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Abstract

We propose a new Bayesian Markov switching regression model for multi-dimensional
arrays (tensors) of binary time series. We assume a zero-inflated logit dynamics with time-
varying parameters and apply it to multi-layer temporal networks. The original contribution
is threefold. First, in order to avoid over-fitting we propose a parsimonious parametrization
of the model, based on a low-rank decomposition of the tensor of regression coefficients.
Second, the parameters of the tensor model are driven by a hidden Markov chain, thus
allowing for structural changes. The regimes are identified through prior constraints on the
mixing probability of the zero-inflated model. Finally, we model the jointly dynamics of the
network and of a set of variables of interest. We follow a Bayesian approach to inference,
exploiting the Pólya-Gamma data augmentation scheme for logit models in order to provide
an efficient Gibbs sampler for posterior approximation. We show the effectiveness of the
sampler on simulated datasets of medium-big sizes, finally we apply the methodology to a
real dataset of financial networks.
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1 Introduction

The analysis of large sets of binary data is a central issue in many applied fields such as biostatist-
ics (e.g. Schildcrout and Heagerty (2005), Wilbur et al. (2002)), image processing (e.g. Yue et al.
(2012)), machine learning (e.g. Banerjee et al. (2008), Koh et al. (2007)), medicine (e.g. Chris-
takis and Fowler (2008)), text analysis (e.g. Taddy (2013), Turney (2002)) and theoretical and
applied statistics (e.g. Ravikumar et al. (2010), Sherman et al. (2006), Visaya et al. (2015)).
Without loss of generality, in this paper we focus on binary series representing time-evolving
networks.

From the outbreak of the financial crisis of 2007 there has been an increasing interest in
financial network analysis. The fundamental questions on the role of agents’ connections, the
dynamic process of link formation and destruction, the diffusion process within the economic
and/or financial system of external and internal shocks have attracted an increasing interest
from the scientific community (e.g., Billio et al. (2012) and Diebold and Yılmaz (2014)).

Despite the wide economic and financial literature exploiting networks in theoretical models
(e.g. Acemoglu et al. (2012), Di Giovanni et al. (2014), Chaney (2014), Mele (2017), Graham
(2017)), the econometric analysis of networks and of their dynamical properties is at its infancy
and many research questions are still striving for an answer. This paper contributes at filling
this gap addressing some important questions in building statistical models for network data.

The first issue concerns measuring the impact of a given set of covariates on the dynamic
process of link formation. We propose a parsimonious model that can be successfully used
to this aim, building on a novel research domain on tensor calculus in statistics. This new
literature (see, e.g. Kolda and Bader (2009), Cichocki et al. (2015) and Cichocki et al. (2016)
for a review) proposes a generalisation of matrix calculus to higher dimensional arrays, called
tensors. The main advantage in using tensors is the possibility of dealing with the complexity
of novel data structures which are becoming increasingly available, such as networks, multi-
layer networks, three-way tables, spatial panels with multiple series observed for each unit (e.g.,
municipalities, regions, countries). The use of tensors prevents the reshaping and manipulation
of the data, thus allowing to preserve the intrinsic structure. Another advantage of tensors stems
from their numerous decompositions and approximations, which provide a representation of the
model in a lower-dimensional space (see (Hackbusch, 2012, ch.7-8)). In this paper we exploit
the PARAFAC decomposition for reducing the number of parameters to estimate, thus making
inference on network models feasible.

Another issue regards the time stability of the dependence structure between variables. For
example, Billio et al. (2012), Billio et al. (2015), Ahelegbey et al. (2016a), Ahelegbey et al.
(2016b) and Bianchi et al. (2016) showed empirically that the network structure of the financial
system has experienced a rather long period of stability in the early 2000s and a significantly
increasing connectivity before the outbreak of the financial crisis. Starting from these stylized
facts, we provide a new Markov switching model for structural changes of the network topology.
After the seminal paper of Hamilton (1989), the existing Markov switching models at the core
of the Bayesian econometrics literature consider VAR models (e.g., Sims and Zha (2006), Sims
et al. (2008)), factor models (e.g., Kaufmann (2000), Kim and Nelson (1998)) or dynamic panels
(e.g., Kaufmann (2015), Kaufmann (2010)) and have been extended allowing for stochastic
volatility (Smith (2002), Chib et al. (2002)), ARCH and GARCH effects (e.g., see Hamilton
and Susmel (1994), Haas et al. (2004), Klaassen (2002) and Dueker (1997), among the others)
and stochastic correlation (Casarin et al. (2018)). We contribute to this literature by applying
Markov switching dynamics to tensor-valued data.

Motivated by the observation that financial networks are generally sparse, with sudden ab-
rupt changes in the level of sparsity across time, we define a framework which allows us to tackle
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the issue of time-varying sparsity. To accomplish this task, we compose the proposed Markov
switching dynamics with a zero-inflated logit model. In this sense, we contribute to the net-
work literature on modelling edges’ probabilities (e.g., Durante and Dunson (2014) and Wang
et al. (2017)), by considering a time series of networks with multiple layers and varying sparsity
patterns.

Finally, another relevant question concerns the study of the joint evolution of a network and
a set of economic variables of interest. To the best of our knowledge, there is no previous work
providing a satisfactory econometric framework to solve this problem. Within the literature
on joint modelling discrete and continuous variables Dueker (2005) used the latent variable
interpretation of the binary regression and built a VAR model for unobserved continuous-valued
variables and quantitative observables. Instead, Taddy (2010) assumes the continuous variable
follows a dynamic linear model and the discrete outcome follows a Poisson process with intensity
driven by the continuous one. Our contribution to this literature consists in a new joint model
for binary tensors and real-valued vectors.

The model we propose is presented in Section 2. We go through the details of the Bayesian
inferential procedure in Sections 3-4 while in Section 5 we study the performance of the MCMC
procedure on synthetic datasets. Finally, we apply the methodology to a real dataset and discuss
the results in Section 6 and draw the conclusions in Section 7.

2 A Markov switching model for networks

A relevant object in our modelling framework is a a D-order tensor, that is a D-dimensional
array, element of the tensor product of D vector spaces, each one endowed with a coordinate
system. See (Hackbusch, 2012, ch.3) for an introduction to algebraic tensor spaces. A tensor can
be though of as the multidimensional extension of a matrix (which is a 2-order tensor), where
each dimension is called mode. Other objects of interest are the slice of a tensor, that is a matrix
obtained by fixing all but two of the indices of the multidimensional array, and the tube, or fiber,
that is a vector resulting from keeping fixed all indices but one. Matrix operations and results
from linear algebra can be generalized to tensors (see Hackbusch (2012) or Kroonenberg (2008)).
Here we define only the mode-n product between a tensor and a vector and refer the reader to
Appendix A for further details. For a D-order tensor X ∈ Rd1×...×dD and a vector v ∈ Rdn ,
the mode-n product between them is a (D− 1)-order tensor Y ∈ Rd1×...×dn−1×dn+1×...×dD whose
entries are defined by:

Y(i1,...,in−1,in+1,...,iD) = (X ×n v)(i1,...,in−1,in+1,...,iD) =

dn∑
in=1

Xi1,...,in,...,iDvin . (1)

Let {Xt}Tt=1 and {X ∗t }Tt=1 be two sequences of binary and real 3-order tensors of size I×J×K,
respectively. In our multilayer network application, Xt is an adjacency tensor and each of its
frontal slices, Xk,t, represents the adjacency matrix of k-th layer. See Boccaletti et al. (2014)
and Kivelä et al. (2014) for an introduction to multilayer networks. Let {yt}Tt=1 be a sequence
of real-valued vectors yt = (yt,1, . . . , yt,M )′ representing a set of relevant economic or financial
indicators. Our model consists of two systems of equations whose parameters switch over time
according to a hidden Markov chain process.

The first set of equations pertains the model for the temporal network. One of the most
recurrent features of observed networks is edge sparsity, which in random graph theory is defined
to be the case in which the number of edges of a graph grows about linearly with the number of
nodes (see (Diestel, 2012, ch.7)). For a finite graph size, we consider a network to be sparse when
the fraction of edges over the square of nodes, or total degree density, is below 10%. Moreover,
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Figure 1: Directed acyclic graph (DAG) of the model in eq. (8a)-(8c). Gray
circles represent observable variables and white circles latent variables. Dir-
ected arrows indicate the direction of causality.

the sparsity pattern of many real networks is not time homogeneous. To describe its dynamics
we assume that the probability of observing an edge in each layer of the network is a mixture
of a Dirac mass at 0 and a Bernoulli distribution, where both the mixing probability and the
probability of success are time-varying. Consequently, each entry xijk,t of the tensor Xt (that is,
each edge of the corresponding network) is distributed as a zero-inflated logit:

xijk,t|ρ(t),gijk(t) ∼ ρ(t)δ{0}(xijk,t) + (1− ρ(t))Bern

(
xijk,t

∣∣∣∣∣ exp{z′ijk,tgijk(t)}
1 + exp{z′ijk,tgijk(t)}

)
. (2)

Notice that this model admits an alternative representation as:

xijk,t|ρ(t),gijk(t) ∼ ρ(t)δ{0}(xijk,t) + (1− ρ(t))δ{dijk,t}(xijk,t) (3)

dijk,t = 1R+(x∗ijk,t) (4)

x∗ijk,t = z′ijk,tgijk(t) + εijk,t εijk,t
iid∼ Logistic(0, 1) . (5)

where zijk,t ∈ RQ is a vector of edge-specific covariates and gijk(t) ∈ RQ is a time-varying edge-
specific vector of parameters. This specification allows to classify the zeros (i.e. absence of edge)
into “structural” and “random”, conditionally on arising from the atomic mass, or due to the
randomness described in eqs. (4)-(5), respectively. The parameter ρ(t) is thus the time-varying
probability of observing a structural zero. In the following, without loss of generality, we focus
on the case of common set of covariates, that is zijk,t = zt, for t = 1, . . . , T .

The second set of equations regards the vector of economic variables and is given by:

ym,t = µm,t +$m,t $m,t ∼ N (0, σ2
m,t) , (6)

for m = 1, . . . ,M and t = 1, . . . , T . In vector form, we denote the mean vector and the covariance
matrix by µ(t) and Σ(t), respectively.

The specification of the model is completed with the assumption that the time variation
of the parameters µ(t), Σ(t), ρ(t), gijk(t) are driven by a hidden homogeneous Markov chain
{st}Tt=1 with discrete, finite state space {1, . . . , L}, that is µ(t) = µst , Σ(t) = Σst , ρ(t) = ρst
and gijk(t) = gijk,st . The transition matrix of the chain {st}t is assumed to be time-invariant
and denoted by Ξ = (ξ1, . . . , ξL)′, where each ξl = (ξl,1, . . . , ξl,L)′ is a probability vector and
the transition probability from state i to state j is P({st = j}|{st−1 = i}) = ξi,j , i, j = 1, . . . , L.

The causal structure of the model is given in Fig. 1, whereas the description of the systems
follows.

In order to give a compact representation of the general model, define Xd = {X ∈ Ri1×...×id}
the set of real-valued d-order tensors of size (i1 × . . .× id) and Xd0,1 = {X∈Ri1×...×id : Xi1,...,id ∈
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{0, 1}} ⊂ Xd the set of adjacency tensors of size (i1× . . .× id). Define a linear operator between
these two sets by Ψ : Xd → Xd0,1 such that X ∗ 7→ Ψ(X ∗) ∈ {0, 1}i1×...×id . Denote the indicator
function for the set A by 1A(x), which takes value 1 if x ∈ A and 0 otherwise, and let R+ be the
positive real half-line. For a matrix X∗k,t ∈ X I,J it is possible to write the first equation of the
model in matrix form by Ψ(X∗k,t) = (1R+(x∗ijk,t))i,j , for each slice k of X ∗t . Eq. (5) postulates
that each edge xijk admits an individual set of coefficients gijk(t). By collecting all these vectors
along the indices i, j, k, we can rewrite eq. (5) in compact form by means of a fourth-order tensor
G(t) ∈ RI×J×K×Q, thus obtaining:

X ∗t = G(t)×4 zt + Et , (7)

where Et ∈ RI×J×K is a third-order tensor with entries εijk,t ∼ Logistic(0, 1) and ×n stands for
the mode-n product between a tensor and a vector previously introduced.

The statistical framework we propose for a time series {Xt,yt}Tt=1 is given by the following
system of equations:

Xt = B(t)�Ψ(X ∗t ) bijk(t)
iid∼ Bern(1− ρ(t)) (8a)

X ∗t = G(t)×4 zt + Et (8b)

yt = µ(t) +$t $t
iid∼ NM (0,Σ(t)) (8c)

where B(t) is a tensor of the same size of Xt whose entries are independent and identically
distributed (iid) Bernoulli random variables with probability of success 1 − ρ(t) and � stands
for the element-by-element Hadamard product (see (Magnus and Neudecker, 1999, ch.3)).

This model can be represented as a SUR (see Zellner (1962)) and also admits an interpret-
ation as a factor model. To this aim, let ⊗ denote the Kronecker product (see (Magnus and
Neudecker, 1999, ch.3)) and define zt = (1, z̃t)

′, where z̃t denotes the covariates and Σ1/2 is a
matrix satisfying Σ1/2Σ1/2 = Σ. In addition, let {ũt}t be a martingale difference process and
ξt = (1{1}(st), . . . ,1{L}(st))

′. Then we obtain:

Xt = B(t)�Ψ(X ∗t ) bijk(t)
iid∼ Bern(1− ρ(t))

X ∗t = G ×4 (ξt ⊗ zt)
′ + Et = G ×4 (ξt, ξt ⊗ z̃t)

′ + Et εijk,t
iid∼ Logistic(0, 1)

yt = (ξt ⊗ µ) + (ξt ⊗Σ1/2)$∗t $∗t
iid∼ NM (0M , IM )

ξt+1 = Ξξt + ũt E[ũt|ũt−1] = 0

(9)

3 Bayesian Inference

To derive the likelihood function of the model in eqs. (8a) to (8c) and develop an efficient
inferential process, it is useful to start from eq. (2), which describes the statistical model for
the likelihood of each edge as a a zero-inflated logit model. Starting from the seminal work
of Lambert (1992), who proposed a modelling framework for count data with a great proportion
of zeros, zero-inflated models have been applied to settings where the response variable is not
integer-valued. Binary responses have been considered by Harris and Zhao (2007), who dealt
with an ordered probit model. This is the closest approach to ours, though the specification
in eq. (2) substantially differs in two aspects. First, we use of a logistic link function, which
is known to have slightly fatter tails than the cumulative normal distribution used in probit
models. Second, differently from the majority of the literature which assumes a constant mixing
probability, the parameter ρ(t) is evolving according to a latent process.
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From eq. (2) we derive the probability of observing or not an edge, respectively, as:

P(xijk,t = 1|ρ(t),gijk(t)) = (1− ρ(t))
exp{z′tgijk(t)}

1 + exp{z′tgijk(t)}
(10a)

P(xijk,t = 0|ρ(t),gijk(t)) = ρ(t) + (1− ρ(t))

(
1−

exp{z′tgijk(t)}
1 + exp{z′tgijk(t)}

)
. (10b)

This allows us to exploit different types of tensor representations (see Kolda and Bader (2009)
for a review), in particular for the sake of parsimony, we assume a PARAFAC decomposition
with rank R (assumed fixed and known) for the tensor G(t):

G(t) =

R∑
r=1

γ
(r)
1 (t) ◦ γ(r)

2 (t) ◦ γ(r)
3 (t) ◦ γ(r)

4 (t) , (11)

where for each value of the state st the vectors γ
(r)
h (t) = γ

(r)
h,st

, h ∈ {1, 2, 3, 4}, r = 1, . . . , R, are
the marginals of the PARAFAC decomposition and have length I, J , K and Q, respectively.
By the same argument, we denote G(t) = Gst and gijk(t) = gijk,st . This specification permits
us to achieve two distinct but fundamental goals: (i) parsimony of the model, since for each
value of the state st the dimension of the parametric space is reduced from IJKQ to R(I + J +
K +Q) parameters; (ii) sparsity of the tensor coefficient, through a suitable choice of the prior
distribution for the marginals.

We are given a sample {Xt,yt}Tt=1 and adopt the notation: X = {Xt}Tt=1, y = {yt}Tt=1,
s = {st}Tt=0, D = {Dt}Tt=1 and Ω = {Ωt}Tt=1. Define Tl = {t : st = l} and Tl = #Tl, for each
regime l = 1, 2. Then, in order to write down the analytic form of the complete data likelihood,
we introduce the latent variables {st}Tt=1, taking values st = l, l ∈ {1, 2} and evolving according
to a discrete Markov chain with transition matrix Ξ ∈ RL×L. Finally, denote the whole set of
parameters by θ.

The inference is carried out following the Bayesian paradigm and exploiting a data aug-
mentation strategy (Tanner and Wong (1987)). The Pólya-Gamma scheme for models with
binomial likelihood proposed by Polson et al. (2013) has been proven to outperform existing
schemes for Bayesian inference in logistic regression models in terms of computational speed
and higher effective sample size. Furthermore, given a normal prior of the vector of parameters,
a Pólya-Gamma prior on latent variables leads to a conjugate posteriors: the full conditional for
the parameter vector is normal while that of the latent variable follows a Pólya-Gamma. This
allows to use a Gibbs sampler instead of a Metropolis-Hastings algorithm, thus avoiding the
need to choose and adequately tune the proposal distribution. Among recent uses of this data
augmentation scheme, Wang et al. (2017) used it in a similar framework for network-response
regression model, while Holsclaw et al. (2017) exploited it in a time-inhomogeneous hidden
Markov model.

The complete data likelihood for X is given by:

L(X ,y,D,Ω, s|θ) =

=
L∏
l=1

∏
t∈Tl

I∏
i=1

J∏
j=1

K∏
k=1

ρ
dijk,t
l · δ{0}(xijk,t)dijk,t ·

(
1− ρl

2

)1−dijk,t
· exp

{
−
ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z
′
tgijk,l)

}

·
L∏
l=1

∏
t∈Tl

(2π)−m/2 |Σl|−1/2 exp

{
−1

2
(yt − µl)′Σ−1

l (yt − µl)
}

·

 T∏
t=1

I∏
i=1

J∏
j=1

K∏
k=1

p(ωijk,t)

 ·
 L∏
g=1

L∏
l=1

ξ
Ngl(s)
g,l

 · p(s0|Ξ) , (12)
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where dij,t is a latent allocation variable and ωij,t is a Pólya-Gamma latent variable. See Ap-
pendix C for the details of the data augmentation strategy and the derivation of the complete
data likelihood.

A well known identification issue for mixture models is the label switching problem (see, for
example, Celeux (1998)), which stems from the fact that the likelihood function is invariant to
relabelling of the mixture components. This may represent a problem for Bayesian inference,
especially when the unobserved components are not well separated, since the associated labels
may wrongly change across iterations. Several proposals have been made for solving this identi-
fication issue (see Frühwirth-Schnatter (2006) for a review). The permutation sampler proposed
by Frühwirth-Schnatter (2001) can be applied under the assumption of exchangeability of the
posterior distribution, which is satisfied when the prior distribution for the transition probab-
ilities of the hidden Markov chain is symmetric. Alternatively, there are situations when the
particular application provides meaningful restrictions on the value of some parameters. These
restrictions generally stem from theoretical results, or interpretation of the different regimes,
which is the reason why they are widely used in macroeconomics and finance.

Following this second approach, we can use as identification constraint for the regimes the
mixing probability of the zero-inflated logit in eq. (3). This can be interpreted as the likelihood
of a “structural” absent edge, therefore by sorting the regimes in decreasing order, from “sparse”
to “dense”, we impose: ρ1 > ρ2 > . . . > ρL.

As regards the prior distributions for the parameters of interest, we choose the following
specifications. Denote ιn the n-dimensional vector of ones. We assume an independent prior on

γ
(r)
h,l for each regime l = 1, . . . , L, thus representing the a priori ignorance of the different value

of these parameters for varying l. In particular, for each r = 1, . . . , R, each h = 1, . . . , 4 and
each l = 1, . . . , L we specify the global-local shrinkage prior:

π(γ
(r)
h,l |ζ

r
h,l, τ, φr, wh,r,l) ∼ Nnh(ζ

r
h,l, τφrwh,r,lInh) (13)

where n = (I, J,Q)′ is a vector containing the length of each vector γ
(r)
h,l and the prior mean is

set to ζ
r
h,l = 0 for each h = 1, . . . , 4, l = 1, . . . , L, r = 1, . . . , R. The parameter τ represents

the global component of the variance, common to all marginals, φr is level component (specific
for each r = 1, . . . , R) and wh,r is the local component. The choice of a global-local shrinkage
prior, as opposed to a spike-and-slab distribution, is motivated by the reduced computational
complexity and the capacity to handle high-dimesnional settings.

In addition, for allowing greater flexibility, we assume the following hyper-priors for the
variance components1:

π(τ) ∼ Ga(aτ , b
τ
) (14)

π(φ) ∼ Dir(α) α = αιR (15)

π(wh,r,l|λl) ∼ Exp(λ2
l /2) ∀h, r, l (16)

π(λl) ∼ Ga(aλl , b
λ
l ) ∀ l . (17)

The further level of hierarchy for the local components wh,r,l is added with the aim of
favouring information sharing across local components of the variance (indices h, r) within a

1We use the shape-rate formulation for the gamma distribution, that is for α > 0, β > 0:

x ∼ Ga(α, β) ⇐⇒ f(x) =
βα

Γ(α)
xα−1e−βx x ∈ (0,+∞) .
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given regime l. This hierarchical prior induces the following marginal prior on the vector wl =
(w1,1,l, . . . , w4,R,l)

′:

π(wl) =

∫
R+

R∏
r=1

4∏
h=1

π(wh,r,l|λl)π(λl) dλl

=

∫
R+

(b
λ
l )a

λ
l

2Γ(aλl )
λ
aλl +8R−1

l exp

−bλl λl −
 R∑
r=1

4∑
h=1

wh,r,l

 λ2
l

2

 dλl . (18)

The marginal prior for a generic entry wh,r,l is a compound gamma distribution2, that is

p(wh,r,l) ∼ CoGa(1, aλl , 1, b
λ
l ), with aλl > −1. In the univariate case (i.e H = 1, R = 1 and

L = 1), we obtain a generalized Pareto distribution3 π(w) = gP (0, aλ, bλ/aλ).
The specification of an exponential distribution for the local component of the variance of the

γ
(r)
h,l yields a Laplace distribution for each component of the vectors once the wh,r,l is integrated

out, that is γ
(r)
h,l,i|λl, τ, φr ∼ Laplace(0, λl/

√
τφr) for all i = 1, . . . , nh. The marginal distribution

of each entry, integrating all remaining random components, is instead a generalized Pareto
distribution.

In probit and logit models it is not possible to identify the coefficients of the latent regression
equation as well as the variance of the noise (e.g., see Wooldridge (2010)). As a consequence,
we make the usual identifying restriction by imposing unitary variance for each εijk,t.

The mixing probability of the observation model is assumed beta distributed:

π(ρl) ∼ Be(aρl , b
ρ
l ) ∀ l = 1, . . . , L . (22)

Concerning the parameters of the second equation (vector yt ∈ Rm), we assume the priors:

π(µl) ∼ NM (µl,Υl) ∀ l = 1, . . . , L (23)

π(Σl) ∼ IWM (νl,Ψl) ∀ l = 1, . . . , L . (24)

Finally, each row of the transition matrix of the Markov chain process st is assumed to be a
priori distributed according to a Dirichlet distribution:

π(ξl,:) ∼ Dir(cl,:) ∀ l = 1, . . . , L . (25)

2Alternatively, following (Johnson et al., 1995, p.248), this is called generalized beta prime distribution or
generalized beta distribution of the second kind Be2(α, β, p, q), whose probability density function (with B(α, β)
being the usual beta function) is given by:

p(x|α, β, p, q) =
1

qB(α, β)
p

(
x

q

)αp−1
[

1 +

(
x

q

)p]−(α+β)

x ∈ R+, α, β, p, q ∈ R+ . (19)

In our case, the probability density function is defined by a mixture of two gamma distributions (see also Dubey
(1970)):

p(x|α, β, 1, q) =

∫ ∞
0

Ga(x|α, p)Ga(p|β, q) dp =
qβxα−1(q + x)α+β

B(α, β)
x ∈ R+, α, β, q ∈ R+ . (20)

In our case, the parametrisation is (1, aλ, 1, bλ). This special case is also called a Lomax(a, b) distribution with
parameters (aλ, bλ).

3The probability density function of the generalized Pareto distribution is:

p(x|µ, ξ, σ) =
1

σ

(
1 +

(x− µ)

ξσ

)−(ξ+1)

x ∈ R+, µ, ξ ∈ R, σ ∈ R+ . (21)
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Figure 2: DAG of the model in eq. (8a)-(8c) and prior structure in eq. (13)-
(25). Gray circles denote observable variables, white circles with continuous
border indicate parameters, white circles with dashed border indicate fixed
hyper-parameters.

The overall structure of the hierarchical prior distribution is represented graphically by means
of the directed acyclic graph (DAG) in Fig. 2.

4 Posterior Approximation

For explanatory purposes, in this section we focus on single layer graphs (i.e. k = 1), which is a
special case of the model in eqs. (8a)-(8c). In Appendix D we present the computational details
for the general case with multi-layer network observations (i.e. K > 1).

For reducing the burden of the notation, we define G = {Gl}Ll=1, µ = {µl}Ll=1, Σ = {Σl}Ll=1

and ρ = {ρl}Ll=1. Moreover, denote by W ∈ R3×R×L the matrix whose elements (wh,rl)h,r,l
are the components of the marginal-specific variance. Combining the complete data likelihood
with the prior distributions yields a posterior sampling scheme consisting of four blocks (see
Appendix D for the derivation of the posterior full conditional distributions).

In the first block (I) the sampler draws the latent variables from the full conditional distri-
bution:

p(s,D,Ω|X ,y,G,µ,Σ,Ξ,ρ) = p(s|X ,y,G,µ,Σ,Ξ,ρ) (26)

·
∏
ijt

p(ωij,t|xij,t, st,Gst)p(dij,t|xij,t, st,Gst , ρst) . (27)

Samples of s are obtained via the multi-move Forward-Filtering-Backward-Sampler (see Frühwirth-
Schnatter (2006)). The latent variables ωij,t are sampled independently for each i = 1, . . . , I,
j = 1, . . . , J and t = 1, . . . , T from:

p(ωij,t|xij,t, st,Gst) ∝ PG(1, z′tgijk,st) , (28)

The latent variables ωij,t are sampled in block for each t. This is done by sampling ut = vec (Ωt)
from the vectorised version of the PG random number generator, then reshaping Ωt = vecr(ut).
The latent variables dij,t are sampled independently for each i = 1, . . . , I, j = 1, . . . , J and
t = 1, . . . , T from:

p(dij,t = 1|xij,t, st,Gst , ρst) ∝ ρstδ{0}(xij,t) (29a)
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p(dij,t = 0|xij,t, st,Gst , ρst) ∝ (1− ρst)
exp{(z′tgijk,st)xij,t}
1 + exp{z′tgijk,st}

. (29b)

Block (II) regards the hyper-parameters which control the variance of the PARAFAC mar-
ginals, and have full conditional distribution:

p(τ,φ,W|{γ(r)
h,l}h,l,r) = p(φ|{γ(r)

h,l}h,l,r,W)p(τ |{γ(r)
h,l}h,l,r,W,φ)p(W|{γ(r)

h,l}h,l,r,φ, τ) . (30)

The auxiliary variables ψr are sampled independently for r = 1, . . . , R from:

p(ψr|{γ(r)
h,1}h,l,wr) ∝ GiG

2b
τ
,

3∑
h=1

L∑
l=1

γ
(r)′

h,l γ
(r)
h,l

wh,r
, α− n

 (31)

then, for each r = 1, . . . , R define:

φr =
ψr∑R
v=1 ψv

. (32)

The parameters φ are sampled in a separate block since they all enter the full conditionals of

wh,r,l and γ
(r)
h,l . The global variance parameter τ is drawn from:

p(τ |{γ(r)
h,l}h,l,r,W,φ) ∝ GiG

2b
τ
,

R∑
r=1

3∑
h=1

L∑
l=1

γ
(r)′

h,l γ
(r)
h,l

φrwh,r
, (α− n)R

 . (33)

The local variance parameters wh,r,l are independently drawn for each h = 1, 2, 3, r = 1, . . . , R
and l = 1, . . . , L from:

p(wh,r,l|γ
(r)
h,l , φr, τ, λl) ∝ GiG

λ2
l ,
γ

(r)′

h,l γ
(r)
h,l

τφr
, 1− nh

2

 . (34)

Finally, denoting wl the collection of all wh,r,l for a given l, the parameters λl are independently
drawn for each l = 1, . . . , L from:

p(λl|wl) ∝ λ
aλl +6R−1

l · exp
{
−λlb

λ
l

}
·

−λ2
l

2

R∑
r=1

3∑
h=1

wh,r,l

 . (35)

The third block (III) concerns the marginals of the PARAFAC decomposition for the tensors

Gl for every l = 1, . . . , L. The vectors γ
(r)
h,l are sampled independently for all h = 1, 2, 3 and

every r = 1, . . . , R from:

p(γ
(r)
h,l |X ,W,φ, τ, s,D,Ω) ∝ Nnh

(
ζ̃
r
h,l, Λ̃

r
h,l

)
. (36)

Finally, in block (IV) are drawn the mixing probability, the transition matrix and the main
parameters of the second equation. The mixing probability is sampled for every l = 1, . . . , L
from:

p(ρl|D, s) ∝ Be(ãl, b̃l) . (37)

Each row of the transition matrix is independently drawn for every l = 1, . . . , L from:

p(ξl,:) ∝ Dir(c̃) . (38)
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The mean and covariance matrix of the second equation are sampled independently for every
l = 1, . . . , L, respectively from:

p(µl|y, s,Σl) ∝ NM (µ̃l, Υ̃l) (39)

and:
p(Σl|y, s,µl) ∝ IWM (ν̃l, Ψ̃l) . (40)

Blocks (I) and (II) are Rao-Blackwellized Gibbs steps: in block (I) we have marginalised
over both (D,Ω) in the full joint conditional distribution of the state s and D (together with ρ)
in the full conditional of Ω, while in (II) we have integrated out τ from the full conditional of
φ (see sec. D.2). Blocks (III) and (IV) are standard Gibbs steps, concerned with sampling from
the full conditional (eventually exploiting conditional independence relations).

5 Simulation Results

We consider three simulation settings for the model in eqs. (8a)-(8c) corresponding to different
sizes I and J , with I = J , of the adjacency matrix Xt. The other parameters indicated below
are kept fixed across settings. The three synthetic datasets used to check the efficiency of the
proposed Gibbs sampler share the same hyper-parameters’ values, but differ in the size of the
adjacency matrices. We consider:

(I) I = J = 100, with Q = 3 common covariates and M = 2 exogenous variables;

(II) I = J = 150, with Q = 3 common covariates and M = 2 exogenous variables;

(III) I = J = 200, with Q = 3 common covariates and M = 2 exogenous variables.

We generated a sample of size T = 60 and at each time step we simulate a square matrix Xt, a
vector yt of length m = 2 and a set of Q = 3 covariates zt. The covariates have been generated
from a stationary Gaussian VAR(1) process with entries of the coefficient matrix i.i.d. from a
truncated standard normal distribution. We considered two regimes (i.e. L = 2) and generated
the trajectory of the Markov chain {st}Tt=1 setting:

Ξ =

[
0.8 0.2
0.3 0.7

]
p(s0) =

[
0.7
0.3

]
. (41)

For each regime l = 1, 2, we generated the marginals of the PARAFAC decomposition (rank
R = 5) of the tensor Gl, the mixing probability in the first equation and the mean and covariance
in the second equation of the model according to:

ρ1 = 0.8 ρ2 = 0.2

γ
(r)
h,1

iid∼ Nnh(0nh , Inh) ∀h, r γ
(r)
h,2

iid∼ Nnh(ιnh , Inh) ∀h, r
µ1 = [2, 2]′ µ2 = [−2,−2]′

Σ1 =

[
2 0.5

0.5 2

]
Σ2 =

[
4 1
1 4

] (42)

We initialised the marginals of the PARAFAC decomposition of the tensor of coefficients Gl at
the output of the Simulated Annealing algorithm (see (Robert and Casella, 2004, pp. 163-173))
and we kept the same value for each l = 1, . . . , L. The other parameters (ρ,W,φ, τ,Ξ,µ,Σ)
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have been initialised by sampling from their prior. Finally, we have chosen the following values
for the hyper-parameters:

α = 0.5 bτ = 2 λ = 4 ζrh,l = 0nh ∀h, l, r
a1 = 5 b1 = 2 a2 = 2 b2 = 5

µ1 = 0m µ2 = 0m Υ1 = Im Υ2 = Im

ν1 = m ν2 = m Ψ1 = Im Ψ2 = Im

c1 = [8, 4] c2 = [4, 8]

(43)

For each simulation setting, we evaluate the mean square error of the estimated coefficient
tensor:

MSE =
1

2
(MSE1 +MSE2) =

1

2IJK

(∥∥∥G∗1 − Ĝ1

∥∥∥2

2
+
∥∥∥G∗2 − Ĝ2

∥∥∥2

2

)
, (44)

where ‖·‖2 is the Frobenious norm for tensors, i.e.:

∥∥∥G∗` − Ĝ`∥∥∥2

2
=

I∑
i=1

J∑
j=1

K∑
k=1

(g∗ijk,` − ĝijk,`)2 . (45)

All simulations have been performed using MATLAB r2016b with the aid of the Tensor Toolbox
v.2.64.

Figs. 3(a)-3(c)-3(e) report the trace plots of the error, for each of the three simulations,
respectively, while Figs. 3(b)-3(d)-3(f) plot the corresponding autocorrelation functions. All
these graphs show that the estimated total error series rapidly stabilises around a small value,
meaning that the sampler is able to recover the true value of the tensor parameter. Furthermore,
from the analysis of Figs. 3(b)-3(d)-3(f) we can say that the autocorrelation of the posterior
draws of the total error vanishes after three lags, thus representing a first indicator of the
efficiency of the sampler. We remind to Appendix F for further details and plots about the
performance of the sampler in each simulated example.

4Available at: http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
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(a) Simulation (I): trace plot.
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(b) Simulation (I): ACF.
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(c) Simulation (II): trace plot.
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(d) Simulation (II): ACF.
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(e) Simulation (III): trace plot.
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(f) Simulation (III): ACF.

Figure 3: Left: Trace plots (blue line) with superimposed progressive mean
(orange line) of the total error in estimating the tensor of regression coeffi-
cients, for each simulation. Right: corresponding autocorrelation function,
for each simulation.

Table (1) reports the effective sample size (ESS) in the formulation provided by Gelman
et al. (2014):

ESS =
N

1 + 2
∑∞

l=1 %̂l
, (46)

where %̂l is the sample autocorrelation function at lag l and N is the sample size (i.e., the length
of the simulation). For computational reasons, the infinite sum is truncated at L = min{l : %̂l <
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Simulation ESS ACF(1) ACF(5)

I 250 ... ...

II 245 ... ...

III 248 ... ...

Table 1: Convergence diagnostic statistics for the total error, for each sim-
ulated case. ESS is rounded to the smallest integer.

10−4}. The ESS is interpreted as an efficiency index: it represents the number of simulated
draws that can be interpreted as iid draws from the posterior distribution (in fact, in presence
of exact iid sampling schemes we have ESS = N). The results in Tab. (1) show that in all three
simulation settings the effective sample size is about half of the length of the simulation.

6 Applications

6.1 Data description

We apply the proposed methodology to the well known dataset of financial networks of Billio
et al. (2012), Ahelegbey et al. (2016b), Ahelegbey et al. (2016b), Bianchi et al. (2016). The data-
set consists of T = 110 monthly binary, directed networks estimated via the Granger causality
approach, where the nodes are European financial institutions. Other methods for extracting the
network structure from data can be used, as this is not relevant for our econometric framework,
which applies to any sequence of binary tensors.

The original dataset is composed by the daily closing price series at a daily frequency from
29th December 1995 to 16th January 2013 of all the European financial institutions active and
dead in order to cope with survivorship bias. It covers a total of 770 European financial firms
which are traded in 10 European financial markets (core and peripheral). The pairwise Granger
causalities are estimated on daily returns using a rolling window approach with a length for
each window of 252 observations (approximately 1 year). We obtain a total of 4197 adjacency
matrices during the period from 8th January 1997 to 16th January 2013.

Then, we define a binary adjacency matrix for each month by setting an entry to 1 only if the
corresponding Granger-causality link existed for the whole month (i.e. for each trading day of the
corresponding month), and setting the entry to 0 otherwise. Since the panel is unbalanced due
to entry and exit of financial institutions from the sample over time, we consider a subsample of
length T = 110 months (from December 2003 to January 2013) made of 61 financial institutions.

We can visualize a sequence of adjacency matrices representing a time series of networks in
several ways. Fig. 4(a) shows a stacked representation of a subsample composed by six adjacency
matrices, while Fig. 4(b) plots a 3-dimensional array representation of the same data. In the first
case, all matrices are stacked horizontally. Instead, the 3-dimensional representation plots each
matrix in front of the other, as frontal slices of an array. It is possible to interpret the two plots
as equivalent representations of a third-order tensor: in this case, Fig. 4(a) shows the matricised
form (along mode 1) of the tensor, while Fig. 4(b) plots its frontal slices. Finally, Fig. 5 plots
the graph associated to two of these adjcency matrices. Though this representation allows for
visualising the topology of a network, it is impractical for giving a compact representation of
the whole time series of networks. Thus, we provide in Fig. 6 the stacked representation of the
whole network sequence. Each row plots twelve time-consecutive adjacency matrices, starting
from the top-left corner.

The most striking features emerging from Fig. 6 are the time-varying degree distribution and

14



the temporal clustering of sparse and dense networks.
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Figure 4: Stacked (a) and 3-dimensional (b) representations of a subsample
of adjacency matrices (months t = 65, 69, 73, 77, 81, 85). Blue dots are exist-
ing edges, white dots are absent edges. A red line is used to separate each
matrix (or tensor slice).
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Figure 5: Graphical representation of networks at time t = 69 (dense case)
and t = 77 (sparse case), respectively. The size of the each node is propor-
tional to its total degree. Edges are clockwise directed.
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Figure 6: Full network dataset, with I = J = 61 nodes and sample size of
T = 110 months. In each red box there is an adjacency matrix, starting
from top-left at time t = 1, the first row contains matrices from time t =
1 to t = 11, the second row from t = 12 to t = 22 and so on. Blue
dots are existing edges, white dots are absent edges. Red lines are used to
delimit the matrices. Labels on the horizontal and vertical axes stand for
the corresponding node of the network.

The set of covariates zt used to explain each edge’s probability includes a constant term and:

• the network total degree (dtd), defined as the total number of edges in the network at
time t = 1, . . . , T ;

• the monthly change of the VSTOXX index (DVX), which is the volatility index for the
STOXX50 (and may considered the counterpart of the VIX for Europe);

• the monthly log-returns on the STOXX50 index (STX), taken as a European equivalent
to the US S&P500 index;

• the credit spread (crs), defined as the difference between BAA and AAA indices provided
by Moody’s;

• the term spread (trs), defined as the difference between the 10-year returns of reference
Government bonds and the 6-months EURIBOR;

• the momentum factor (mom).

All covariates have been standardised and included with one lag of delay, except DVX which is
contemporaneous to the response, following the standard practice in volatility modelling (e.g.,
see, Corsi et al. (2013), Delpini and Bormetti (2015) Majewski et al. (2015)).
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6.2 Results

We estimated a stripped-down version of the general model presented in Section (2) consisting
only of eq. (8a). We run the Gibbs sampler for N = 10000 iterations, after having initialised
the latent state variables {st}t according to suitable network statistics and the marginals of
the tensor decomposition in both regimes (see Supplementary material for further details). We
estimate the model with tensor rank R = 5 and discuss the main empirical findings (the analysis
has been performed also for R = 8, obtaining similar results).

Figure 7: Total degree of the observed network time series (blue) against
the estimated hidden Markov chain (red).
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Figure 8: Posterior mean of tensor of coefficients, in matricised form, in the
first (top) and second (bottom) state of the Markov switching process. For
all the slices of each tensor we used the same color scale. Red, blue and
white colors indicates positive, negative and zero values of the coefficients,
respectively.
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Figure 9: Posterior mean of tensor of coefficients, in matricised form, in
the first (top) and second (bottom) state of the Markov switching process.
For each slice of each tensor we used a different color scale. Red, blue and
white colors indicates positive, negative and zero values of the coefficients,
respectively.

Figure 10: Posterior distribution (left plot) and MCMC output (right plots)
of the quadratic norm of the tensor of coefficients, in regime 1 (blue) and
regime 2 (orange).

18



Figure 11: Scatterplots of total node degree averaged over networks within
regime (x-axis) versus the sum of positive (y-axis, red) and the sum of
negative (y-axis, blue) entries of each slice of the coefficient tensor, in regime
1 (top) and regime 2 (bottom). Coefficients corresponding to incoming edges’
probability.

Figure 12: Scatterplots of total node degree averaged over networks within
regime (x-axis) versus the sum of positive (y-axis, magenta) and the sum
of negative (y-axis, black) entries of each slice of the coefficient tensor, in
regime 1 (top) and regime 2 (bottom). Coefficients corresponding to outgoing
edges’ probability.
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Figure 13: Distribution of the entries of each slice (different plots) of the
estimated coefficient tensor, in regime 1 (blue) and regime 2 (orange).

Figure 14: Posterior distribution (left plot), MCMC output (middle plots)
and autocorrelation functions (right plots) of the mixing coefficient ρl in the
two regimes. Regime 1 in blue and in top panels, regime 2 in orange and in
bottom panels.

The estimated hidden Markov chain is plotted in Fig. 7 together with the total degree of
the observed network time series, using label 1 for the sparse regime and label 2 for the dense
regime. The algorithm associates to the dense state in periods when the total degree of the
network is remarkably above the average.

There is substantial heterogeneity in the effect of covariates across edges, within the same
regime, as reported in Figs. 8-9. Here, the estimated tensor is plotted in matricized form along
mode 1 (using two different color scales in the two figures): on the vertical axis we have 61
nodes, while on the horizontal there are 61 · 7 nodes (the number of covariates including the
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constant), corresponding to 7 matrices, one for each covariate, horizontally stacked. The entry
(i, j) of matrix in position k reports the coefficient of the k-th covariate on the probability of
observing the edge (i, j). Thus, within the same regime we observe a significant variation of
both the sign and the magnitude of the effect of a covariate on the probability of observing an
edge. In words, there is not a single covariate able to explain (and predict) an edge’s probability
by itself, but several indicators are required. Moreover, a model with pooled time series fails to
capture such heterogeneity. The posterior mean is 1.56 in regime 1 and 4.63 in regime 2, but in
both cases it is not significantly different from zero, that is, it lies inside a 95% credible interval
around zero (see Fig. ?? in Appendix G). This is in contrast with our model, where the fraction
of tensor entries statistically different from zero is 12% and 36% in regime 1 and 2, respectively.
Thus, we conclude that a pooled model is not suited for describing the heterogeneous effects of
the various covariates on the different edges, whereas our model is able to capture them.

We find substantial evidence in favour of major changes of the effects that the covariates
exert on the edges’ probability in the two regimes. By comparing the two matricized tensors in
Fig. 8 we note that both the sign and the magnitude of the coefficients differ in the two states.
The interpretation is that, according to the regime, the probability of observing a link between
two nodes is driven by a different set of variables but also the qualitative influence (i.e. the sign
of the coefficient) of the same regressor varies. For example, on average, the credit spread seems
to exert a positive effect on the probability of observing an edge in the sparse regime, while its
effect in the dense regime has higher magnitude and acts in the opposite direction.

Fig. 11 reports, for each regime and covariate, the scatterplot of the total degree of each node
(horizontal axis), averaged within regime, against the sum of all negative and positive coefficients’
values for the probability of observing an incoming edge. Similarly, Fig. 12 shows the same plot
considering the effects on the probability of observing an outcoming edge. Together, these plots
allow to detect the existence of a relation between the overall positive and negative magnitude
of the effects of the covariates on the probability of observing an edge, conditionally on the total
degree of the node to which the link is attached. The results show that for several covariates
such an association exists: on average, more central nodes (i.e. those with higher total degree)
tend to have higher probability of establishing an edge, either incoming or outgoing. This is
due to the upward sloping shape of the scatterplot. It is remarkable to notice that for different
covariates, such as the momentum factor, there is a different relation for negative and positive
effects: for increasingly central nodes, both sums tend to more extreme values. Moreover, by
comparing the results in Figs. 11-12 we see that the results are similar if we look either at
incoming or outgoing edges. Finally, between regimes there seems to be no change except for
the strength of the relation, which appears stronger in the second one (corresponding to the
dense state of the network).

In Fig. 13 we plot the distribution of the entries of each slice (over the edges), for every
regime, for a more qualitative analysis of the change of the coefficients’ values between regimes.
There is a different dispersion in the cross-sectional distribution of the coefficients’ estimates.
In particular, all distributions appear more concentrated around zero in the sparse state, while
in the dense regime the mean value is different (and varies according to the covariate) and all
distributions show fatter tails than in sparse state.

As a summary statistic, Fig. 10 reports the distribution and the trace plots of the quadratic
norm of the tensor coefficients in each regime. The two distributions are well separated, with
the norm in the first regimes concentrated around smaller values than in the second regime.
This implies that, on average, in the sparse state there is a higher probability that the zeros
(i.e. absence of edges) are due to the structural component (that is, the Dirac mass in eq. (3)),
moreover the probability of success of the Bernoulli distribution is smaller than in the dense
regime.
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Finally, Fig. 14 shows the posterior distributions of the regime-dependent probabilities of
observing a structural zero, in the two regimes. The distributions are well separated, with
posterior means around 0.85 and 0.71 in the sparse and dense state, respectively.

Additional plots regarding the hyper-parameters of the model are shown in Appendix G.

7 Conclusions

We presented an econometric framework for modelling of a time series of binary tensors, which
we interpret as representing multi-layer networks. We proposed a parsimonious parametrization
based on the PARAFAC decomposition of the parameter tensor. Moreover, the parameters
of the model can switch between multiple regimes, thus allowing to capture the time-varying
topology of financial networks and economic indicators. We specified a zero-inflated logit model
for the probability of each entry of the observed tensor, which permits to capture the varying
sparsity patterns of the observed time series. The proposed framework is also able to jointly
model a temporal sequence of binary arrays and a vector of economic variables.

We followed the Bayesian paradigm in the inferential process and developed a Gibbs sampler
via multiple data augmentation steps for estimating the parameters of interest. The performance
of the algorithm has been tested on simulated datasets with networks of different sizes, ranging
from medium (i.e. 100 nodes) to big (i.e. 200 nodes). The results of the estimation procedure
are encouraging in all simulations.

Finally, we estimated a stripped-down version the model on a real dataset of networks
between European financial institutions. The results suggest the existence of two different re-
gimes associated to the degree density of the network. Moreover, in each regime the most degree
central nodes tend to be more sensitive to the effect of covariates (either positive or negative)
on their probability to link to other nodes. Overall, the probability of forming an edge is not
depending on a single covariate, but a combination of several financial indicators is needed to
explain and predict it. Finally, nature of the absent edges is estimated to be different, with the
sparse regime having a high probability of structural zeros, as compared to the dense regime.
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M. Romance, I. Sendina-Nadal, Z. Wang, and M. Zanin (2014): “The Structure and
Dynamics of Multilayer Networks,” Physics Reports, 544, 1–122.

Carroll, J. D. and J.-J. Chang (1970): “Analysis of Individual Differences in multidimen-
sional Scaling via an N-way Generalization of “Eckart-Young” Decomposition,” Psychomet-
rica, 35, 283–319.

Casarin, R., D. Sartore, and M. Tronzano (2018): “A Bayesian Markov-switching cor-
relation model for contagion analysis on exchange rate markets,” Journal of Business & Eco-
nomic Statistics, 36, 101–114.

Celeux, G. (1998): “Bayesian inference for mixture: The label switching problem,” in
Compstat, Springer, 227–232.

Chaney, T. (2014): “The network structure of international trade,” The American economic
review, 104, 3600–3634.

Chib, S., F. Nardari, and N. Shephard (2002): “Markov Chain Monte Carlo methods for
stochastic volatility models,” Journal of Econometrics, 108, 281–316.

Christakis, N. A. and J. H. Fowler (2008): “The collective dynamics of smoking in a large
social network,” New England journal of medicine, 358, 2249–2258.

Cichocki, A., N. Lee, I. Oseledets, A. Phan, Q. Zhao, and D. Mandic (2016): “Low-
Rank Tensor Networks for Dimensionality Reduction and Large-Scale Optimization Problems:
Perspectives and Challenges PART 1,” arXiv preprint arXiv:1609.00893.

Cichocki, A., D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A.
Phan (2015): “Tensor Decompositions for Signal Processing Applications: From two-way to
Multiway Component Analysis,” IEEE Signal Processing Magazine, 32, 145–163.

Cichocki, A., R. Zdunek, A. H. Phan, and S.-i. Amari (2009): Nonnegative matrix and
tensor factorizations: applications to exploratory multi-way data analysis and blind source
separation, John Wiley & Sons.

Corsi, F., N. Fusari, and D. La Vecchia (2013): “Realizing smiles: Options pricing with
realized volatility,” Journal of Financial Economics, 107, 284–304.

Delpini, D. and G. Bormetti (2015): “Stochastic volatility with heterogeneous time scales,”
Quantitative Finance, 15, 1597–1608.

Di Giovanni, J., A. A. Levchenko, and I. Méjean (2014): “Firms, destinations, and
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A Tensor calculus and decompositions

In this section we introduce some notation for multilinear arrays (i.e. tensors) and some basic op-
erations defined on them: the operations on tensors and between tensors and lower-dimensional
objects (such as matrices and vectors) and the representation results for tensors (or tensor decom-
position/approximation). A noteworthy introduction to tensors and corresponding operations
is in Lee and Cichocki (2016), while a remarkable reference for tensor decomposition methods
is Kolda and Bader (2009). Throughout the paper, we use the following notation: matrices
are represented by boldface uppercase letters, vectors by boldface lowercase letters, scalars by
lowercase letters and, finally, calligraphic letters denote tensors, if not differently specified.

A multidimensional array is an object which generalises the concept of matrix. It may
have an arbitrary number of dimensions (or modes), whose number is the order of the tensor.
Consequently, a matrix is a second order tensor. By convention, we denote a whole column (or
row) of a matrix by the symbol “:” and the same is used for tensors, where this symbol denotes
that we are considering the corresponding whole dimension. The mode-k fiber of a tensor is a
generalization of the concept of row/column in the matrix case: it is the vector obtained along
the dimension k by fixing all the other dimensions. Differently from the bi-dimensional case,
however, with higher order arrays it is possible to identify also slices (i.e. bi-dimensional fibers
of matrices) or generalizations of them, by fixing all but two or more dimensions (or modes) of
the tensor. For example, the mode-k fiber of the tensor X is denoted by:

X(i1,...,ik−1,:,:,ik+2,...,iD) ∀ k ∈ {1, . . . , D} . (A.1)

The operation of transforming a D-array X into a matrix is called matricization. The mode-n
matricization, denoted by X(n), consists in re-arranging all the mode-n fibers to be the columns

of a matrix, which will have size X(n) ∈ Rdn×d̄(−n) with d̄(−n) = Πi 6=ndi. For detailed examples,
see Kolda and Bader (2009). Analogously to the matrix version, the vectorization of a tensor
consists in stacking all the elements in a unique vector of dimension d̄ = Πidi. Notice that, the
ordering of the elements is not important as long as it is consistent across the calculations.

Many product operations have been defined for tensors, but here we constrain ourselves to
the operator used in this work and we point to Lee and Cichocki (2016) for a summary of other
operators. The mode−n product between a tensor X and a vector v ∈ Rdn can be interpreted as
the standard Euclidean inner product between the vector and each mode-n fiber of the tensor.
Consequently, this operator suppresses one dimension of the tensor and results in a lower order
tensor. It is defined, element-wise, by:

Y(i1,...,in−1,in+1,...,iD) = (X ×n v)(i1,...,in−1,in+1,...,iD) =

dn∑
in

Xi1,...,iDvin , (A.2)
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with Y ∈ Rd1×...,dn−i,dn+1,...×dD . Notice that this product is not commutative, since the order of
the elements in the multiplication is relevant.

Finally, let Y ∈ RdY1 ×...×dYM and X ∈ RdX1 ×...×dXN . The outer product ◦ of two tensors5 is the
tensor Z ∈ RdY1 ×...×dYM×dX1 ×...×dXN whose entries are:

Zi1,...,iM ,j1,...,jN = (Y ◦ X )i1,...,iM ,j1,...,jN = Yi1,...,iMXj1,...,jN . (A.3)

For example, the outer product of two vectors is a matrix, while the outer product of two
matrices is a tensor of order 4. As a special case, the outer product of two column vectors a, b
can be equivalently represented by means of the Kronocker product ⊗:

a ◦ b = b⊗ a = a · b′ . (A.4)

We now define two tensor representations, or decompositions, which are useful in two re-
spects: (i) the algebraic objects that form the decomposition are generally low dimensional and
more easily tractable than the tensor; (ii) they can be used to provide a good approximation of
the original array. Also, let us denote with R∗ be the rank of tensor X , the abstraction of the
notion of matrix rank.

The Tucker decomposition can be thought of as a higher-order generalization of Principal
Component Analysis (PCA): a tensor X ∈ Rd1×...×dD is decomposed into (more precisely, it is
approximated by) the product (along the corresponding mode) of a “core” tensor Y ∈ Ry1×...×yD
and D factor matrices A(l) ∈ Rdl×yl , 1 ≤ l ≤ D. Following the notation in Kolda and Bader
(2009):

X = Y ×1 A
(1) ×2 A

(2) ×3 . . .×D A(D) =

y1∑
i1=1

y2∑
i2=1

. . .

yD∑
iD=1

yi1,i2,...,iDa
(1)
i1
◦ a

(2)
i2
◦ . . . ◦ a

(D)
iD

. (A.5)

Here a
(l)
il
∈ Rgl×1 is the l-th column of the matrix A(l). As a result, each entry of the tensor is

obtained as:

Xj1,...,jD =

y1∑
i1=1

y2∑
i2=1

. . .

yD∑
iD=1

yi1,i2,...,iDa
(1)
i1,j1

a
(2)
i2,j2

. . . a
(D)
iD,jD

1 ≤ jl ≤ dl, 1 ≤ l ≤ D. (A.6)

A special case of the Tucker decomposition is obtained when the core tensor collapses to a
scalar and the factor matrices reduce to a single column vector each one is called PARAFAC(R)6.
More precisely, the PARAFAC(R) decomposition allows to represent a D-order tensor X ∈
Rd1×...×dD as the sum of R rank one tensors, that is, of outer products (denoted by ◦) of vectors
(also called marginals in this case)7:

X =

R∑
r=1

Xr =

R∑
r=1

x
(r)
1 ◦ . . . ◦ x

(r)
D , (A.7)

5This operator still applies to vectors and matrices, as they are special cases of tensors of order 1 and 2,
respectively.

6See Harshman (1970). Some authors (e.g., Carroll and Chang (1970) and Kiers (2000)) use the term CO-
DECOMP or CP instead of PARAFAC.

7An alternative representation may be used, if all the vectors xrj are normalized to have unitary length. In
this case the weight of each component r is captured by the r − th component of the vector λ ∈ RR:

X =

R∑
r=1

λr
(
x
(r)
1 ◦ . . . ◦ x

(r)
D

)
.
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Figure 15: PARAFAC decomposition of X ∈ Rd1×d2×d3 , with ar ∈ Rd! ,
br ∈ Rd2 and cr ∈ Rd3 , 1 ≤ r ≤ R. Figure from Kolda and Bader (2009).

with x
(r)
j ∈ Rdj ∀j = 1, . . . , D. For a tensor of arbitrary order, the determination of the rank is a

NP−hard problem (Kolda and Bader (2009)), as a consequence, in applied works, one generally
fixes R, uses a PARAFAC(R) approximation, and then run a sensitivity analysis of the results
with respect to R. The higher the value of R, the better is the approximation. Alternatively,
whenever it is possible to define a measure for the approximation accuracy one may define a
grid of values {Ri}R̄i=1 at which evaluate the accuracy, then choose the value of the grid which
yields the best approximation.

B Prior distribution on tensor entries

The assumed hierarchical prior distribution on the marginals of the PARAFAC(R) decompos-
ition assumed for the tensor of coefficients in each regime induces a prior distribution on each
single entry of the tensor which is not normal. Fig. 16-18 show the empirical distribution of two
randomly chosen entries of a tensor Y ∈ R100×100×3 whose PARAFAC decomposition is assumed
with R = 5 and R = 10, respectively. Compared to the standard normal distribution and the
standard Laplace distribution8 the prior distribution induced on the single entries of the tensor
is still symmetric, but has heavier tails.

8The probability density function of the Laplace distribution with mean µ and variance 2b2 is given by:

f(x|µ, b) =
1

2b
exp

{
−|x− µ|

2b

}
x ∈ R, µ ∈ R, b > 0

and has kurtosis equal to 6.
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Figure 16: Monte Carlo approximation of prior distribution (with R = 5)
of an element of the tensor (histogram and dark blue line) against the
standard Normal distribution (black) and the standard Laplace distribution
(magenta).

Figure 17: Monte Carlo approximation of the right tail of the prior distribu-
tion (with R = 5) of an element of the tensor (histogram and dark blue line)
against the standard Normal distribution (black) and the standard Laplace
distribution (magenta).
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Figure 18: Monte Carlo approximation of prior distribution (with R = 10)
of an element of the tensor (histogram and dark blue line) against the
standard Normal distribution (black) and the standard Laplace distribution
(magenta).

Figure 19: Monte Carlo approximation of the right tail of the prior distribu-
tion (with R = 10) of an element of the tensor (histogram and dark blue line)
against the standard Normal distribution (black) and the standard Laplace
distribution (magenta).

The analytical formula for the prior distribution of the generic entry gijkp,l of the fourth-order
tensor Gl ∈ RI×J×K×P can be obtained from the PARAFAC(R) decomposition in eq. (A.7) and
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the hierarchical prior on the marginals in eq. (13), (14), (15), (16):

π(gijkp,l) =

∫
R+

∫
SR

∫
(R+×R+)4R

π(gijkp,l|τ,φ,w)π(τ)π(φ)π(w) dτ dφ dw , (B.1)

where SR is the standard R-simplex. The entry gijkp,l can be expressed in terms of the tensor

marginals {γ(r)
h,l}hrl as follows:

gijkp,l =
R∑
r=1

γ
(r)
1,i,l · γ

(r)
2,j,l · γ

(r)
3,k,l · γ

(r)
4,p,l . (B.2)

By exploiting the conditional independence relations in the hierarchical prior of the marginals
in eq. (13), we can thus rewrite the conditional distribution π(gijkp,l|τ,φ,w) in eq. (B.1) as:

π(gijkp,l|τ,φ,w) = P

 R∑
r=1

γ
(r)
1,i,l · γ

(r)
2,j,l · γ

(r)
3,k,l · γ

(r)
4,p,l

 , (B.3)

which is the distribution of a finite sum of independent, univariate normal distributions, centred
in zero, but with individual-specific variance. The distribution of each of these products has
been characterised by Springer and Thompson (1970), who proved the following theorem.

Theorem B.1 (4 in Springer and Thompson (1970)). The probability density function of the
product z =

∏J
j=1 xj of J independent Normal random variables xj ∼ N (0, σ2

j ), j = 1, . . . , J , is
a Meijer G-function multiplied by a normalising constant H:

p(z|{σ2
j }Jj=1) = H ·GJ,0J,0

z2 ·
J∏
j=1

1

2σj

∣∣∣0
 , (B.4)

where

H =

(2π)J/2 ·
J∏
j=1

σj

−1

(B.5)

and Gm,np,q (·|·) is a Meijer G-function (with c ∈ R and s ∈ C):

Gm,np,q

(
z
∣∣∣a1, . . . , ap
b1, . . . , bq

)
=

1

2πi

∫ c+i∞

c−i∞
z−s

∏m
j=1 Γ(s+ bj) ·

∏n
j=1 Γ(1− aj − s)∏p

j=n+1 Γ(s+ aj) ·
∏q
j=m+1 Γ(1− bj − s)

ds . (B.6)

The integral is taken over a vertical line in the complex plane. Notice that in the special
case J = 2 we have z ∼ c1P1−c2P2, with P1, P2 ∼ χ2

1 and c1 = V(x1 +x2)/4, c2 = V(x1−x2)/4.

NOTE 1: by definition the Mellin transform of the product of independent random variables
is the product of their Mellin transforms and the Fourier transform of the sum of independent
random variables is the sum of the Fourier transform of each variable. A strategy consists in
exploiting the distribution of each entry of the PARAFAC marginals, which is a generalised
Pareto distribution, that is for each i = 1, . . . , nh, h = 1, . . . , 4, r = 1, . . . , R and l = 1, . . . , L:

γ
(r)
h,l,i|τ, φr, λl ∼ GP (0, λl/(τφr))
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Thus:

M (r)(φr, τ) =M

 4∏
h=1

p(γ
(r)
h |τ, φr, λl)

 =
4∏

h=1

M
[
p(γ

(r)
h |τ, φr, λl)

]
.

However, we need:

p(gijkp,l) = P

 R∑
r=1

γ
(r)
1,i,l · γ

(r)
2,j,l · γ

(r)
3,k,l · γ

(r)
4,p,l

 , (B.7)

For a given regime l, we have dependence over r due to φr and overall dependence due to τ .
Otherwise, for independent random variables:

M (r)(φr, τ) =M

 4∏
h=1

p(γ
(r)
h |τ, φr, λl)

 =

4∏
h=1

M
[
p(γ

(r)
h |τ, φr, λl)

]

P

 R∑
r=1

M (r)
∣∣∣τ
 = F

 R∑
r=1

M (r)(φr)
∣∣∣τ
 6= F

 R∑
r=1

M (r)
∣∣∣τ
 =

R∑
r=1

F
[
M (r)

∣∣∣τ]
The marginal prior distribution, for a given regime l, is then obtained by taking the expect-

ation with respect to the prior distribution of the hyper-parameters:

π(gi1i2i3i4,l) =

∫
p
( R∑
r=1

4∏
h=1

γ
(r)
h,ih,l
|τ,φ, λl

)
π(τ)π(φ) d(τ,φ)

=

∫
p
( R∑
r=1

M (r)(φr, τ)|τ, φr
)
π(τ)π(φ) d(τ,φ)

=

∫
(2π)−1/2

R∑
r=1

4∏
h=1

(τφrwh,l)
− 1

2 exp

{
−1

2

(γrh,l)
2

τφrwh,l

}

· baττ
Γ(aτ )

τaτ−1 exp{−bττ} ·
Γ(Rα)

Γ(α)R

R∏
r=1

φα−1
r d(τ,φ)

=

∫
(2π)−1/2

R∑
r=1

(τφrwh,l)
−2 exp

−1

2

∑4
h=1(γrh,l)

2

τφrwh,l


· baττ

Γ(Rα)
τRα−1 exp{−bττ} ·

Γ(Rα)

Γ(α)R

R∏
r=1

φα−1
r d(τ,φ)

which contains the kernel of a generalized inverse Gaussian distribution for τφr.

∝
∫

exp{−bττ}

 R∏
r=1

τφr

α−1

·
R∑
r=1

(τφrwh,l)
−2 exp

−1

2

∑4
h=1(γrh,l)

2

τφrwh,l

 d(τ,φ)

∝
∫

exp{−bτ
R∑
r=1

τφr}

 R∏
r=1

τφr

α−1

·
R∑
r=1

(τφrwh,l)
−2 exp

−1

2

∑4
h=1(γrh,l)

2

τφrwh,l

 d(τ,φ)

Otherwise:∫
Γ(Rα)

Γ(α)Γ((R− 1)α)
(φr)

α−1(1− φr)α(R−1)−1(2π)−1/2(τφrwh,l)
− 1

2 exp

{
−1

2

(γrh,l)
2

τφrwh,l

}
dφr
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C Data augmentation

The likelihood function is:

L(X ,y|θ) =
∑

s1,...,sT

T∏
t=1

p(Xt,yt|st,θ)p(st|st−1) , (C.1)

where the index l ∈ {1, . . . , L} represents the regime. Through the introduction of a latent
variables s = {st}Tt=0, we obtain the data augmented likelihood:

L(X ,y, s|θ) =
T∏
t=1

L∏
l=1

L∏
h=1

[
p(Xt,yt|st = l,θ)p(st = l|st−1 = h,Ξ)

]
1(st=l)1(st−1=h)

. (C.2)

The conditional distribution of the observation given the latent variable and marginal distribu-
tion of st are given by, respectively:

p(Xt,yt|st = l,θ) = fl(Xt,yt|θl) (C.3)

p(st = l|st−1 = h,Ξ) = ph . (C.4)

Considering the observation model in eq. (2) and defining Tl = {t : st = l} for each l = 1, . . . , L,
we can rewrite eq. (C.2) as:

L(X ,y, s|θ) =
T∏
t=1

L∏
l=1

[
p(Xt|st = l,θ)p(yt|st = l,θ)

]
1(st=l)

L∏
h=1

[
p(st = l|st−1 = h,Ξ)

]
1(st=l)1(st−1=h)

=

L∏
l=1

∏
t∈Tl

I∏
i=1

J∏
j=1

K∏
k=1

[
(1− ρl)

exp{z′tgijk,l}
1 + exp{z′tgijk,l}

]xijk,t [
ρl + (1− ρl)

1

1 + exp{z′tgijk,l}

]1−xijk,t

·
L∏
l=1

∏
t∈Tl

(2π)−m/2 |Σl|−1/2 exp

{
−1

2
(yt − µl)′Σ−1

l (yt − µl)
}

·
T∏
t=1

L∏
l=1

L∏
h=1

p
1(st=l)1(st−1=h)
h . (C.5)

Since the function cannot be expressed as a series of products due to the sum in the rightmost
term, we choose to further augment the data via the through the introduction of latent allocation
variables D = {Dl}Ll=1, with Dl = (dijk,l) for i = 1, . . . , I, j = 1, . . . , J and k = 1, . . . ,K. Finally,
we perform another augmentation as in Polson et al. (2013), for dealing with the logistic part
of the model. When the hidden chain is assumed to be first order Markov, with two possible
states, that is L = 2, the complete data likelihood is given by:

L(X ,y,D,Ω, s|θ) = p(X ,D,Ω|s,θ)p(y|s,θ)p(s|θ)

=
T∏
t=1

p(Xt,Dt,Ωt|st,θ)p(yt|st,θ)p(st|θ) (C.6a)

=

 L∏
l=1

∏
t∈Tl

I∏
i=1

J∏
j=i

K∏
k=1

p(xijk,t, dijk,t, ωijk,t|st = l, ρl,Gl)︸ ︷︷ ︸
I

 (C.6b)

·

 L∏
l=1

∏
t∈Tl

p(yt|st = l,µl,Σl)︸ ︷︷ ︸
II

 ·
p(s|Ξ)︸ ︷︷ ︸

III

 (C.6c)
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where we have exploited the conditional independence of X and y given the hidden chain s. We
start by analysing in detail the first term (I). The joint distribution of the observation xijk,t and
the latent variables (dijk,t, ωijk,t) is obtained from the marginal distribution of the observation
in two steps. First, we augment the model by introducing the latent allocation dijk,l ∈ {0, 1} for
l = 1, 2. Via this data augmentation step we are able to factorise the summation in eq. (2) for
each regime l = 1, 2. In words, the allocation latent variable is used to identify the component
of the mixture in eq. (2) from which the observation xijk,t is drawn. Secondly, we use a further
data augmentation step via the introduction of the latent variables ωijk,t following Polson et al.
(2013), for dealing with the logistic part of the mixture.

By introducing the allocation variable dijk,t in eq. (2), for each i = 1, . . . , I, j = 1, . . . , J ,
k = 1, . . . ,K and t = 1, . . . , T , we obtain:

p(xijk,t|dijk,t, st = l, ρl,Gl)

=
[
δ{0}

]
1{dijk,t=1}

·
[
Bern(xijk,t|ηijk,t)

]
1{dijk,t=0}

=
[
δ{0}(xijk,t)

]dijk,t
·

( exp{z′tgijk,l}
1 + exp{z′tgijk,l}

)xijk,t (
1−

exp{z′tgijk,l}
1 + exp{z′tgijk,l}

)1−xijk,t
1−dijk,t

=
[
δ{0}(xijk,t)

]dijk,t
·
(
exp{z′tgijk,l}

)xijk,t(1−dijk,t)(
1 + exp{z′tgijk,l}

)(1−dijk,t) . (C.7)

p(xijk,t, dijk,t|st = l, ρl,Gl)

= ρ
1{dijk,t=1}
l ·

[
δ{0}(xijk,t)

]
1{dijk,t=1}

· (1− ρl)1{dijk,t=0} ·
[
Bern(xijk,t|ηijk,t)

]
1{dijk,t=0}

= ρ
dijk,t
l ·

[
δ{0}(xijk,t)

]dijk,t
· (1− ρl)1−dijk,t ·

(
exp{z′tgijk,l}

)xijk,t(1−dijk,t)(
1 + exp{z′tgijk,l}

)(1−dijk,t) . (C.8)

The marginal distribution of the allocation variable is:

p(dijk,t|st) = Bern(ρst) , (C.9)

for i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . ,K and t = 1, . . . , T .
By Theorem 1 in Polson et al. (2013), it is possible to decompose the ratio in the right hand

side of eq. (C.8) as follows:(
exp{z′tgijk,l}

)xijk,t(1−dijk,t)(
1 + exp{z′tgijk,l}

)(1−dijk,t) = 2−(1−dijk,t)
∫ ∞

0
exp

{
−
ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z
′
tgijk,l)

}
p(ωijk,t)dωijk,t ,

(C.10)
where for every l = 1, . . . , L, i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . ,K and t = 1, . . . , T :

κijk,t = xijk,t(1− dijk,t)−
1− dijk,t

2
= (1− dijk,t)

(
xijk,t −

1

2

)
. (C.11)

Therefore we get the following conditional and joint distributions, respectively:

p(xijk,t, dijk,t|ωijk,t, st = l, ρl,Gl) =

= ρ
dijk,t
l ·

(
0xijk,t11−xijk,t

)dij,t
·
(

1− ρl
2

)1−dijk,t
· exp

{
−
ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z
′
tgijk,l)

}
.

(C.12)
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p(xijk,t, dijk,t, ωijk,t|st = l, ρl,Gl) =

= ρ
dijk,t
l ·

(
0xijk,t11−xijk,t

)dijk,t
·
(

1− ρl
2

)1−dijk,t
· exp

{
−
ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z
′
tgijk,l)

}
p(ωijk,t) .

(C.13)

Finally, the marginal distribution of each latent variable ωijk,t from the data augmentation
scheme follows a Pólya-Gamma distribution:

ωijk,t ∼ PG(1, 0) . (C.14)

A continuous random variable x ∈ [0,+∞) has a Pólya-Gamma distribution with parameters

b > 0, c ∈ R if the following stochastic representation holds (where
D
= stands for equality in

distribution):

x ∼ PG(b, c) ⇐⇒ x
D
=

1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/(4π2)

(C.15)

where gk ∼ Ga(b, 1) are i.i.d. random variables. See Polson et al. (2013) for further details.
The part (II) of eq. (C.6c) is the likelihood of a multivariate normal mean regression, hence:

p(yt|st = l,θ) = (2π)−m/2 |Σl|−1/2 exp

{
−1

2
(yt − µl)′Σ−1

l (yt − µl)
}
. (C.16)

The last term in eq. (C.6c), according to the assumption of first order time homogeneous Markov
chain, factors as9:

p(st|θ) = p(s0|Ξ)
t∏

v=1

p(sv|sv−1,Ξ) = p(s0|Ξ)
t∏

v=1

ξsv−1,sv = p(s0|Ξ)
L∏
g=1

L∏
l=1

ξ
Ngl(s

t)
g,l (C.17)

where st = (s0, . . . , st)
′ and Ngl(s

t) is a function counting the number of transitions from state
g to state l in the vector st, that is (symbol # denotes the cardinality of a set): Ngl(s

t) =
#{st−1 = g, st = l}, ∀ g, l = 1, . . . , L. The complete data likelihood for X is thus obtained by
plugging, for each l = 1, . . . , L, eq. (C.13), eq. (C.16) and eq. (C.17) in eq. (C.6c):

L(X ,y,D,Ω, s|θ) =

=

 L∏
l=1

∏
t∈Tl

I∏
i=1

J∏
j=1

K∏
k=1

ρ
dijk,t
l · δ{0}(xijk,t)dij,t ·

(
1− ρl

2

)1−dijk,t
· exp

{
−
ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z
′
tgijk,l)

}
·

 L∏
l=1

∏
t∈Tl

(2π)−m/2 |Σl|−1/2 exp

{
−1

2
(yt − µl)′Σ−1

l (yt − µl)
}

·

 T∏
t=1

I∏
i=1

J∏
j=1

K∏
k=1

p(ωijk,t)

 ·
 L∏
g=1

L∏
l=1

ξ
Ngl(s)
g,l

 · p(s0|Ξ) . (C.18)

D Computational Details

D.1 Gibbs sampler

The structure of the partially collapsed Gibbs sampler (Van Dyk and Park (2008)) is as follows:

p(s|X ,G,ρ,Ξ)

9See (Frühwirth-Schnatter, 2006, ch.11) for more details.
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p(D|s,G,ρ)

p(Ω|X , s,G)

p(ψ|G,W)

p(τ |G,W,φ)

p(wh,r,l|γ
(r)
h,l , λl,φ, τ)

p(λl|w1,1,l, . . . , w4,R,l)

p(γ
(r)
1,l |γ

(r)
−1,l,G−r,l,φ, τ,W,X , s)

p(γ
(r)
2,l |γ

(r)
−2,l,G−r,l,φ, τ,W,X , s)

p(γ
(r)
3,l |γ

(r)
−3,l,G−r,l,φ, τ,W,X , s)

p(γ
(r)
4,l |γ

(r)
−4,l,G−r,l,φ, τ,W,X , s)

p(ρ|s,D)

p(Ξ|s)

p(µl|y, s,Σl) ∼ NM (µ̃l, Υ̃l)

p(Σl|y, s,µl) ∼ IWM (ν̃l, Ψ̃l) .

Step 1. sample latent variables from

p(s,D,Ω|X ,G,ρ,Ξ) = p(s|X ,G,ρ,Ξ) · p(D|s,G,ρ) · p(Ω|X , s,G)

– p(s|X ,G,ρ,Ξ) via FFBS (Frühwirth-Schnatter (2006))

– p(dijk,t|st,Gt, ρt) ∼ Bern(p̃dijk,t)

– p(ωijkv,t|xijk,t, st,Gt) ∼ PG(1, z′tgijk,st)

Step 2. sample variance hyper-parameters from

p(φ, τ,W |G) = p(φ|G,W)︸ ︷︷ ︸
collapse τ

·p(τ |G,φ,W) · p(W|G,λ,φ, τ)p(λ|W)

– p(ψr|G(r),wr) ∼ GiG

2b
τ
,

4∑
h=1

L∑
l=1

γ
(r)′

h,l γ
(r)
h,l

wh,r
, α− n

 then φr = ψr/
∑

i ψi

– p(τ |G,W,φ) ∼ GiG

2b
τ
,

R∑
r=1

4∑
h=1

L∑
l=1

γ
(r)′

h,l γ
(r)
h,l

φrwh,r
, (α− n)R


– p(wh,r,l|γ

(r)
h,l , φr, τ, λl) ∼ GiG

λ2
l ,
γ

(r)′

h,l γ
(r)
h,l

τφr
, 1− nh

2


– p(λl|wl) ∝ λ

aλl +8R−1

l exp
{
−λlb

λ
l

}
· exp

−λ2
l

2

R∑
r=1

4∑
h=1

wh,r,l
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Step 3. sample tensor marginals from

p
(
G|X , s,φ, τ,W

)
=

L∏
l=1

p
(
{γ(r)

1,l ,γ
(r)
2,l ,γ

(r)
3,l ,γ

(r)
4,l }

R
r=1

∣∣X , s,φ, τ,W
)

– p(γ
(r)
1,l |γ

(r)
−1,l,G−r,l,φ, τ,W,X , s) ∼ Nd1(µγ1,l

,Σγ1,l
)

– p(γ
(r)
2,l |γ

(r)
−2,l,G−r,l,φ, τ,W,X , s) ∼ Nd2(µγ2,l

,Σγ2,l
)

– p(γ
(r)
3,l |γ

(r)
−3,l,G−r,l,φ, τ,W,X , s) ∼ Nd3(µγ3,l

,Σγ3,l
)

– p(γ
(r)
4,l |γ

(r)
−4,l,G−r,l,φ, τ,W,X , s) ∼ Nd4(µγ4,l

,Σγ4,l
)

Step 4. sample switching parameters and transition matrix from

p(ρl, ξl,l|s,D) = p(ρl|s,D) · p(ξl,l|s)

– p(ρl|s,D) ∼ Be(ãl, b̃l)
– p(ξl,:|s) ∼ Dir(c̃)

Step 5. sample the parameters of the second equation from

p(µl,Σl|y, s) = p(µl|y, s,Σl)p(Σl|y, s,µl)

– p(µl|y, s,Σl) ∼ NM (µ̃l, Υ̃l)

– p(Σl|y, s,µl) ∼ IWM (ν̃l, Ψ̃l)

The derivation of the full conditional distribution is illustrated in the following subsections.

D.2 Full conditional distribution of φr

The full conditional of the common (over r) component of the variance of the marginals from
the PARAFAC, for each r = 1, . . . , R, can be obtained in closed form collapsing τ . This can
be done by exploiting a result in Guhaniyogi et al. (2017), which states that the posterior full
conditional of each φr can be obtained by normalising Generalised Inverse Gaussian distributed
random variables ψr, where ψr = τφr:

p(φr|G(r),wr) =
ψr∑R
i=1 ψi

∀ r (D.1)

where for every r = 1, . . . , R:

ψr ∼ GiG

2b
τ
,

4∑
h=1

L∑
l=1

γ
(r)′

h,l γ
(r)
h,l

wh,r,l
, α− n

 . (D.2)

In the previous notation, GiG(·) stands for the Generalized Inverse Gaussian distribution. The
Generalized Inverse Gaussian probability density function with three parameters a > 0, b > 0,
p ∈ R, for the random variable x ∈ (0,+∞), is given by:

x ∼ GiG(a, b, p) ⇒ p(x|a, b, p) =

(
a/b
)p/2

2Kp(
√
ab)

xp−1 exp

{
−1

2

(
ax+

b

x

)}
(D.3)
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with Kp(·) a modified Bessel function of the second type.
The computations necessary for obtaining this result are as follows:

p(φ|G,W) ∝ p(φ)

∫ ∞
0

p(G|W,φ, τ)p(τ) dτ

∝
R∏
r=1

φα−1
r

∫ ∞
0

R∏
r=1

4∏
h=1

L∏
l=1

(τφrwh,r,lInh)−1/2 exp

{
−1

2
γ

(r)′

h,l (τφrwh,r,lInh)−1γ
(r)
h,l

}
· τaτ−1 exp

{
−bττ

}
dτ

=

∫ ∞
0

R∏
r=1

φα−1
r

4∏
h=1

(τφrwh,r,lInh)−1 exp

−1

2

L∑
l=1

(τφrwh,r,l)
−1γ

(r)′

h,l γ
(r)
h,l


· τaτ−1 exp

{
−bττ

}
dτ . (D.4)

We define n = n1 +n2 +n3 +n4 = I+J +K+Q and exploit the property det(kA) = kn det(A),
for a square matrix A of size n and a scalar k. Finally, we assume:

aτ = αR (D.5)

which is allowed since the hyper-parameter aτ must be positive. We can thus obtain:

∝
∫ ∞

0

R∏
r=1

φα−1
r

4∏
h=1

(τφrwh,r,lInh)−1 exp

−1

2

L∑
l=1

(τφrwh,r,l)
−1γ

(r)′

h,l γ
(r)
h,l


· τaτ−1 exp

{
−bττ

}
dτ

∝
∫ ∞

0

R∏
r=1

(τφr)
α−1(τφr)

−n exp

−1

2

2b
τ
τ +

4∑
h=1

L∑
l=1

(τφrwh,r,l)
−1γ

(r)′

h,l γ
(r)
h,l


 dτ

=

∫ ∞
0

 R∏
r=1

(τφr)
α−n−1

 exp

−1

2

R∑
r=1

2b
τ
τφr +

1

τφr

4∑
h=1

L∑
l=1

γ
(r)′

h,l γ
(r)
h,l

wh,r,l


 dτ (D.6)

where in the last line we used
∑R

r=1 φr = 1. It can be seen that the integrand is the kernel
of a GiG with respect to the random variable ψr = τφr. Following Guhaniyogi et al. (2017)
and Kruijer et al. (2010), it is possible to sample from the posterior of φr, for each r = 1, . . . , R
by first sampling ψr from a GiG with kernel given in eq. (D.6), then normalising over r, as
reported in eq. (D.2)-(D.1), respectively.

As an alternative, it is possible to sample from eq. (D.2) using a Hamiltonian Monte Carlo
step (Neal (2011)).

D.3 Full conditional distribution of τ

The full conditional of the global component of the variance of the PARAFAC marginals is:

p(τ |G,W,φ) ∼ GiG

2b
τ
,

R∑
r=1

4∑
h=1

L∑
l=1

γ
(r)′

h,l γ
(r)
h,l

φrwh,r,l
, (α− n)R

 , (D.7)

The posterior full conditional distribution is derived from:

p(τ |G,W,φ) ∝ π(τ)p(G|W,φ, τ)
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∝ τaτ−1 exp
{
−bττ

} R∏
r=1

4∏
h=1

L∏
l=1

∣∣τφrwh,r,lInh∣∣−1/2
exp

{
−1

2
γ

(r)′

h,l (τφrwh,r,lInh)−1γ
(r)
h,l

}

∝ τaτ−nR−1 exp

−1

2

2b
τ
τ +

1

τ

R∑
r=1

4∑
h=1

L∑
l=1

γ
(r)′

h,l γ
(r)
h,l

φrwh,r,l


 , (D.8)

which is the kernel of the GiG in eq. (D.7), once the constraint in eq. (D.5) has been taken into
account.

It is possible to sample from eq. (D.7) using a Hamiltonian Monte Carlo step (Neal (2011)).

D.4 Full conditional distribution of wh,r,l

The full conditional distribution of the local component of the variance of each PARAFAC
marginal, for h = 1, . . . , 4, r = 1, . . . , R and l = 1, . . . , L, is given by:

p(wh,r,l|γ
(r)
h,l , φr, τ, λl) ∼ GiG

λ2
l ,
γ

(r)′

h,l γ
(r)
h,l

τφr
, 1− nh

2

 , (D.9)

which follows from:

p(wh,r,l|γ
(r)
h,l , φr, τ, λl) ∝ π(wh,r,l|λl)p(γ

(r)
h,l |wh,r,l, φr, τ)

∝ exp

{
−
λ2
l

2
wh,r,l

}∣∣τφrwh,r,lInh∣∣−1/2
exp

{
−1

2
γ

(r)′

h,l (τφrwh,r,lInh)−1γ
(r)
h,l

}
(D.10)

∝ exp

{
−
λ2
l

2
wh,r,l

}
w
−nh/2
h,r,l exp

−1

2

γ
(r)′

h,l γ
(r)
h,l

τφrwh,r,l


= w

−nh/2
h,r,l exp

−1

2

λ2
lwh,r,l +

1

wh,r,l

γ
(r)′

h,l γ
(r)
h,l

τφr


 . (D.11)

It is possible to sample from eq. (D.9) using a Hamiltonian Monte Carlo step (Neal (2011)).

D.5 Full conditional distribution of λl

The full conditional distribution of λl, for l = 1, . . . , L, is given by:

p(λl|wl) ∝ λ
aλl +8R−1

l exp
{
−λlb

λ
l

}
· exp

−λ2
l

2

R∑
r=1

4∑
h=1

wh,r,l

 . (D.12)

It is obtained from:

p(λl|wl) ∝ π(λl)p(wl|λl)

∝ λa
l
λ−1

l exp
{
−blλλl

} R∏
r=1

4∏
h=1

λ2
l

2
exp

{
−
λ2
l

2
wh,r,l

}
(D.13)
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∝ λaλl +8R−1 exp
{
−λlb

λ
l

}
· exp

−λ2
l

2

R∑
r=1

4∑
h=1

wh,r,l

 . (D.14)

Since the second exponential is always smaller than one due to the positiveness of all the para-
meters λl, wh,r,l, we can sample from this distribution by means of an accept/reject algorithm
using as proposal density a Gamma distribution Ga(ã, b̃) with parameters:

ã = aλl + 8R b̃ = b
λ
l . (D.15)

Since this sampling scheme has very low acceptance rate, it is possible to sample from eq. (D.12)
using a Hamiltonian Monte Carlo step (Neal (2011)).

D.6 Full conditional distribution of γ
(r)
h,l

For deriving the full conditional distribution of each PARAFAC marginal, γ
(r)
h,l , of the tensor Gl,

l = 1, . . . , L, we start by manipulating the complete data likelihood in eq. (12) with the aim of

singling out γ
(r)
h,l . From eq. (C.13), considering all the entries of Xt at a given t ∈ {1, . . . , T}

and denoting with π(Gl) the prior distribution induced on Gl by the hierarchical prior on the
PARAFAC marginals in eq. (13), the following proportionality relation holds:

p(Gl|Xt,Dt,Ωt, st = l, ρl) ∝
I∏
i=1

J∏
j=1

K∏
k=1

exp

{
−
ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z
′
tgijk,l)

}
p(ωijk,t)π(Gl)

=

I∏
i=1

J∏
j=1

K∏
k=1

exp

− 1

2ω−1
ijk,t

[
(z′tgijk,l)

2 − 2
κijk,t
ωijk,t

(z′tgijk,l)

] p(ωijk,t)π(Gl)

=
I∏
i=1

J∏
j=1

K∏
k=1

exp

− 1

2ω−1
ijk,t

(
z′tgijk,l −

κijk,t
ωijk,t

)2
 p(ωijk,t)π(Gl).

(D.16)

Define uijk,t = κijk,t/ωijk,t, then we rewrite eq. (D.16) in more compact form as:

p(Gl|Xt,Dt,Ωt, st = l, ρl) ∝

∝ exp

−1

2

I∑
i=1

J∑
j=1

K∑
k=1

1

ω−1
ijk,t

(
z′tgijk,l − uijk,t

)2 ·
I∏
i=1

J∏
j=1

K∏
k=1

p(ωijk,t) · π(Gl)

= exp

−1

2

I∑
i=1

(Gl ×4 zt − Ut)′i diag
(
ωi:,t

)
(Gl ×4 zt − Ut)i

 ·
I∏
i=1

J∏
j=1

K∏
k=1

p(ωijk,t) · π(Gl)

= exp

{
−1

2

(
vec (Gl ×4 zt)− vec (Ut)

)′
diag

(
vec (Ωt)

) (
vec (Gl ×4 zt)− vec (Ut)

)}
·
I∏
i=1

J∏
j=1

K∏
k=1

p(ωijk,t) · π(Gl)

= f (Gl, zt,Ut,Ωt) ·
I∏
i=1

J∏
j=1

K∏
k=1

p(ωijk,t) · π(Gl) , (D.17)
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where f(·) is a function which contains the kernel of a multivariate normal distribution with
respect to the variable vec (Gl ×4 zt).

Given the proportionality relation conditional on the latent variable st, the last step in the
manipulation of the likelihood function consists in rewriting the complete data likelihood. Thus,
considering eq. (12) and (D.17) we obtain the proportionality relation:

L(X ,D,Ω, s|θ) =

L∏
l=1

∏
t∈Tl

p(Xt,Dt,Ωt, st|θ) ∝
L∏
l=1

∏
t∈Tl

f (Gst , zt,Ut,Ωt) . (D.18)

We are now ready to compute the full conditional distributions of each vector γ
(r)
h,l , h = 1, . . . , 4,

l = 1, . . . , L and r = 1, . . . , R. To this aim, notice that:

Gl =
R∑
r=1

γ
(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l ◦ γ

(r)
4,l = G(r)

l + G(−r)
l , (D.19)

where we have defined:

G(r)
l = γ

(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l ◦ γ

(r)
4,l (D.20a)

G(−r)
l =

R∑
v=1
v 6=r

G(v)
l . (D.20b)

By exploiting the definitions of mode-n product and PARAFAC decomposition, we obtain:

Gl,t = Gl ×4 zt =
R∑
r=1

(
γ

(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l

)
〈γ(r)

4,l , zt〉 =
R∑
r=1

G(r)
l,t . (D.21)

Here 〈·, ·〉 denotes the standard inner product in the Euclidean space Rn. Since the latter is a
scalar, we have that:

gl,t = vec
(
Gl,t
)

= vec (Gl ×4 zt) =
R∑
r=1

vec
(
G(r)
l,t

)
=

R∑
r=1

g
(r)
l,t . (D.22)

The vectorisation of a tensor can be expressed in the following way, which is a generalisation of
a well known property holding for matrices: it consists in stacking in a column vector all the
vectorised slices of the tensor. For the sake of clarity, let α1 ∈ RI , α2 ∈ RJ and α3 ∈ RK and
let the tensor A = α1 ◦α2 ◦α3. Denote A::k ∈ RI×J the k-th frontal slice of the tensor A. Then,
by applying the properties of Kronecker product, ⊗, and of the vectorization operator, vec, we
obtain10:

vec (A) = vec (α1 ◦α2 ◦α3) =
[
vec (A::1)′ , . . . , vec (A::K)′

]′
10The outer product and Kronecker products are two operators acting on:

◦ : Rn1 × . . .× RnK → Rn1×...×nK

⊗ : Rn1×m1 × Rn2×m2 → Rn1n2×m1m2 .

Notice that the Kronecker product is defined on the space of matrices (and vectors, as a particular case), while
the outer product is defined on arrays of possible different number of dimensions (e.g. it is defined between two
vectors, and returns a matrix, as well as between a vector and a matrix, yielding a third order tensor). In practice,
in the particular case aring when dealing with two vectors u ∈ Rn and v ∈ Rm, their outer product and Kronecker
product are related and given by, respectively:

u ◦ v = uv′ ∈ Rn×m

u⊗ v = vec
(
vu′
)

= vec (v ◦ u) ∈ Rnm .
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=
[
vec (α1 ◦α2)′ α3,1, . . . , vec (α1 ◦α2)′ α3,K

]′
= α3 ⊗ vec (α1 ◦α2) = α3 ⊗ vec

(
α1α

′
2

)
. (D.23)

The use of the same property allows to rewrite eq. (D.23) in three equivalent ways, each one
written as a product of a matrix and one of the vectors α1,α2,α3, respectively. In fact, we
have:

vec (A) = α3 ⊗ vec
(
α1α

′
2

)
= α3 ⊗ (α2 ⊗ II) vec (α1) = (α3 ⊗α2 ⊗ II)α1 (D.24)

vec (A) = α3 ⊗ vec
(
α1α

′
2

)
= α3 ⊗

[
(IJ ⊗α1) vec

(
α′2
)]

= (α3 ⊗ IJ ⊗α1)α2 (D.25)

vec (A) = α3 ⊗ vec
(
α1α

′
2

)
= vec

(
vec
(
α1α

′
2

)
α′3

)
=
(
IK ⊗ vec

(
α1α

′
2

))
vec
(
α′3
)

=
(
IK ⊗ vec

(
α1α

′
2

))
α3 = (IK ⊗α2 ⊗α1)α3 . (D.26)

The first line represents a product between the matrix α3 ⊗ α2 ⊗ II ∈ RIJK×I and the vector
α1, the second is a product between the matrix α3 ⊗ IJ ⊗ α1 ∈ RIJK×J and the vector α2.
Finally, the last row is a product between the matrix IK ⊗ α2 ⊗ α1 ∈ RIJK×K and the vector
α3.

Starting from eq. (D.22), we can apply for γ
(r)
1,l , . . . ,γ

(r)
3,l the same argument as for α1, . . . ,α3,

with the aim of manipulating the likelihood function and obtain three different expressions where

the dependence on γ
(r)
1,l ,γ

(r)
2,l ,γ

(r)
3,l , respectively, is made explicit. This will then be used later on

for deriving the posterior full conditional distributions of the PARAFAC marginals. Thus, from
eq. (D.22) we have:

g
(r)
l,t = vec

(
G(r)
l,t

)
= 〈γ(r)

4,l , zt〉 vec
(
γ

(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l

)
= vec

(
γ

(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l

)
z′tγ

(r)
4,l = A4γ

(r)
4,l ,

(D.27)
where:

A4 = vec
(
γ

(r)
1,l ◦ γ

(r)
2,l ◦ γ

(r)
3,l

)
z′t . (D.28)

Exploiting eq. (D.24) we have:

g
(r)
l,t = vec

(
G(r)
l,t

)
= 〈γ(r)

4,l , zt〉
(
γ

(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
γ

(r)
1,l = A1γ

(r)
1,l , (D.29)

with:
A1 = 〈γ(r)

4,l , zt〉
(
γ

(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
. (D.30)

Exploiting eq. (D.25) we have:

g
(r)
l,t = vec

(
G(r)
l,t

)
= 〈γ(r)

4,l , zt〉
(
γ

(r)
3,l ⊗ IJ ⊗ γ(r)

1,l

)
γ

(r)
2,l = A2γ

(r)
2,l , (D.31)

with:
A2 = 〈γ(r)

4,l , zt〉
(
γ

(r)
3,l ⊗ IJ ⊗ γ(r)

1,l

)
. (D.32)

Finally, using eq. (D.26) we obtain:

g
(r)
l,t = vec

(
G(r)
l,t

)
= 〈γ(r)

4,l , zt〉
(
IK ⊗ γ(r)

2,l ⊗ γ
(r)
1,l

)
γ

(r)
3,l = A3γ

(r)
3,l , (D.33)

For two matrices A ∈ Rm×n and B ∈ Rn×k it holds:

vec (AB) = (Ik ⊗A) vec (B) = (B′ ⊗ Im) vec (A) ∈ Rmk×1 .

Moreover, if n = 1 then B is a row vector of length k, as a consequence B′ = vec (B) ∈ Rk×1. See (Cichocki
et al., 2009, p.31).
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with:
A3 = 〈γ(r)

4,l , zt〉
(
IK ⊗ γ(r)

2,l ⊗ γ
(r)
1,l

)
. (D.34)

By using the definition of f(Gl, zt,U
(l)
t ,Ωt), eq. (D.22) and the notation of eq. (D.19) we can

thus write:

vec (Gl ×4 zt) = g
(r)
l,t +

R∑
v=1
v 6=r

g
(v)
l,t = g

(r)
l,t + g

(−r)
l,t . (D.35)

From eq. (D.18), by focusing on regime l ∈ {1, . . . , L}, we get:

L(X ,D,Ω, s|θ) ∝

∝ exp

{
−1

2

(
vec (Gl ×4 zt)− vec (Ut)

)′
diag

(
vec (Ωt)

) (
vec (Gl ×4 zt)− vec (Ut)

)}
= exp

{
−1

2

(
g

(r)
l,t + g

(−r)
l,t − ut

)′
Ωt

(
g

(r)
l,t + g

(−r)
l,t − ut

)}
(D.36)

where, for reducing the burden of notation, we have defined:

ut = vec (Ut) (D.37)

Ωt = diag
(
vec (Ωt)

)
. (D.38)

We can now single out a specific component G(r)
l of the PARAFAC decomposition of the tensor

G, which is incorporated in g
(r)
l,t . In fact, we can manipulate the function in eq. (D.36) with the

aim of finding a proportionality relation, as follows:

L(X ,D,Ω, s|θ) ∝
∏
t∈Tl

exp

{
−1

2

[
g

(r)′

l,t Ωtg
(r)
l,t + g

(r)′

l,t Ωt(g
(−r)
l,t − ut)

+ (g
(−r)
l,t − ut)

′Ωtg
(r)
l,t + (g

(−r)
l,t − ut)

′Ωt(g
(−r)
l,t − ut)

]}

∝
∏
t∈Tl

exp

{
−1

2

[
g

(r)′

l,t Ωtg
(r)
l,t − 2(ut − g

(−r)
l,t )′Ωtg

(r)
l,t

]}
. (D.39)

D.6.1 Full conditional distribution of γ
(r)
1,l

The full conditional distribution of γ
(r)
1,l is given by:

p(γ
(r)
1,l |X ,D,Ω, s,γ(r)

2,l ,γ
(r)
3,l ,γ

(r)
4,l ,G

(−r)
l , w1,r, φr, τ) ∼ NI(ζ̃

r
1,l, Λ̃

r
1,l) (D.40)

where:

Λ̃
r
1,l =

(τφrw1,rII
)−1

+
∑
t∈Tl

(
Σ

(r)

1,l,t

)−1
−1

(D.41a)

ζ̃
r
1,l = Λ̃

r′

1,l

ζr′1,l (τφrw1,rII
)−1

+
∑
t∈Tl

µ
(r)′

1,l,t

(
Σ

(r)

1,l,t

)−1
′ . (D.41b)
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By exploiting the rightmost term in the equality chain in eq. (D.29), we can simplify the two
addenda in eq. (D.39) as:

g
(r)′

l,t Ωtg
(r)
l,t =

(
A1γ

(r)
1,l

)′
Ωt

(
A1γ

(r)
1,l

)
= 〈γ(r)

4,l , zt〉γ
(r)′

1,l

(
γ

(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)′
Ωt

(
γ

(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
γ

(r)
1,l 〈γ

(r)
4,l , zt〉

= γ
(r)′

1,l

[(
γ

(r)′

3,l ⊗ γ
(r)′

2,l ⊗ I′I

)
Ωt

(
γ

(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
(〈γ(r)

4,l , zt〉)
2

]
γ

(r)
1,l

= γ
(r)′

1,l

(
Σ

(r)

1,l,t

)−1

γ
(r)
1,l . (D.42)

and

−2(ut − g
(−r)
l,t )′Ωtg

(r)
l,t = −2(ut − g

(−r)
l,t )′Ωt

(
γ

(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
γ

(r)
1,l 〈γ

(r)
4,l , zt〉

= −2〈γ(r)
4,l , zt〉(ut − g

(−r)
l,t )′Ωt

(
γ

(r)
3,l ⊗ γ

(r)
2,l ⊗ II

)
γ

(r)
1,l

= −2µ
(r)′

1,l,t

(
Σ

(r)

1,l,t

)−1

γ
(r)
1,l . (D.43)

Now, by applying Bayes’ rule and plugging eq. (D.42) and eq. (D.43) into eq. (D.39) we get:

p(γ
(r)
1,l |−) ∝ L(X ,D,Ω, s|θ)π(γ

(r)
1,l |w1,:,φ, τ)

∝
∏
t∈Tl

exp

−1

2

[
γ

(r)′

1,l

(
Σ

(r)

1,l,t

)−1

γ
(r)
1,l − 2µ

(r)′

1,l,t

(
Σ

(r)

1,l,t

)−1

γ
(r)
1,l

]
· exp

{
−1

2

[
γ

(r)′

1,l

(
Λ
r
1,l

)−1
γ

(r)
1,l − 2ζ

r′

1,l

(
Λ
r
1,l

)−1
γ

(r)
1,l

]}

= exp

{
−1

2

[∑
t∈Tl

(
γ

(r)′

1,l

(
Σ

(r)

1,l,t

)−1

γ
(r)
1,l − 2µ

(r)′

1,l,t

(
Σ

(r)

1,l,t

)−1

γ
(r)
1,l

)

+

(
γ

(r)′

1,l

(
Λ
r
1,l

)−1
γ

(r)
1,l − 2ζ

r′

1,l

(
Λ
r
1,l

)−1
γ

(r)
1,l

)]}

= exp

{
−1

2

[
γ

(r)′

1,l

∑
t∈Tl

(
Σ

(r)

1,l,t

)−1
γ(r)

1,l − 2

∑
t∈Tl

µ
(r)′

1,l,t

(
Σ

(r)

1,l,t

)−1
γ(r)

1,l

+ γ
(r)′

1,l

(
Λ
r
1,l

)−1
γ

(r)
1,l − 2ζ

r′

1,l

(
Λ
r
1,l

)−1
γ

(r)
1,l

]}

= exp

{
−1

2

[
γ

(r)′

1,l

(Λ
r
1,l

)−1
+
∑
t∈Tl

(
Σ

(r)

1,l,t

)−1
γ(r)

1,l

− 2

ζr′1,l (Λ
r
1,l

)−1
+
∑
t∈Tl

µ
(r)′

1,l,t

(
Σ

(r)

1,l,t

)−1
γ(r)

1,l

]}
. (D.44)

This is the kernel of a multivariate normal distribution with parameters:

Λ̃
r
1,l =

(τφrw1,rII
)−1

+
∑
t∈Tl

(
Σ

(r)

1,l,t

)−1
−1

(D.45a)
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ζ̃
r
1,l = Λ̃

r′

1,l

ζr′1,l (τφrw1,rII
)−1

+
∑
t∈Tl

µ
(r)′

1,l,t

(
Σ

(r)

1,l,t

)−1
′ . (D.45b)

D.6.2 Full conditional distribution of γ
(r)
2,l

The full conditional distribution of γ
(r)
2,l is given by:

p(γ
(r)
2,l |X ,D,Ω, s,γ(r)

1,l ,γ
(r)
3,l ,γ

(r)
4,l ,G

(−r)
l , w2,r, φr, τ) ∼ NJ(ζ̃

r
2,l, Λ̃

r
2,l) (D.46)

where:

Λ̃
r
2,l =

(τφrw2,rIJ
)−1

+
∑
t∈Tl

(
Σ

(r)

2,l,t

)−1
−1

(D.47a)

ζ̃
r
2,l = Λ̃

r′

2,l

ζr′2,l (τφrw2,rIJ
)−1

+
∑
t∈Tl

µ
(r)′

2,l,t

(
Σ

(r)

2,l,t

)−1
′ . (D.47b)

By exploiting the central term in the equality chain in eq. (D.31), we can simplify the two
addenda in eq. (D.39) as:

g
(r)′

l,t Ωtg
(r)
l,t =

(
A2γ

(r)
2,l

)′
Ωt

(
A2γ

(r)
2,l

)
= 〈γ(r)

4,l , zt〉γ
(r)′

2,l

(
γ

(r)
3,l ⊗ IJ ⊗ γ(r)

1,l

)′
Ωt

(
γ

(r)
3,l ⊗ IJ ⊗ γ(r)

1,l

)
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and
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Now, by applying Bayes’ rule and plugging eq. (D.48) and eq. (D.49) into eq. (D.39) we get:
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)
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+
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This is the kernel of a multivariate normal distribution with parameters:
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D.6.3 Full conditional distribution of γ
(r)
3,l

The full conditional distribution of γ
(r)
3,l is given by:

p(γ
(r)
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where:

Λ̃
r
3,l =

(τφrw3,rIK
)−1

+
∑
t∈Tl

(
Σ

(r)

3,l,t

)−1
−1

(D.53a)
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By exploiting the rightmost term in the equality chain in eq. (D.33), we can simplify the two
addenda in eq. (D.39) as:
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and
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Now, by applying Bayes’ rule and plugging eq. (D.54) and eq. (D.55) into eq. (D.39) we get:
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. (D.56)

This is the kernel of a multivariate normal distribution with parameters:
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D.6.4 Full conditional distribution of γ
(r)
4,l

The full conditional distribution of γ
(r)
4,l is given by:
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where:
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By exploiting the central term in the equality chain in eq. (D.27), we can simplify the two
addenda in eq. (D.39) as:
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and
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Now, by applying Bayes’ rule and plugging eq. (D.60) and eq. (D.61) into eq. (D.39) we get:
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This is the kernel of a multivariate normal distribution with parameters:
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ζ̃
r
4,l = Λ̃

r′

4,l

ζr′4,l (τφrw4,rIQ
)−1

+
∑
t∈Tl

µ
(r)′

4,l,t

(
Σ

(r)

4,l,t

)−1
′ . (D.63b)

D.7 Full conditional distribution of ωijk,t

The full conditional distribution for the latent variable ωijk,t for every i = 1, . . . , I, j = 1, . . . , J ,
k = 1, . . . ,K and t = 1, . . . , T :

p(ωijk,t|xijk,t, st,Gst) ∼ PG(1, z′tgijk,st) . (D.64)

To shorten the notation, define ψijk,t = z′tgijk,st . The full conditional is derived by integrating
out the latent allocation variable dijk,t, as follows:
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=
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Since p(ωijk,t) ∼ PG(1, 0), by Theorem 1 in Polson et al. (2013) the result follows.

D.8 Full conditional distribution of dijk,t

The full conditional posterior probabilities for the latent allocation variables dijk,t, which select
the component of the mixture in eq. (3), for each t = 1, . . . , T and for every i = 1, . . . , I,
j = 1, . . . , J and k = 1, . . . ,K, are given by:

p(dijk,t = 1|X , s,Gst ,ρst) =
p̃(dijk,t = 1|X , s,Gst ,ρst)

p̃(dijk,t = 1|X , s,Gst ,ρst) + p̃(dijk,t = 0|X , s,Gst ,ρst)
(D.66a)

50



p(dij,t = 0|X , s,Gst ,ρst) =
p̃(dijk,t = 0|X , s,Gst ,ρst)

p̃(dijk,t = 1|X , s,Gst ,ρst) + p̃(dijk,t = 0|X , s,Gst ,ρst)
. (D.66b)

The unnormalised posterior probabilities are given by:

p̃(dijk,t = 1|X , s,Gst ,ρst) = ρstδ{0}(xijk,t) (D.67a)

p̃(dijk,t = 0|X , s,Gst ,ρst) = (1− ρst)
exp

{
(z′tgijk,st)xijk,t

}
1 + exp{z′tgijk,st}

. (D.67b)

We have obtained the result starting from eq. (12) after having integrated out the latent variables
Ω, as follows:

p̃(dijk,t|X , s,Gst ,ρst) ∝ p(X , s|Gst ,ρst , dijk,t)π(dijk,t)

= ρ
dijk,t
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. (D.68)

D.9 Full conditional distribution of ρl

For each regime l = 1, . . . , L, the full conditional distribution for the mixing probability ρl of
the observation model in eq (2) is given by:

p(ρl|X ,D, s) = p(ρl|D, s) ∼ Be(ãl, b̃l) , (D.69)

with:

ãl = N l
1 + aρl (D.70a)

b̃l = N l
0 + b

ρ
l . (D.70b)

We get this result starting from eq. (12) and integrating out the latent variables Ω, as follows:
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where we have defined the counting variables, for every l = 1, . . . , L:

N l
1 =

∑
t∈Tl

I∑
i=1

J∑
j=1

K∑
k=1

1{dijk,t = 1} (D.72a)

N l
0 =

∑
t∈Tl

I∑
i=1

J∑
j=1

K∑
k=1

1{dijk,t = 0} . (D.72b)
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D.10 Full conditional distribution of µl

The full conditional distribution for the intercept term of the second equation of the model is
given by:

p(µl|y, s,Σl) ∼ NM (µ̃l, Υ̃l) , (D.73)

with:

µ̃l = Υ̃
′
l

µ′lΥ−1
l +

∑
t∈Tl

y′tΣ
−1
l

′ , (D.74a)

Υ̃l =
[
TlΣ

−1
l + Υ

−1
l

]−1
, (D.74b)

for each regime l = 1, . . . , L. We have derived the updated hyper-parameters from:

p(µl|y, s,Σl) ∝ π(µl)p(y|s,Σl,µl)

∝ exp

{
−1

2
(µl − µl)′Υ

−1
l (µl − µl)

}∏
t∈Tl

exp

{
−1

2
(yt − µl)′Σ−1

l (yt − µl)
}

∝ exp

−1

2

µ′lΥ−1
l µl − 2µ′lΥ

−1
l µl +

∑
t∈Tl

µ′lΣ
−1
l µl − 2y′tΣ

−1
l µl




∝ exp

−
1

2

µ′l (TlΣ−1
l + Υ

−1
l

)
µl − 2

∑
t∈Tl

y′tΣ
−1
l + µ′lΥ

−1
l

µl

 . (D.75)

D.11 Full conditional distribution of Σl

The full conditional distribution for the covariance of the error term of the second equation of
the model is given by:

p(Σl|y, s,µl) ∼ IWM (ν̃l, Ψ̃l) , (D.76)

with:

ν̃l = νl + Tl , (D.77a)

Ψ̃l = Ψl +
∑
t∈Tl

(yt − µl)(yt − µl)′ , (D.77b)

for each regime l = 1, . . . , L. We have derived the updated hyper-parameters from:

p(Σl|y, s,µl) ∝ π(Σl)p(y|s,µl,Σl)

∝ |Σl|−
νl+m−1

2 exp

{
−1

2
tr
(
ΨlΣ

−1
l

)}∏
t∈Tl

|Σl|−1/2 exp

{
−1

2
(yt − µl)′Σ−1

l (yt − µl)
}

= |Σl|−
νl+m−1+Tl

2 exp

−1

2

tr
(
ΨlΣ

−1
l

)
+
∑
t∈Tl

(yt − µl)′Σ−1
l (yt − µl)




= |Σl|−
νl+m−1+Tl

2 exp

−
1

2

tr
(
ΨlΣ

−1
l

)
+ tr

∑
t∈Tl

(yt − µl)(yt − µl)′Σ−1
l
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= |Σl|−
νl+m−1+Tl

2 exp

−
1

2

tr


Ψl +

∑
t∈Tl

(yt − µl)(yt − µl)′
Σ−1

l



 ,

(D.78)

where we have used the property of linearity of the trace operator.

D.12 Full conditional distribution of ξl,:

The full conditional distributionof each row l = 1, . . . , L of the transition matrix of the hidden
Markov chain, under the assumption that the initial distribution of the state st is independent
from the transition matrix Ξ, that is p(s0|Ξ) = p(s0), is given by:

p(ξl,:|s) ∼ Dir(c̃) , (D.79)

where:
c̃ =

(
c1 +Nl,1(s), . . . , cL +Nl,L(s)

)
. (D.80)

It can be derived from:

p(ξl,:|s) ∝ π(ξl,:)p(s|ξl,:)

∝
L∏
k=1

ξck−1
l,k

L∏
g=1

L∏
k=1

ξ
Ng,k(s)
g,k p(s0|Ξ)

∝
L∏
k=1

ξck−1
l,k

L∏
k=1

ξ
Nl,k(s)
l,k p(s0|Ξ)

=

L∏
k=1

ξ
ck+Nl,k(s)−1
l,k p(s0|Ξ) . (D.81)

Concerning the notation, we denoted the collection of hidden states up to time t by st =
(s0, . . . , st) and we used Ni,j(s) =

∑
t 1(st−1 = i)1(st = j) for counting the number of transitions

from state i to state j up to time T . Under the assumption p(s0|Ξ) = p(s0), we obtain the full
conditional posterior in eq. (D.79). By contrast, if the initial distribution of s0 depends on the
transition matrix (for example, when it coincides with the ergodic distribution η∗(Ξ)), we have:

p(ξl,:|s) ∝ gl(ξl,:)η∗(Ξ) , (D.82)

where gl(ξl,:) is the kernel of the Dirichlet distribution in eq. (D.81). We can sample from it
via a Metropolis Hastings step, either for a single or for multiple rows of the transition matrix,
using gl(ξl,:) as proposal for row l. See Frühwirth-Schnatter (2006) for further details.

D.13 Full conditional distribution of st

For sampling the trajectory s = (s1, . . . , sT ), we can adopt two approaches: (i) update st for
each t = 1, . . . , T using a single-move Gibbs sampler step. This implies sampling each state st
from its posterior distribution conditioning on all the other states. (ii) update the whole path s
from the full joint conditional distribution in a multi-move Gibbs sampler step, also called the
Forward-Filtering-Backward-Sampling (FFBS) algorithm (see Frühwirth-Schnatter (2006)).
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Define s−t = (s0, . . . , st−1, st+1, . . . , sT )′. Since the hidden chain is assumed to be first order
Markov, we can derive the full conditional distribution for the each state st:

p(st|s−t,X ,y,D,Ω,G,µ,Σ,Ξ,ρ,W,φ, τ) = p(st|st−1, st+1,Xt,yt,D,G,µ,Σ,Ξ,ρ) . (D.83)

Staring from the complete data likelihood in eq. (12) for a given time t and integrating out the
latent variables (D,Ωt), we obtain the unnormalized posterior probability of state l at time t
for l ∈ {1, . . . , L}:

p(st = l|st−1 = u, st+1 = v, Xt,yt,ρ,G,µ,Σ,Ξ) ∝ qtl,uv , (D.84)

where qtl,uv is given by:

qtl,uv =
I∏
i=1

J∏
j=1

[
(1− ρl)

exp{z′tgijk,l}
1 + exp{z′tgijk,l}

]xij,t [
ρl + (1− ρl)

1

1 + exp{z′tgijk,l}

]1−xij,t

· |Σl|−1/2 exp

{
−1

2
(yt − µl)′Σ−1

l (yt − µl)
}

·

 L∏
g=1

ξ
1{st−1=u}
g,l

 L∏
k=1

ξ
1{st+1=v}
l,k

 . (D.85)

By normalizing one gets:

p(st = l|st−1 = u, st+1 = v, Xt,yt,ρ,G,µ,Σ,Ξ) =
qtl,uv∑L
k=1 q

t
k,uv

∀ l . (D.86)

Combining together all possible L values of the state variable, we can recognise that the pos-
terior distribution of the state latent variable at time t follows a categorical distribution with
probability vector p̃tuv = (p̃t1,uv, . . . , p̃

t
L,uv)

′:

p(st|st−1 = u, st+1 = v, Xt,yt,ρ,G,µ,Σ,Ξ) ∝
L∏
l=1

(qtl,uv)
1{st=l} . (D.87)

If we consider conditioning on (st−1, st+1) instead of on the specific couple (st−1 = u, st+1 = v),
we get an unnormalised posterior probability (denoted qtl ) similar to eq. (D.86), but without the
indicator variables. The result in eq. (D.87) thus translates in:

p(st = l|st−1, st+1,Xt,yt,G,ρ,µ,Σ,Ξ) =
qtl∑L
k=1 q

t
k

∝ qtl ∀ l (D.88)

p(st|st−1, st+1,Xt,yt,G,ρ,µ,Σ,Ξ) ∝
L∏
l=1

(qtl )
1{st=l} . (D.89)

By contrast, the multi-move Gibbs sampler consists in sampling the path from the joint
full conditional distribution p(s|−). It is based on the factorisation of the full joint conditional
distribution as the product of the entries of the transition matrix Ξ and the filtered probabilities.
Since the observations (Xt,yt) depend only on the contemporaneous value of the hidden chain st,
filtering the state probabilities is feasible. Staring from the complete data likelihood in eq. (12),
we integrate the latent variables (D,Ω) and sample the trajectory from the full joint conditional
distribution:

p(s|X ,y,G,ρ,µ,Σ,Ξ) ∝ p(X ,y, s|G,ρ,µ,Σ) = p(X ,y|s,G,ρ,µ,Σ)p(s|Ξ) . (D.90)
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Consequently, at each iteration of the Gibbs sampler we firstly compute the filtered state prob-
abilities using p(X ,y|s,G,µ,Σ) as likelihood function. Define X t−1 = {X1, . . . ,Xt−1} and
yt−1 = {y1, . . . ,yt−1}. Since the two observation processes are independent from each other
as well as from their own past conditionally on the current state, the predictive probability
correspond to the conditional distribution of the observations given the state:

p(Xt,yt|st = l,X t−1,yt−1,G,ρ,µ,Σ) = p(Xt,yt|st = l,G,ρ,µ,Σ)

= p(yt|st = l,µl,Σl) · p(Xt|st = l, ρl,Gl) (D.91a)

= p(yt|st = l,µl,Σl) ·
I∏
i=1

J∏
j=i

K∏
k=1

p(xijk,t|st = l, ρl,Gl) .

(D.91b)

From eq. (C.5), we have that the logarithm of the predictive probability is:

log p(Xt,yt|st = l,X t−1,yt−1,G,ρ,µ,Σ) =

= log p(yt|st = l,µl,Σl) +
I∑
i=1

J∑
j=1

K∑
k=1

log p(xijk,t|st = l, ρl,Gl) (D.92)

where:

p(yt|st = l,µl,Σl) = (2π)−m/2 |Σl|−1/2 exp

{
−1

2
(yy − µl)′Σ−1

l (yt − µl)
}

(D.93)

p(xijk,t = 1|st = l, ρl,Gl) = (1− ρl)
exp{z′tgijk,l}

1 + exp{z′tgijk,l}
(D.94)

p(xijk,t = 0|st = l, ρl,Gl) = ρl + (1− ρl)
1

1 + exp{z′tgijk,l}
. (D.95)

E Computation for Pooled case

The complete data likelihood from (C.13) reads:

L(X |θ) =
∏
t∈Tl

I∏
i=1

J∏
j=1

K∏
k=1

ρ
dijk,t
l ·

(
0xijk,t11−xijk,t

)dijk,t
·
(

1− ρl
2

)1−dijk,t

· exp

{
−
ωijk,t

2
(z′tgijk,l)

2 + κijk,t(z
′
tgijk,l)

}
p(ωijk,t) . (E.1)

In the pooling case, we are assuming that the tensor of coefficients in each regime l = 1, . . . , L
is given by:

Gl = I ×3 gl , (E.2)

where I is a I × J ×Q×K tensor made of ones and gl ∈ RQ, for each l = 1, . . . , L. Therefore
gijk,l = gl. We can rewrite the complete data likelihood as:

L(X |θ) ∝
∏
t∈Tl

I∏
i=1

J∏
j=1

K∏
k=1

exp

{
−
ωijk,t

2
(z′tgl)

2 + κijk,t(z
′
tgl)

}

∝ exp

−1

2

∑
t∈Tl

∑
i,j,k

g′lztωijk,tz
′
tgl − 2g′lztκijk,t

 , (E.3)
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It is assumed that gl, for each l = 1, . . . , L, has prior distribution:

gl|τ, wl ∼ NQ(0, τwlIQ) . (E.4)

This yields the posterior distribution:

p(gl|Ωt, τ, wl) ∝ exp

−1

2

∑
t∈Tl

∑
i,j,k

g′lztωijk,tz
′
tgl − 2z′tglκijk,t

 exp

{
−1

2

g′lgl
τwl

}

= exp

−1

2

g′lgl
τwl

+
∑
t∈Tl

∑
i,j,k

z′tglωijk,tz
′
tgl − 2g′lztκijk,t




= exp

−
1

2

g′l

 1

τwl
+
∑
t∈Tl

∑
i,j,k

ztωijk,tz
′
t

g′l − 2

∑
t∈Tl

∑
i,j,k

κijk,tz
′
t

gl


 .

(E.5)

Therefore, for each l = 1, . . . , L:

π(gl|Ωt, τ, wl) ∼ NQ(ml,Sl) , (E.6)

with:

Sl =

 1

τwl
+
∑
t∈Tl

∑
i,j,k

z′tωijk,tzt

−1

(E.7)

ml = Sl ·

∑
t∈Tl

∑
i,j,k

z′tκijk,t

 . (E.8)

Define g = (g1, . . . ,gL) and assume the prior distributions:

π(τ) ∼ Ga(aτ , b
τ
) (E.9)

π(wl|λl) ∼ Exp(λ2
l /2) (E.10)

π(λl) ∼ Ga(alλ, b
l
λ) , (E.11)

then the posterior distributions of the variance hyper-parameters τ, wl, λl are obtained as follows.
The posterior distribution of τ is given by:

p(τ |g,w) ∝ π(τ)p(g|w, τ)

∝ τaτ−1 exp
{
−bττ

} L∏
l=1

exp

{
−

g′lgl
2τwl

}

= τa
τ−1 exp

−1

2

2b
τ
τ +

L∑
l=1

g′lgl
wl

1

τ




∼ GiG

aτ − 1, 2b
τ
,
L∑
l=1

g′lgl
wl

 . (E.12)
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The posterior distribution of wl, for each l = 1, . . . , L, is given by:

p(wl|gl, τ, λl) ∝ π(wl|λl)p(gl|wl, τ)

∝
λ2
l

2
exp

{
−
λ2
l

2
wl

}
exp

{
−

g′lgl
2τwl

}

= exp

−1

2

[
λ2
lwl +

g′lgl
τ

1

wl

]
∼ GiG

(
1, λ2

l ,
g′lgl
τ

)
. (E.13)

The posterior distribution of λl (integrating out wl), for each l = 1, . . . , L, is given by:

p(λl|τ,gl) ∝ π(λl)

∫
p(gl|τ, wl)p(wl|λl) dwl

∝ π(λl)p(gl|τ, λl)

∝ λa
l
λ−1

l exp
{
−blλλl

} √τ
2λl

exp

{
−
‖gl‖1

√
τ

λl

}

∝ λa
l
λ−2

l exp

{
−1

2

[
2blλλl + ‖gl‖1

√
τ

1

λl

]}
∼ GiG

(
alλ − 1, 2blλ, ‖gl‖1

√
τ
)
. (E.14)

F Additional Simulations’ Output

F.1 Size 100,100,3,2

Setup: I = J = 100, Q = 3, M = 2.
We run the Gibbs sampler for N = 500 iterations and the outcome is plotted from Fig. ??
to (??).

F.2 Size 150,150,3,2

Setup: I = J = 150, Q = 3, M = 2.
We run the Gibbs sampler for N = 500 iterations and the outcome is plotted from Fig. ??
to (??).

F.3 Size 200,200,3,2

Setup: I = J = 200, Q = 3, M = 2.
We run the Gibbs sampler for N = 200 iterations and the outcome is plotted from Fig. ??
to (??).

G Additional Application’s Output

In this section we report some additional plots concerning the Gibbs sampler’s output for the
estimation of the hyper-parameters in the application described in Section 6.
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Figure 20: Posterior distribution (left), MCMC output (middle) and auto-
correlation function (right) of the global variance parameter τ .

Figure 21: Posterior distribution (left plots), MCMC output (middle plots)
and autocorrelation functions (right plots) of the level-specific variance para-
meters φ. Each row corresponds to a different value of r = 1, . . . , R.
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Figure 22: Posterior mean of the variance each marginal of the tensor of
coefficients, in state 1 (left) and state 2 (right). The cell (h, r) of each
matrix, for h = 1, . . . , 3 and r = 1, . . . , R, corresponds to the estimated

variance τ̂ φ̂rŵh,r,l of the marginal γ
(r)
h,l .

Figure 23: Posterior distribution (left plot), MCMC output (middle plots)
and autocorrelation functions (right plots) of the local variance hyper-
parameters λ. Regime 1 (blue) and regime 2 (orange).
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Figure 24: Posterior distribution (left plots), MCMC output (middle plots)
and autocorrelation functions (right plots) of the transition probabilities of
the hidden Markov chain Ξ, in the order (top to bottom): ξ1,1, ξ1,2, ξ2,1, ξ2,2.

G.1 Pooled model
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Figure 25: Estimated coefficient tensor in the pooled model. Regime 1 (top)
and regime 2 (bottom).
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Figure 26: Posterior distribution (left plots) and MCMC output (right plots)
of the L2 norm of the tensor coefficient in the pooled model. Regime 1 (blue)
and regime 2 (orange).

Figure 27: Posterior distribution (left plots), MCMC output (middle plots)
and autocorrelation functions (right plots) of the mixing probability ρl in
the pooled model. Regime 1 (blue) and regime 2 (orange).
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