing cases and deaths

remains unknown [21].

Prophylactic antibiotic use is not part of most guidelines on cholera prevention and control;

however, a number of countries, like Kenya, use antibiotics for household contacts as part of

their standard outbreak response. Our results suggest that antibiotics could play a role in

CATIs, although the potential impact appears lower than for other interventions in the main

analyses. It is unclear how a short (or single-dose) course of antibiotics used in CATIs would

affect short- and long-term antimicrobial resistance profiles in the community. Any decision

to use CATIs with antibiotics should be accompanied by increased antimicrobial resistance

monitoring in the community [64].

While our study used a rigorous approach to calibrate the models and capture uncertainty

in both the epidemic processes and the intervention effects, it comes with a number of limita-

tions. First, cases used in these analyses were suspected cholera cases, only some of which were

confirmed [29]. If confirmed cases represent a simple random proportion of suspected cases

(in terms of space and time), our characterization of space–time clustering should not be

affected [32]. It is possible that cases living around other cases are more likely to present for

care, which could lead to an artificial increase in our estimates of the space–time clustering of

cases, meaning that our estimated impact of CATIs could be overly optimistic. However, given

that estimates of space–time clustering have been relatively similar across settings with differ-

ent surveillance systems and health-seeking behavior [22,25,29], we do not believe that this is

likely to cause major biases in this study.

We made a number of assumptions related to cholera transmission processes. In our main

analyses we assumed that asymptomatic individuals were not infectious based on evidence

that asymptomatic individuals have an orders-of-magnitude lower concentration of bacteria

in their stool, shed virus for less time, and excrete less stool [45]. In sensitivity analyses, we

found that the results were qualitatively similar when this assumption was relaxed although

the overall impact of CATIs was diminished. We did not account for a potential hyperinfec-

tious state, where freshly shed V. cholerae may be orders of magnitude more infectious [65,66].

However, if the hyperinfectious state plays an important role in transmission, we expect that it

would be in part reflected by clustering at short distances, which should be accounted for in

our model through the τ fitting of the function.

The quantification of the effects and mechanisms of each intervention were based on lim-

ited data. The purpose of this study was to explore the impact of CATIs over the course of a

single outbreak, disregarding the long-term effects of interventions, which may influence

future epidemics. Given that the effectiveness of OCV and POUWT interventions likely wane

differently over time, it is possible that there are different optimal mixes of interventions

depending on the timescale of interest. The protective effects assumed for prophylactic antibi-

otic use were based on meta-analyses, clinical studies, and modeling studies (S1 Text) repre-

sentative of the current state of evidence, some of which only included data on post-exposure

Case-area targeted interventions in response to cholera outbreaks

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002509 February 27, 2018 18 / 27

https://doi.org/10.1371/journal.pmed.1002509


antibiotic use. However, as pointed out by a recent meta-analysis [8], the studies supporting

the effectiveness of prophylactic antibiotic use have a high risk of bias. We incorporated mod-

est variability in the protective effects given the limited and sometimes weak data and the

diversity of different drugs studied in the literature [51]. We assumed that antibiotic effects

lasted only 2 days based on a review of the literature and consultations with experts; however,

if the duration was longer, we expect that the impact of antibiotics would be larger than our

results suggest. For OCV, we assumed that a single-dose regimen had an efficacy of 67% for

the duration of an outbreak although there exists only 1 clinical trial estimating the single-dose

efficacy—in Bangladesh over a 6-month period, where cholera is highly endemic [50]—and 1

observational study, in South Sudan, measuring short-term protection in the first 2 months

after vaccination [15].

While there are a variety of WaSH interventions used to fight cholera [6], we chose to

model POUWT as it is often a key WaSH intervention in outbreak settings. POUWT interven-

tions come in different shapes and sizes and can only be effective if people appropriately com-

ply with the intervention, which poses challenges to incorporating them into a generalizable

model. We based the POUWT effect estimate on a meta-analysis of diarrhea reductions from

POUWT interventions conducted in a variety of settings, including some that do not regularly

report cholera cases (e.g., Bolivia) [6,67,68]. By using these estimates, we implicitly assumed

that the reductions in cholera from POUWT interventions would be similar to reductions in

diarrhea, which may not be the case if the diarrhea in the studies in the meta-analysis was

caused by etiologic agents with different transmission pathways than cholera. For simplicity,

in our main analysis we assumed that the entire mechanism of POUWT protection was to

reduce the exposure probability to V. cholerae, although POUWT may both reduce exposure

to water with V. cholerae and reduce the likelihood of becoming symptomatic by reducing the

concentration of bacteria in any contaminated water [56]. With CATIs, it is likely that each

household will have a single opportunity to receive behavior change messaging and training

on using the POUWT intervention, which could lead to lower compliance, and thus lower

effectiveness against cholera, than what we modeled, especially as the time since the house-

hold visit increases [68]. However, during outbreaks, mass behavior change campaigns (e.g.,

through radio) are common and may help sustain any changes in behavior catalyzed in the

CATI household visit.

Although the modeled relative risk, τ, matches the observed data well, we did not fit τ at

very short distances (i.e., between 0 m and 15 m from a case) as our model does not include

household structure and is based on a grid of 30 m by 30 m cells. Small-scale spatial structure

has been shown to have significant impact on transmission for other diseases [69], and neglect-

ing it could lead to underestimation of the effect of CATIs in our model. This limitation means

that we could not adequately capture the effects of targeting household contacts with interven-

tions, which may be especially important for antibiotics [8,70].

Our results are based on a large number of epidemic trajectories of a model fit to a single

outbreak; however, the relative impact of CATIs is largely shaped by the spatiotemporal clus-

tering of cholera cases, which has been shown to be similar in both epidemic and endemic set-

tings around the globe [22–29,61]. This commonality between the clustering of cholera cases

provides reassurance that our findings may not only be representative of the potential impacts

in this single outbreak but likely reflect (qualitatively) the impacts in other similar settings.

Thus, we advocate that CATIs can be a promising approach to control cholera epidemics in

urban areas. While the optimal target radius may vary between settings, due to population

density and logistical constraints, antibiotic interventions will likely continue to have a smaller

optimal radius than OCV and POUWT, because of the duration of protection and likely delays

in responding to each ring, which are unlikely to vary significantly across settings.
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Our results suggest that CATIs may be an effective and efficient approach to reducing mor-

bidity and mortality and saving public health resources in cholera epidemics. While more work

is needed to understand how and when to best use this approach in outbreaks across different

settings, taking into account both human resource capacity and supply availability, our study

provides data-based support to public health programs currently using CATIs to fight cholera.

Supporting information

S1 Fig. Map of cholera cases. Map of the city of N’Djamena and the locations of cases with

available GPS coordinates by time of reporting. Red lines show the limits of the 10 districts

(arrondissements) of N’Djamena. (Background map: Tiles by CartoDB, under CC BY 3.0.

Data by OpenStreetMap, under ODbL. Administrative subdivision: OpenStreetMap, under

ODbL.)

(PDF)

S2 Fig. Proxy for population density. Map of the city of N’Djamena with built-up density (in

percent) [37,38] of each 30 m by 30 m grid cell. Values equal to 0 or located outside the city

boundary are transparent. (Background map: Tiles by CartoDB, under CC BY 3.0. Data by

OpenStreetMap, under ODbL.)

(PDF)

S3 Fig. Posterior parameters. Marginal posterior parameter distributions computed from

1,000 samples. Blue shaded ranges along the axes show the intervals within which parameters

were allowed to vary during calibration.

(PDF)

S4 Fig. Simulated evolution of the epidemics without intervention and with case-area targeted

allocation of combinations of the 3 main intervention types within a 100-m radius starting

around the epidemic peak. The lower panels in each pair of panels show the number of people

targeted during each timestep and the number of people protected by the interventions. Solid

lines show the median over all simulations, shaded areas the 2.5th and 97.5th percentiles. The red

bar at the top of each panel marks the period during which interventions are applied.

(PDF)

S5 Fig. Outcome of combinations of the 3 main intervention types with case-area targeted

allocation in a 100-m radius. Boxplots of the number of averted cases, the number of targeted

persons, and the number of targeted clusters predicted by the model for combinations of the 3

main intervention types with case-area targeted allocation in a 100-m radius starting at 3 dif-

ferent times. Abx stands for antibiotics. Abx� stands for administering antibiotics only within

a range of 15 m, while OCV is administered within the whole cluster. Whiskers mark the 2.5th

and 97.5th percentiles.

(PDF)

S6 Fig. Outcome of the 3 main intervention types in mass intervention campaigns. Mass

intervention campaigns targeting 70% of the entire city population (left column) and 70% of

the people living in the 3 districts with the highest attack rate at the onset of the interventions

(right column). Boxplots show the number of averted cases (top row) and the number of tar-

geted persons (bottom row) predicted by the model. Whiskers mark the 2.5th and 97.5th per-

centiles. Boxplots of the number of targeted persons in a mass intervention campaign of the

entire city collapse because the number of people to target was fixed.

(PDF)
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S7 Fig. Outcome of the 3 main intervention types in small city-wide mass campaigns.

Boxplots of the number of averted cases and the number of targeted persons predicted by

the model. The number of targeted persons has been fixed to the same values for case-area

targeted allocation with a 100-m radius (Fig 5). Whiskers mark the 2.5th and 97.5th percen-

tiles.

(PDF)

S8 Fig. Intervention outcomes of case-area targeted allocation of OCV within a varying

radius combined with the allocation of antibiotics within a radius of 15 m. The number of

averted cases, the number of targeted persons, and the number of targeted clusters predicted

by the model with case-area targeted allocation and variable radius, starting at 3 different

times. The error bars cover the range between the 25th and 75th quantile over all simulations.

(PDF)

S9 Fig. Comparison between single and repeated antibiotic administration through CATIs

in a 100-m radius. Boxplots of the number of averted cases, the number of targeted persons,

and the number of targeted clusters predicted by the model for 2 different strategies of allocat-

ing antibiotics in CATIs within a 100-m radius starting at 3 different times. Whiskers mark the

2.5th and 97.5th percentiles. Single allocation designates the standard mode, where every per-

son can receive 1 dose of antibiotics only once during the epidemic. Repeated allocation desig-

nates a mode where a person can get antibiotics several times, with a minimal interval of 2

weeks, if he/she lives within the intervention radius of several cases.

(PDF)

S10 Fig. Comparison of relative risk τ evaluated in 15-m distance ranges for different time

ranges.

(PDF)

S11 Fig. Daily precipitation depth in N’Djamena from April 2011 to April 2012.

(PDF)

S12 Fig. Number of people living within a given range in N’Djamena. Histograms of the

number of people living within a circle with radius 15 m (A), 30 m (B), 45 m (C), 70 m (D),

and 100 m (E) in N’Djamena obtained by sampling the population distribution at 1,000 ran-

dom points. The bin width in the histograms is 10.

(PDF)

S13 Fig. Circles of given radius (in meters) as implemented in the regular model grid. The

side length of each square is 30 m.

(PDF)

S14 Fig. Distributions of intervention parameters. Intervention parameters related to antibi-

otics (reduction of symptomatic fraction [A] and reduction of duration of shedding [B]), OCV

(reduction of symptomatic fraction [C]), and POUWT (reduction of exposure [D]). (A) was

obtained from Lewnard et al. [49] directly, whereas (B) (normal), (C) (log-normal), and (D)

(log-normal) were fitted to the corresponding confidence intervals given in Table 1.

(PDF)

S15 Fig. Delay between symptom onset and deployment of an intervention team. Probabil-

ity distribution of the delay (in days) between the onset of symptoms of the initial case in a

cluster and the deployment of an intervention team.

(PDF)
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S16 Fig. Calibrated model fit with additional long-distance transmission. (A) shows the dis-

tribution of daily incident cholera cases from uncontrolled epidemic simulations. The shaded

areas represent the marginal interquartile range (dark blue) and the 2.5th and 97.5th percen-

tiles (light blue) from 1,000 simulated epidemics, with the true number of daily reported cases

shown as red dots. Red ticks at the top of (A) represent the 3 times when interventions start.

(B) shows the interquartile range (dark blue) and 2.5th and 97.5th posterior percentiles (light

blue) of the relative risk (τ statistic) of the next case being within a specific distance from a case

within 5 days of his/her symptom onset. Red dots and bars (95% confidence intervals) repre-

sent the computed τ from the data.

(PDF)

S17 Fig. Posterior parameters with long-distance transmission. Marginal posterior parame-

ter distributions computed from 1,000 samples. Blue shaded ranges along the axes show the

intervals within which parameters were allowed to vary during calibration.

(PDF)

S18 Fig. Comparison of the simulated evolution including long-distance transmission of

the epidemics with and without CATIs. Upper panels in each pair of panels show the evolu-

tion of the epidemics simulated including long-distance transmission without intervention

and with case-area targeted allocation of antibiotics, OCV, and POUWT within a 100-m radius

starting at the epidemic peak. Lower panels in each pair of panels show the corresponding

number of people targeted during each timestep and the number of people protected by each

intervention. Solid lines designate the median over all simulations, shaded areas the 2.5th and

97.5th percentiles. The red bars at the top of the panels mark the period during which inter-

ventions were applied.

(PDF)

S19 Fig. Comparison of intervention outcomes with (c = 0.05) and without (c = 0) long-dis-

tance transmission. Boxplots of the number of averted cases, the number of targeted persons,

and the number of targeted clusters predicted by 2 models without and with 5% long-distance

transmission events and by of allocating OCV, antibiotics, and POUWT in CATIs within a

100-m radius starting at 3 different times. Whiskers mark the 2.5th and 97.5th percentiles.

(PDF)

S20 Fig. Comparison of outcomes when targeting CATIs using OCV within 100 m around

a fraction of symptomatic cases. Boxplots of the number of averted cases, the number of tar-

geted persons, and the number of targeted clusters predicted when targeting CATIs using

OCV within 100 m around 100%, 80%, 60%, 40%, and 5% of symptomatic cases and with dis-

trict-targeted mass campaigns. Colors denote campaigns starting at 3 different times. Whiskers

mark the 2.5th and 97.5th percentiles.

(PDF)

S21 Fig. Comparison of the reduction of epidemic duration when targeting CATIs using

OCV within 100 m around a fraction of symptomatic cases. Boxplots of the number of epi-

demic days reduced predicted when targeting CATIs using OCV within 100 m around 100%,

80%, 60%, 40%, and 5% of symptomatic cases and with district-targeted mass campaigns. Col-

ors denote campaigns starting at 3 different times. Whiskers mark the 2.5th and 97.5th percen-

tiles.

(PDF)

S22 Fig. Comparison of outcomes of CATIs using different mechanisms to implement

POUWT. Boxplots of the number of averted cases, the number of targeted persons, and the
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number of targeted clusters predicted when implementing CATIs using POUWT in a 100-m

radius around reported cases through reduction of the likelihood of getting infected (mecha-

nism of our main analysis) or through reduction of the likelihood of getting symptoms (mech-

anism in sensitivity analysis). Colors denote campaigns starting at 3 different times. Whiskers

mark the 2.5th and 97.5th percentiles.

(PDF)

S23 Fig. Comparison of outcomes of CATIs with and without shedding of V. cholerae by

asymptomatically infected individuals. Boxplots of the relative number of averted cases

(averted cases divided by number of cases without intervention) and the relative number of

epidemic days reduced (number of epidemic days reduced divided by the number of epidemic

days without intervention) with asymptomatic individuals being 10% as infectious as symp-

tomatic individuals, compared to the results of our main analysis (no shedding by asymptom-

atic individuals), with different CATIs in a 100-m radius. Colors denote campaigns starting at

3 different times. Whiskers mark the 2.5th and 97.5th percentiles.

(PDF)

S1 Table. Summary of all intervention scenarios considered, with number of targeted clus-

ters and number of averted cases. The table shows all intervention scenarios considered, spe-

cifically the type of intervention, the timing, and the type of allocation, together with median

values (2.5% and 97.5% percentiles in brackets) of the number of targeted clusters, the total

number of targeted people, and the total number of averted cases computed using 1,000 model

simulations. �Every person can get antibiotics only once during the epidemic. ��Every person

can get antibiotics several times with a minimum delay of 2 weeks between 2 administrations.

(PDF)

S1 Text. Supplementary materials and methods. Description of the data used, the implemen-

tation of the epidemiological model, its calibration, and the implementation of intervention

strategies.

(PDF)

S1 Alternative Language Abstract. French translation of the abstract by Maya Allan, Éti-

enne Gignoux, Javier Perez-Saez, and Flavio Finger.

(PDF)
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Formal analysis: Flavio Finger, Andrew S. Azman.

Investigation: Flavio Finger, Andrew S. Azman.

Case-area targeted interventions in response to cholera outbreaks

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002509 February 27, 2018 23 / 27

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002509.s023
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002509.s024
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002509.s025
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002509.s026
https://doi.org/10.1371/journal.pmed.1002509


Methodology: Flavio Finger, Enrico Bertuzzo, Andrew S. Azman.

Project administration: Flavio Finger, Andrew S. Azman.

Software: Flavio Finger.

Supervision: Enrico Bertuzzo, Justin Lessler, Andrea Rinaldo, Andrew S. Azman.

Validation: Flavio Finger, Enrico Bertuzzo, Francisco J. Luquero, Justin Lessler, Andrea

Rinaldo, Andrew S. Azman.

Visualization: Flavio Finger, Andrew S. Azman.

Writing – original draft: Flavio Finger, Andrew S. Azman.

Writing – review & editing: Flavio Finger, Enrico Bertuzzo, Francisco J. Luquero, Nathan
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