
Enhancing security in ROS

Gianluca Caiazza1, Ruffin White2 and Agostino Cortesi1

1 Ca’ Foscari University, Venice, Italy
2 UC San Diego, San Diego, USA

Abstract. In recent years, we observed a growth of cybersecurity threats,
especially due to the ubiquitous of connected and autonomous devices
commonly defined as Internet of Things (IoT). These devices, designed
to handle basic operations, commonly lacks security measurements. In
this paper we want to tackle how we could, by design, apply static and
dynamic security solutions for those devices and define security measure-
ments without degrading overall the performance.

Keywords: Security, IoT, x.509 Certificate, Encryption

1 Introduction

With the spread of connected and smart devices we observed a tremendous grown
on the amount of personal data that are stored and processed every day. Con-
sidering the sensitive nature of this information there’s a widespread suspicion
concerning the way in which these information flows into the infrastructures.
Additionally, with the increase of smart cities and connected environments this
critically is going to enlarge. In particular, in these environments we can identify
two possible group of threats: physical and logical. In the first group we found
simple physical attack as shooting down the device or capture it with a net;
as well as more complex one as radio sniffing, tampering, dossing, etc. In the
authors opinion this kind of vulnerability should be addressed from the hard-
ware/firmware point of view, since it will result in a waste of effort tackle them
from the application-level. Indeed, our focus is on the logical approach of the
problem, on the data-centric analysis of the infrastructure. So, in the light of
this, its easy to understand the importance of supporting the key property of
computer security: confidentiality, integrity, authenticity, non-reputation, avail-
ability. By enforcing these simple concepts, we are able to develop countermea-
sures against literature attacks as: eavesdropping, modification, impersonation,
repetition. However, since we are working with IoT devices the way in which
these properties are enforced is not trivial. In fact, we need to consider the in-
trinsic limitations of the devices, either from the power consumption point of
view and the actual computational power available. Additionally, since we want
to design a solution that could be applied to a wider scope of devices its safe to
assume that we want to keep as real-time performance as possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' Foscari

https://core.ac.uk/display/223180081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

2 Security Enhancements

In order to develop our solution we worked on a widespread open-source mid-
dleware software for robotic implementation: Robot Operation System (ROS)
[1]. It provides the services of an operating system, including: hardware abstrac-
tion, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management. Still, from our
point of view, its important to notice that it doesn’t implement any security
measurements at all.

Intuitively, the easiest way to ensure secrecy between two (or more) agents
is by encryption. Therefore, by means of TLS/SSL and the usage of x.509 cer-
tificate we can easily enforce confidentiality and authenticity. In the particular
case of ROS, this improvements has been implemented with SROS [2][19] a set
of security enhancements that aims to secure ROS. By leveraging on SROS, our
goal is to extend the new security features and improve them with some fine stat-
ical mechanisms: (1) define an exhaustive standard for security logging the API
operations; (2) define a new profile syntax standard for the definition of policy
file; (3) provide new method for the automatic generation of the aforementioned
certificate. Still, been aware of the limited resources on the devices we need to
carefully evaluate each choice in order to keep the solution as lightweight as pos-
sible. Along this line, we design our enhancements as static offline mechanisms
which results are simply applied to the devices. In detail, apart from the logging
mechanisms - that adds a negligible overhead on the device - the other solutions
aims to granularly define access control for the agents. In addition, we discuss
about two different approaches for the definition of the relations between the
certificates and policy profiles.

Our goal is to keep the resource usage under control. In detail, by leveraging
on the statical approach defined by SROS (that embeds the access control policy
as extensions of the x.509 certificate), and by exploiting Park et al. work on x.509
extensions [3][4], we propose two different architectures for IoT network as well:
user-pull and server-pull.

By combining our proposed static improvements with the usage of smart
certificates we can easily enhance the way in which users defines how agents
communicate in the network.

Contrary to all the related works, to the best of our knowledge this is the first
research that focuses on the automatic definition of embedded policy profiles in
a trusted network and actively prevents, at application level, the disclosure of
sensitive information and blocks unauthorized agents by applying a-priori access
control model in addition to library functions security enhancements.

3 Technical Overview

In order to better understand how we develop the proposed solution, it’s impor-
tant to have a grasp of the framework that has been selected. In this section we
will briefly evaluate ROS and the general concept behind SROS.

3

3.1 Robot Operating System

ROS implements a peer-to-peer network, namely ’graph’, in which the processes
(agents) can communicate at runtime via publish/subscribe [5] pattern. From
our point of view, the graph itself is the key concept that we need to exploit.
The basic Computation Graph components of ROS are nodes, Master, parameter
server, messages, services, and topics, all of which provide data to the graph in
different ways. Let’s see in detail each component:

– Nodes: Nodes are the basic processes that perform computation. ROS is
designed to be modular at a fine-grained scale; usually a robot control system
comprises many nodes. For example, one node controls a camera, one node
controls the temperature sensors and so on.

– Master: The ROS Master provides name registration and lookup to the rest
of the Computation Graph. In practice, the master is a DNS server for nodes.
Without the Master, nodes would not be able to find each other, exchange
messages, or invoke services.

– Parameter Server: The Parameter Server allows data to be stored by key in
a central location. Even thou we need to consider this as an independent
component, currently it’s part of the Master.

– Messages: Nodes communicate with each other by means of messages. A
message is simply a data structure, comprising typed fields.

– Topics: Messages are routed via a transport system with publish/subscribe
mechanism. A node sends out a message by publishing it to a given topic.
The topic is a name that is used to identify the content of the message. A
node that is interested in a certain kind of data will subscribe to the appro-
priate topic. It’s important to notice that there may be multiple concurrent
publishers and subscribers for a single topic, and a single node may publish
and/or subscribe to multiple topics. Furthermore, publishers and subscribers
are not aware of each other’s existence.

– Services: The topics publish/subscribe model is a very flexible communi-
cation paradigm, but its many-to-many, for one-way transport it’s more
appropriate a request/reply interactions. This kind of communications are
done via services, which are defined by a pair of message structures: one for
the request and one for the reply. A providing node offers a service under
a name and a client uses the service by sending the request message and
awaiting the reply.

That said, we can easily translate the ROS’s structure into a more general
IoT network, in which the nodes represents the single device and the master the
default gateway; indeed, this is the structure that is currently in the market (e.g.
Apple HomeKit, Samsung Smart-home, Google Things Solutions, etc).

3.2 SROS: Secure ROS

As mention, SROS is a set of security enhancements for ROS that aims to secure
ROS API and ecosystem by means of native TLS/SSL support for all IP/socket

4

level communication. In addition, with the usage of x.509 certificates, they de-
fined chains of trust by means of a certificate authority (namely keyserver),
namespace node restrictions and permitted roles, as well as user-space tooling
to auto generate node key pairs, audit ROS networks, and construct/train access
control policies. Furthermore, they defined AppArmor profile library templates,
that allow users to harden or quarantine ROS based processes running at linux
OS kernel level.

That said, we can summarize that SROS is intended to secure ROS across
three main fronts:

1. Transport Encryption: with the usage of TLS and x.509 PKI for authenticity
and integrity

2. Access Control: restrict node’s scope of access within the ROS graph to only
what is necessary leveraging on definable namespace globbing

3. Process Profiles: restrict the application (file, device, signal, and networking
access) thanks to AppArmor profile component library for ROS

4 Access Control Policy Generation

The access control policy profile should not be confused with that of SROS’s
AppArmor profile library or the profiles they provide using features from Linux
security modules. Those help users provide Mandatory Accesses Control (MAC)
for ROS nodes on the runtime processes level of the hosting operating system.
The policy profiles we are discussing below are the ones related to enabling access
control for ROS nodes in the ROS graph network level.

Generally speaking, in these profiles we store the communication topology
between agents, specifying the operation that are allowed or denied to the device.
In order to build a proper profile, we can proceed in two different ways: manually
defined the rules or automatically extract them from meaningful log.

As representative of the second group, we have the aforementioned AppArmor,
a proactively software layer that protects the operating system and applications
from external or internal threats, by enforcing good behaviour and preventing
even unknown application flaws from being exploited. In detail, AppArmor de-
fines a set of rules for the selected application based on the operation that has
been exercised by the user during a training phase.

4.1 Security logging

Along the same line, we want to implement a similar mechanism also in our
solution. First of all, we need to specify a suitable way of acquiring security logs.
In order to do so, we need to identify the key components and communication
mechanisms (e.g. API) that are used in the application. The new logging system
that we are going to define, will be more structured and informative in regards
of the required operation and resource access.

Therefore, leveraging on the well known unix logging system, we specify three
different execution mode: audit, complain and enforce. In the first mode, we log

5

all the operation that are executed by the application without applying any
constraint. Once the user have exercised the application as necessary, he can
move to complain mode. In this case, we prompt to the log all the operations
that violates the rules that has been defined in the previous mode. This is a
crucial phase, in which we can verify if the rules that we previously define works
as expecting or are too strict or naive with respect of the desired access control.
Then, if the defined profile works as wanted, it will be enough to enforce them
by applying the namesake mode.

All in all, in this phase, is important to enhance the behavior of the applica-
tion’s APIs such that we can easily log the kind of resource that the agent want
to access. In the case of ROS, we have extract three macro-group of resources:
topic, service and slave operation. In detail, in topic we found the APIs that
allow a node to register himself as a publisher or as a subscriber. Along the
same line, we have the service APIs, that operates likewise the topic once; lastly
we have all the operation that are executed by simple slave node. In general,
we can make a parallelism with this API and the hierarchy in an IoT network
such that slave operations define the IoT device API, whilst topic and service
represent the communication mechanisms (gateway API).

4.2 Policy Profile Syntax

As previously said, we took a good deal from the AppArmor policy definition
such as it’s globbing syntax. Our goal is to define a more applicable syntax
intended to encode policy rules, definition, and relationships in our trusted net-
work. Our intuition, is to leverage upon the namespace resource organization a
good deal to define the profiles.

In ROS, we define a domain as a simple root ’\’. In it, we address a node
simply recalling its position in the hierarchy. When nodes are integrated into a
larger system, they can be pushed down into a suitable namespace that defines
their functionality. For example, one could take two robot namely foo and bar

and merge them into the same domain with ’foo’ and ’bar’ subgraphs. Therefore,
if both devices had a node named ’camera’, they would not conflict since they
will be addressed respectively as: \foo\camera and \bar\camera.

It’s important to notice that ROS supports several methods to address a
resource that could be either: base, relative, global and private; although, for the
sake of our policy profile we always extend them in a plain version that explicit
all the chain relation of the node. In this way, we can define policy profile in an
agnostic way in regards of the underling implementation.

Since we are able to unambiguously address an agent, we can specify the
necessary rules for each one. We can suppose that several devices share a set of
common rules, either because they are necessary for a feature (e.g. logging), or
because the node has a role in the application, i.e. is an administrative device.
In order to simplify the management of these roles, we introduce the concept of
include. As for other programming languages, the goal of using include state-
ment is to add - at compile time - a set of predefined piece of code, in this case

6

a collection of rules for the specific device. These rules simply follow the same
structure of the one that are defined in the policy profile.

Intuitively, we can sort out different resource twofold, by explicitly define the
kind of resource (i.e. topic, service, parameter) and by defining resource specific
masks for permissions. Let see below an example of node profile:

/namespace

{
#include role

resource /scope masks

}

As mention before, one of the advantages of using this kind of notation for
addressing resource and agent is the usage of globbing syntax. In detail, it’s
possible to define regexp formulas in rules and profiles scope. Therefore, if we
want to specify that an agent is allowed of interact with all the first level camera
of the other agents, it will be enough to specify the rule: **\camera.

As a rule of thumb, we define regular expressions with the following syntax:

– * : represent any number and any characters in the current namespace
– ** : represent any number and any characters including the definition of

sub-namespaces
– ? : represent a single character or number
– [abc] : represent the the single character a, b, or c
– [a-c] : represent all the character in between a and c

– {ab,cd} : expands the string to match the expressions ab and cd

Additionally we introduce the possibility of specifying deny rules. In fact, if
we want to single out a resource from a wider regexp, it will be enough to define
a specific rules for the resource (or resources via regexp) as showed below:

....

deny resource /bar/foo1 masks,

resource /bar/foo* masks,

....

5 X.509 Certificate: Distribution Architecture

In this section we evaluate different approaches for the definition of the rela-
tions between the certificates and policy profiles. We discuss about two different
architectures: user-pull and server-pull.

As the name suggests, these models are respectively user-based and host-
based. In particular, the purpose of these architecture is to discuss about the
static and dynamic solution either for certificate distribution and attribute ver-
ification.

7

5.1 User-pull Architecture

As the name suggests, in this mode the user pulls the attributes certificate
bundle from the server and stores it locally. Then it uses the certificate for
the authentication phase with the other agents in the graph. This family of
solutions exploits the problem of the authentication leveraging on the integrity
services offered by the certificates by design. In fact, the certificates are issued
by the Certificate Authorities (CA) which are trusted entities in the system.
However, in addition to the trivial implementation, in which we store the profiles
as extensions of the x.509 certificate, we want to introduce additional types of
certificate that are defined in the x.509 standard: Identity certificates (ID) and
Attributes certificates (AC)[6].

While X.509 public-key certificates bind an identity and a public key, an at-
tributes certificate (AC) doesn’t contain a public key but may contain attributes
that specify group membership, role, security clearance, or other authorization
information associated with the AC holder. The reason why we should use AC
for authentication information in place of PKC extension is manly for two rea-
sons: authorization often does not have the same lifetime as the identity and the
public key. So, when we store authorization information in a PKC extension, the
general result is that we are shortening the PKC useful lifetime. Furthermore,
the CA that issues the PKC is not usually authoritative for the authorization
information. In fact, it represents a threat for the system that should be avoided.
There are several ways in which we can bound the authorization with the identity
certificate, below we presents three different approaches: monolithic, autonomic
and chained signatures.

Monolithic

This is the easiest solution in which we consider only one certificate authority
in charge of both identity certificate and attribute. In the monolithic approach
we create a certificate that holds both the identity and attributes information;
trivially, this is implemented by using x.509 and the extension fields. The result-
ing certificate tightly coupled the identity information and the attributes with a
single signature. This means that in order to change an information in an ex-
isting certificate we need to revoke the previous and issue a new updated one.
However, the management of this particular solution is simplified in comparison
of the other, since we need to trust only one CA. Considering that all the cer-
tificate information are verified by the only CA’s signature and therefore there
is only one CRL that needs to be checked.

However, as previously said, this approach has several drawbacks. First, mul-
tiple CA’s are not supported. We can’t revoke a certificate if we aren’t the issuer
CA and there is the possibility of issuing multiple certificate with different at-
tributes for the same agent. Secondly, due to the design of the solution we are
not able to maintain different life-time for multiple attributes; in fact, all the
attributes share the lifetime of the PKC. All in all, monolithic approach is the
most favourable solution when we are limited in terms of resources or we are
looking for a statical solution, even though we sacrifice flexibility in maintenance.

8

Autonomic

In this case we introduce the concepts of multiple CAs and we differentiate
between identity and attribute certificates. With this approach we want to define
a loosely coupled binding between the ID certificate and the AC. This particular
solution allows the existence of multiple ID certificates per agent provided that
there is a injective function from the certificates to the agent; this means that
we will never have more than one agent that corresponds to an ID certificate.
As such we can bind each AC with a different set of information from the ID as:
subject’s name, public-key, certificate serial number, etc.

Depending on the chosen set of information that has been selected we can
modify the certificate issuing a new one and still maintain the correlation be-
tween the AC and ID as long as the binder information has not been changed.
As example, if we insert in the ID certificate the unique serial number of the
agent and we bound the attribute certificate based on that, we can change the
other information such as lifetime, serial number, subject’s name, while the link
between the certificates holds. However, since we moved from a static solution to
a dynamic one, we should be extra careful about the new threats as the choice
of the information set. In fact, even though we have an injective function from
the certificates to the agent there aren’t constraint on the information that are
stored in the certificates. It means that if we accidentally choose a common set
of information, it may happen that the same attribute certificate can be used
by unauthorized agents that share the set of information with the authorized
agent.

Fig. 1. Autonomic certificate

Chained-Signature

With this technique we want to take the security features guaranteed by the
monolithic solution and part of the flexibility of the autonomic approach and

9

create a new hybrid solution. As in autonomic an agent can have multiple ID
certificates issued by multiple CAs. However, instead of binding the attribute
certificate with an arbitrary set of information, we bound on the digital signature
of the corresponding ID certificate. In fact, if the information in the referenced ID
certificate are changed (a new certificate is issue), the digital signature should
change as well. Under the assumption that we are using a suitable signature
algorithm, when we issue a new ID certificate (with a different signature) the link
between the two certificates is broken and then the attribute certificate becomes
automatically useless. One of the advantage of chained signatures is that we
don’t need to aggregate all the attributes according to the shortest lifetime of
the certificate as in monolithic. Furthermore, we introduce a mechanism that
allows us to share with other agents only the necessarily information. In fact,
with a monolithic certificate all the policy of the agent are available in the PKC,
instead with this solution we can share only the necessarily attribute certificate
enforcing a new privacy feature and dynamic management of profiles.

Fig. 2. Chained certificate

5.2 Server-pull Architecture

In server pull model the general idea is to demand the authentication phase to
the attribute authority (AA). Our goal is to define a dynamic solution in which
apart from the AA no one needs to know the attribute information. However, as
in user-pull model, we still need a method to unambiguously identify an agent
in the graph; we can achieve this straightforwardly with the usage of the already
defined ID certificates.

But instead of issuing attribute certificates and bound them to the ID, we
store the attribute policy roles locally in the attribute authority. This particular
solution allows us to implement in the AA whenever access control we want (e.g.
MAC, DAC, MLS, MCS, RBAC), without modifications to the client (agents)
APIs. We design a high level API that permits the agents to retrieve the autho-
rization response from the AA regardless of the chosen access control method.

There are several advantages on this model: first of all, thanks to the usage
of AA instead of static certificate we can achieve a dynamic flexible solution that

10

can evolve and change during run-time without additional setup. Secondly, we
can maintain the secrecy of the sensitive information about the policy topology
inside the attribute authority without compromising the network topology in
critical applications.

Still, the solution introduces the problem of the single point of failure (SPOF).
In practice, considering that all the agents need to query the attribute authority
in order to receive a response about the permissions, if it fails the entire system
will stop working. In fact, from the attacker point of view it will be enough to
tamper the AA to compromise the entire system. In addition, we introduce by
design an overhead in the handshaking process; in fact, what was a straightfor-
ward local check of the profile in user model, became a remote request to the
external attribute authority. However, this problem can be slightly mitigated by
resuming previous sessions via Session Ticket as introduced in TLS 1.3 [8].

6 Related Work

To the best of our knowledge, the present work is the first research focusing on
the discussion of a set of tools and techniques for the automatic definition of
security policy profiles in a robotic framework. Although several security threats
analysis in the industrial robotic applications have been performed recently, they
mainly focus on the threats deriving from the modification of network topology
from local to remote connection [9][11][12].

Akerberg el al. [10] tackled the problem from the communication channel
point of view, proposing a security communication framework for the integra-
tion in classical wired industrial networks of wireless nodes, with the imple-
mentation of end-to-end integrity and authentication measures by utilizing the
black channel concept. On the other hand, Wang et al. [13], analyse Publish-
Subscribe communication paradigm in a wide-area network. In this particular
setup services handle information across distinct authoritative domains and need
to manage a large population of publishers and subscribers. In detail, they dis-
cuss about the security issues and requirements that arise, distinguishing among
those requirements that can be achieved with current technology and those that
require novel solutions.

Similarly to the proposed solution, Dieber et al. [15] proposed a security
architecture intended for use on top of ROS on the application level. By means
of an authorization server and the usage of x.509 certificates for authentication,
they ensure that only valid registered nodes are authorized to execute some
operations. However, their statical architecture is based on the assumption that
we have manually generated and distributed the certificates and registered the
list of nodes in the authorization server; moreover, they delegate to the user
the distribution of the lists of certificates serial number of the nodes that are
authorized to query each other.

Additionally, Lera et al. [16], presented an interesting analysis on which they
proposed that ROS communications should be encrypted. Differently to the pre-

11

vious discussions, in this document they directly evaluate the performance of
ROS under encryption. In detail, they used 3DES cyphering algorithm and eval-
uated the performance both from the computing and the communications point
of view. These works are particularly useful in evaluating the performance of
ROS under encryption, although it’s important to notice that we should pre-
fer algorithms that have dedicated instructions added in hardware in modern
CPUs, that help them run substantially faster than software only ciphers imple-
mentation. So, depending on the chosen algorithm and key-length we can easily
observe some changes in the performance [17][18].

7 Conclusion

We have presented a static procedure to generate and amend policy profiles for
IoT robotic devices. In order to determine a suitable solution we analyzed the
ROS framework and we discussed about the design of an agnostic solution for
the definition and application of an access control policy profile. In the first
part, we discussed about the definition of a new standard for security logs, that
allows us to reconstruct all the library functions call-back that are not covered
by the ’basic’ log system, by means of a more accurate and defined structure.
Then, we proposed a standard syntax for the definition of the policy profiles
based on the well-known AppArmor syntax. Finally, we discussed about static
and dynamic solution for certificate and attribute distribution, thus contribut-
ing to the scenario depicted in [20]. From our analysis it emerges that one of
the biggest threats of robotic network is the lacking of security measure in the
communication mechanisms, that needs to be harden with the introduction of
access control and encryption mechanisms.

Still, there are a number of issues that are part of our plans for future work
as: mitigate the disclosure of sensitive information (i.e an agent profile), improve
privacy in access to partially unauthorized resources (e.g. function output cus-
tom sanitization); as well as decoupling the cryptographic operations from the
authenticity mechanisms by means of middleware implementations as oneM2M
[14] or other DDS.

Moreover, we aim to conduct a further analysis in the definition of a real-time
system with the addition of cryptographic mechanisms via ’Real-Time Publish
Subscribe’ (RTPS) protocol for mission-critical implementations.

All in all, we believe that we have given a solid base for the definition of the
future security mechanisms for robotic devices that could be easily and securely
integrated in big-scale deployments without suffering software limitations. Fur-
thermore, in our opinion the definition of high level solutions as the one that has
been proposed in this paper is critical for spread security solutions by reducing
the tradeoff between security and usability.

12

Acknowledgments

Work partially supported by CINI Cybersecurity National Laboratory within
the project FilieraSicura, and by the Executive Program 2017-2019 Italia-India
within the project ”Formal Specification for Secured Software Systems”.

References

1. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
A. Ng: ROS: an open-source Robot Operating System ICRA Workshop on Open
Source Software, 2009

2. M. Quigley, R. White, H. I. Christensen: SROS - Securing ROS over the wire, in
the graph, and through the kernel, ROSCon 2016

3. Joon S. Park, Ravi Sandhu: Smart Certificates Extending X.509 for Secure Attribute
Services on the Web Proceedings of the of 22nd National Information Systems Se-
curity Conference (NISSC), 1999, pp. 337- 348

4. Joon S. Park, Ravi Sandhu: Binding Identities and Attributes Using Digitally Signed
Certificates, Proceeding ACSAC 00 Proceedings of the 16th Annual Computer Se-
curity Applications Conference, Page 120, 2000

5. P. T. Eugster, P. A. Felber, R. Guerraoui, A. M. Kermarrec: The many faces of
publish/subscribe, Journal, ACM Computing Surveys (CSUR), Volume 35 Issue
2,Pages 114- 13, 2003

6. S. Farell, R. Housley, S. Turner: ”An Internet Attribute Certificate Profile for Au-
thorization, Internet Engineering Task Force (IETF), 2010

7. A. Lenstra , X. Wang, B. de Weger - ”Colliding X.509 Certificates”, Report EPFL,
2005

8. The Transport Layer Security (TLS) Protocol Version 1.3 resource online:
https://tools.ietf.org/html/draft-ietf-tls-tls13-18

9. M. Cheminod, L. Durante, A. Valenzano: ”Review of security issues in industrial
networks”, IEEE Transactions on Industrial Informatics, Volume: 9, Issue 1, 2013

10. J. Akerberg, M. Gidlund, T. Lennvall, J. Neander, M. Bjorkman: Efficient inte-
gration of secure and safety critical industrial wireless sensor networks, EURASIP
Journal on Wireless Communications and Networking, no. 1, pp. 113, 2011.

11. E. Byres, P. E. Dr, D. Hoffman The myths and facts behind cyber security risks
for industrial control systems, In Proc. of VDE Kongress, 2004.

12. D. Dzung, M. Naedele, T. von Hoff, M. Crevatin: Security for industrial commu-
nication systems, Proceedings of the IEEE, vol. 93, no. 6, pp. 11521177, 2005.

13. C. Wang, A. Carzaniga, D. Evans, A. Wolf: Security issues and require- ments for
internet-scale publish-subscribe systems, System Sciences, 2002. HICSS. Proceed-
ings of the 35th Annual Hawaii International Conference on, 2002, pp. 39403947.

14. S. K. Datta, R. P. F. da Costa, C. Bonnet, J. Harri: ”oneM2M Architecture Based
IoT Framework for Mobile Crowd Sensing in Smart Cities ” Networks and Commu-
nications (EuCNC), 2016.

15. B. Dieber, S. Kacianka, S. Rass, P. Schartner: ”Application-level Security for ROS-
based Applications”, In Proc. 2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2016.

16. F. J. R. Lera, J. Balsa, F. Casado, C. Fernandez, F. M. Rico, V. Matellan: ”Cyber-
security in Autonomous Systems: Evaluating the performance of harden- ing ROS”
XVII Workshop en Agentes Fsicos, 2016.

13

17. G. Singh, Supriya : ”A Study of Encryption Algorithms (RSA, DES, 3DES and
AES) for Information Security” International Journal of Computer Applications
(0975 - 8887) Volume 67 No.19, 2013.

18. D. Giry : Bluecrypt cryptographic key length recommendation, resource online:
http://www.keylength.com/, October 2016.

19. R. White, G. Caiazza, H. Christensen and A. Cortesi, ”SROS1: Using and De-
veloping Secure ROS1 System”, in Robot Operating System (ROS): The Complete
Reference (Volume 3), Springer, to appear, 2018.

20. A. Cortesi, P. Ferrara and N. Chaki, ”Static analysis techniques for robotics soft-
ware verification”. ISR 2013: 1-6.

