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Abstract

This paper focuses on the estimation of fiscal response functions for ad-
vanced economies and on the performance of alternative specifications of
the Generalized Method of Moments (GMM) estimator for the rule’s pa-
rameters. We first estimate the parameters on simulated data through
Monte Carlo experiments; we then run an empirical test on data for
the European Monetary Union (EMU). We estimate both the Cyclically-
adjusted primary balance (CAPB) and the Primary balance (PB) models,
and check the robustness of the estimates to different specifications of the
GMM estimator and to alternative settings of the parameters. We also
compare alternative instrument reduction strategies in a context where
several endogenous variables enter the model. We find that the system
GMM estimator is the best-performing in this framework and the high
instrument count comes out not to be problematic. We also make the
algebraic links between the parameters in the CAPB and in the PB mod-
els explicit, suggesting an effective strategy to estimate the discretionary
fiscal response from the coefficients of the PB model. In the empirical
application on a dataset for EMU Countries, we find that the evidence of
a-cyclicality of discretionary policies is robust to all the specifications of
the GMM estimator.

Keywords: Fiscal reaction functions, Monte Carlo simulations, dynamic panel
data analysis, generalized method of moments, reduction of instruments count.
JEL classification: C15, C33, E62, H60.

∗Department of Economics, University of Bologna. E-mail: irene.mammi@unibo.it.
This paper draws on chapter 3 of the author’s PhD dissertation prepared at IMT Institute for
Advanced Studies Lucca. The author thanks her supervisor Giorgio Calzolari and the board
of examiners for their comments. The author is also especially indebted to Roberto Golinelli
for his guidance and useful suggestions and for having provided the data used in the empirical
application.

1



1 Introduction
The empirical estimation of fiscal reaction functions has gained in popularity

in the last few decades and it is now particularly diffused in the fiscal policy
literature. The estimation of fiscal rules, enhanced by the seminal works of Bohn
[1998] and Taylor [2000], has been mainly motivated by the question whether
discretionary fiscal actions by the policymakers act pro-cyclically or counter-
cyclically.

Finding an answer about the reaction of budgetary policies to the eco-
nomic cycle has become particularly important within the European Monetary
Union where the constraints imposed by the Maastricht Treaty and the Stability
Growth Pact potentially affect the response of fiscal variables to the economic
cycle and could weaken the autonomy of the national policymaker in determin-
ing discretionary fiscal actions.

In a very influential paper, Galì and Perotti [2003] find that discretionary
policy in the EMU Countries has become more countercyclical over time: their
work has given a further boost to a lively debate on the response of fiscal policies
to the cycle that has led to many recent contributions which estimate fiscal
reaction function in the EU or the OECD area. Among the most relevant
works it is worth numbering in particular the contributions of Ballabriga and
Martinez Mongay [2002], Balassone and Francese [2004], Forni and Momigliano
[2004], Wyplosz [2006], Debrun and Kumar [2007], Golinelli and Momigliano
[2006] and Beetsma and Giuliodori [2008]. What emerges from this stream
of literature, however, is a strong lack of consensus on whether discretionary
fiscal policy behaves pro-cyclically or counter-cyclically: the results are often
conflicting, even in the case they focus on similar, or even same, samples of
Countries and on a comparable time span. Golinelli and Momigliano [2009]
provide an extensive survey of the empirical works on fiscal response functions
and explain the huge heterogeneity in empirical findings in terms of differences
in the specifications of the fiscal rule, in the estimation methodologies and in
the samples covered.

In a context where the empirical findings have proved not to be robust to
different estimation methodologies, we believe it can be very useful to investigate
the sensitivity of the estimates of the fiscal rules’ coefficients to alternative
estimation techniques. Our main interest is therefore to make a comparison
among alternative estimators that can be adopted for the estimation of fiscal
response functions.

The dimension of the datasets exploited in the empirical fiscal policy litera-
ture is generally limited both in terms of the number of years available and in
terms of Countries considered: it is therefore becoming common habit to con-
sider the sample as a short panel and to adopt panel data techniques to estimate
fiscal rules. The fiscal reaction function is by its nature a dynamic model which
also includes unobservable time-invariant individual-specific effects, potentially
endogenous additional regressors and in which the series of interest are likely to
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be highly persistent. The choice of the methodology should therefore account
for these relevant econometric issues and try to fix them properly. Unfortu-
nately, in spite of these problems, it is still common to estimate the coefficients
of fiscal reaction functions by pooled OLS or fixed-effect estimators1 that may
not be appropriate in this context.

A common approach in the literature to address these econometric issues
in this context is the use of a linear Generalized Method of Moments (GMM)
estimator, the most common specification being the Arellano-Bond Difference
GMM estimator [Arellano and Bond, 1991] for dynamic panel data models2.
However, in the context of fiscal policy, where the series are know to be often
very persistent, the Blundell-Bond System GMM estimator [Blundell and Bond,
1998] might be a more appropriate choice, for its allowing to overcome a po-
tential weak instrument problem only requiring mild stationarity assumptions
for the regressors. Up to now, fiscal reaction functions have been estimated by
System GMM only in few empirical works 3. Overall there is still very little
guidance on which is the safest strategy to adopt for the estimation of fiscal
response function.

The main purpose of the paper is to compare the performances of different
dynamic panel data estimators in the estimation of fiscal rules and, in particular,
to investigate the sensitiveness of the estimates to alternative specifications of
the GMM estimator. We pay a particular attention to the issues of endogeneity
intrinsic in this context and of the related high number of potentially exploitable
moment conditions. In this respect, we address the problem of instrument
proliferation by adopting specific techniques aimed at reducing the instrument
count and we investigate the robustness of the estimates to these alternative
specifications of the matrix of moment conditions.

The underlying relationships among the variables that enter fiscal reaction
functions come from national accountancy rules: the data generating process
is known relatively well and no additional behavioural assumption is needed.
Thanks to that, also the sources of endogeneity are easily identified, so that
proper instrumental variables can be exploited.

The present work contributes to the literature in fiscal policies in several
ways.

First, we simulate the most popular fiscal rule estimated in the literature,
namely the cyclically-adjusted primary balance (CAPB) model4, and we use
Monte Carlo experiments in order to assess the performance of alternative es-
timators. To our knowledge, this is the first Monte Carlo experiment on fiscal

1Taylor [2000], Galì and Perotti [2003], Forni and Momigliano [2004], Wyplosz [2006],
Debrun et al. [2008], among others, adopted these strategies.

2This approach has been followed, among the others, by Balassone and Francese [2004],
Forni and Momigliano [2004], Debrum and Kumar [2007].

3Golinelli and Momigliano [2006, 2009] and Bernouth et al. [2008] are among the few ones.
4In a nutshell, the CAPB model aims at explaining the discretionary fiscal policy (i.e. not

due to automatic stabilizers) on the basis of an economic cycle indicator and of the initial
conditions of both deficit and debt.

3



rule models that aims at comparing various estimators and at giving practical
indications on the safest methodologies to use in this framework. As far as we
know, only Celasun and Kang [2006] have used Monte Carlo simulations for the
estimation of fiscal reaction functions5.

Secondly, we estimate on simulated data also a different fiscal rule, the pri-
mary balance (PB) model6, where the dependent variable is the unadjusted
primary balance, in order to check whether assessing the discretionary fiscal
response to the cycle directly from the estimates of the PB model is a safe
strategy.

Third, we estimate the CAPB model on real data for the EMU and we
present the estimates of the model’s coefficients obtained by means of a bunch
of alternative estimators.

The remainder of the paper proceeds as follows. In section 2 we present
in details the simulation model and we discuss the setting of the parameters
in the fiscal rule. Section 3 introduces relevant econometric issues and reports
the estimates of the simulated CAPB model. In section 4 we illustrate the
PB model and its links with the CAPB model, we estimate it on simulated
data and we present a strategy to derive the discretionary adjustments to the
cycle from the estimates of the PB model parameters. Section 5 is devoted to
the estimation of the CAPB model on real data. Section 6 draws conclusive
indications and sketches potential addresses for future research.

2 The simulation model
Our reference model here is the fiscal reaction function used in most em-

pirical works in fiscal policy7: the CAPB model, where the dependent vari-
able, namely the change in the cyclically-adjusted primary balance (∆CAPB),
measures the discretionary fiscal actions that can be taken by policy makers.
∆CAPB is explained by the lagged values of the cyclically-adjusted primary
balance (CAPB) and the stock of public debt (DEBT ), that represent the
state of public finances, and by the economic cycle as captured by the lagged

5More in detail, Celasun and Kang [2006] estimate a fiscal rule where the dependent variable
is the primary balance, rather than the cyclically-adjusted primary balance, and where the
lagged dependent variable is not included among the regressors. On the one hand, they aim at
assessing the bias of the OLS and of the Least Squares Dummy Variable (LSDV) estimators
for the coefficients of the fiscal rule with respect to the bias that rises in a standard AR(1)
model for the debt; on the other hand they aim to check the robustness of the estimates to
different parameter settings in a static fiscal rule. We argue, in line with most of the literature,
that the dynamics is an intrinsic feature of fiscal reactions function and that it can not be
disregarded.

6Differently from the CAPB, the PB model aims at explaining the overall fiscal policy,
instead of only the discretionary policy.

7The CAPB model is chosen, among the others, by Galì and Perotti [2003], Forni and
Momigliano [2004], Wyplosz [2006] and Golinelli and Momigliano [2009].
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level of the output gap (GAP )8.
The fiscal rule we estimate is the following:

∆CAPBit = φcCAPBi,t−1 + φdDEBTi,t−1 + φgGAPi,t−1 + µi + εit (1)

where the µi ∼ N (0,σ2
µ) are the time-invariant country-specific effects for the

CAPB and the εit ∼ N (0,σ2
ε ) are fiscal policy shocks. A positive coefficient

φg implies that discretionary budgetary actions are counter-cyclical, while a
negative coefficient indicates pro-cyclicality.

It follows from equation (1) that the AR process for the CAPB is:

CAPBit = (φc + 1)CAPBi,t−1 + φdDEBTi,t−1 + φgGAPi,t−1 + µi + εit. (2)

We thus need to simulate all the variables that appear in equation (2): in
order to dispose of the series for the gap, the debt and the cyclically-adjusted
primary balance, we also need to simulate additional variables from which the
variables of interest are derived, according to accountancy rules. We generate
the output gap as an autoregressive process that does not include other fiscal
variables, but it is affected by fiscal policy shocks that also affect other variables;
the cyclically-adjusted primary balance is generated according to the process in
equation (2) and the remaining variables follow well-known public accountancy
rules.

Our simulation model is as follows.

2.1 Generating the variables of interest
We initialize the CAPB by generating its initial conditions so that they are

stationary as follows:
CAPBi0 =

µi
1− φg

+ ui0 (3)

where the ui0 ∼ N (0, 1) are the random deviations from the long-run mean of
the cyclically-adjusted primary balance µi/(1− φg).

Once we have the initial value for CAPB and the initial values of the vari-
ables that appear in equation (2), we are able to generate CAPBi1 and so on,
iteratively, period by period.

We generate stationary initial conditions also for the output gap as follows:

GAPi0 =
ηi

1− α + zi0 (4)

8We take here the output gap lagged one period as common in the literature. It is worth
noticing however that some authors include the simultaneous output gap instead of the lagged
one. At the same way, some authors prefer the actual level of the CAPB as dependent
variable instead of its change. Golinelli and Momigliano [2009], in their extensive review of
the literature on the empirical estimation of fiscal reaction functions, discuss the different
specifications of the fiscal models, the links between them and how the interpretation of the
estimation results changes according to the model chosen in the analyses.
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where the ηi ∼ N (0,σ2
η) are unobserved time-constant effects for the output

gap and zi0 ∼ N (0, 1) are the deviations from the long-run mean of the output
gap.

We then generate the rest of the series as follows:

GAPit = αGAPi,t−1 + ηi + ξεi,t−1 + υit (5)

where the εit are again the fiscal policy shocks and the υit ∼ N (0,σ2
υ) are

idiosyncratic shocks.
The nominal growth rate nt is created as follows:

nt ≡ [eln(1+ṗit)+ln(1+pgit)+∆ ln(1+GAPit)]− 1 (6)

where ṗit is the inflation rate and pgit is the potential growth. The inflation
rate follows the process ṗit = ṗi,t−1 + ζGAPi,t−1, with ζ = 0.05, while the
potential growth is assumed to be centered around the 2% according to the
process pg = 2 + γit with γit ∼ N (0, 1) being a random shock.

The primary balance variable PBit is obtained as:

PBit ≡
CAPBit

1 +GAPit
+ ω

GAPit
1 +GAPit

(7)

with ω being the elasticity of the overall budget that represents the effect of the
automatic stabilizers.

Interest payments are generated as follows:

INTit ≡ Rit
DEBTi,t−1

1 + nit
(8)

where Rit is the average cost of debt and is assumed to move together with the
nominal growth according to the process Rit = nit+ ιit with ιit ∼ N (0, 1) being
a random shock.

We can then obtain the overall fiscal balance as:

Bit ≡ PBit − INTit. (9)

Finally, we can generate the public debt as follows:

DEBTit =
DEBTi,t−1

1 + nit
−Bit. (10)

2.2 Baseline setting for the parameters
We simulate data for a fixed number of periods T and for a fixed number of

economies N . Our reference framework is that of advanced economies such as
the Countries in the European Union or the most developed OECD Countries9.

9Our choice is motivated by the fact that the European Union, and in particular the Euro
area, is a privileged context for the estimation of fiscal reaction functions in the fiscal policy
literature and it will also be our sample in the empirical analysis in the prosecution of the
paper.
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The number of Countries is set to N = 15: this in line with most of the empirical
literature on fiscal reaction functions in which the sample size is generally not far
from 15. The number of time periods in the estimating sample is set to T = 15.
Such time span allows for a dynamic panel data analysis, without rising serious
concerns about poolability of the series. In order to have 15 periods available,
we generate data for a time span of 50 periods and we allow for different pre-
samples, i.e. 1, 15 and 35 years. Independently of the length of the pre-sample,
the generated 50-years samples are always the same: what changes is simply
the point in history we capture in the analysis. Through calibration, we set
the means and the standard deviations of the generated variables as well as the
parameters in the model to values that make the simulated scenario as realistic
as possible so that the profiles of the simulated series are close to the observed
ones for the EMU Countries, or are plausible realizations of actual data for
advanced economies.

In Table (1) we summarize the baseline setting of the parameters that are
used in the core of our simulation exercise. Deviations of several parameters
from the baseline values have also been considered to check for the robustness
of the results10.

Table 1: Baseline setting of the parameters in the simulation model

N 15
T 15
σµ 0.15
ση 0.30
σε 0.30
συ 1
φc + 1 0.8 or 0.1
φg 0.10, -0.10 or 0
φd 0.15
α 0.8 or 0.1
ξ 0.2
ω 0.5

We generate the values of the variables as percentages of the GDP so that,
e.g., a value for DEBTit equal to 50 indicates that the stock of public debt of
Country i in period t is the 50% of the GDP; therefore, according to the same
scaling, a standard deviation equal to 1 has to be seen as a standard deviation of
1%. With regards to our baseline setting, we can notice from Table (1) that the
standard deviations for the unobserved time-invariant effects of the output gap

10The results are not presented here but are available upon request. In particular, we have
run the experiments with larger variances for the time-invariant Country-specific effects of
CAPB and GAP and the fiscal policy shocks, that is σµ = ση = σε = 1. The profile of the
series, with this modified setting, become explosive and the degree of heterogeneity introduced
in the data is unrealistic.
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and the cyclically-adjusted primary balance are relatively low. This is justified
by the fact that, in our period by period simulation process, the Country-specific
effects are cumulated year after year through the autoregressive processes of the
two variables. Standard deviations between 0.15 and 0.30 are high enough to
introduce in the model a realistic degree of heterogeneity that matches closely
the standard deviation (around 0.40) of the unobserved individual effects esti-
mated on actual data. Higher variances for the CAPB and GAP effects would
imply an induced non-stationarity in the series and an explosive profile for the
debt11. We keep also the variance of the fiscal policy shocks relatively low, as
the shocks are generated separately and independently for each period and each
Country. In order not to complicate the model further, we do not assume here
that common shocks are present among the Countries neither we introduce any
transmission mechanism of the shocks12. The simultaneous fiscal policy shock
appears in equation (2) for CAPB, while the lagged fiscal shock shows up in
the equation for GAP , scaled by a coefficient ξ = 0.2, thus making the output
gap predetermined but not strictly exogenous.

In our baseline simulation, we set the autoregressive coefficients for GAP
and CAPB both to 0.8, as the actual series are very persistent13. As a pure
robustness check for our results, we also consider an opposite extreme scenario
in which the dynamics of the gap is very fast (α = 0.1) and the inertia of fiscal
policies is lower, i.e. φc + 1 = 0.1. We acknowledge that such an alternative
setting is certainly far from being realistic but it can be very useful for robustness
checks.

We fix ω, the effect of the automatic stabilizers, to 0.5 as constant over time
and across Countries: the actual value of this elasticity is around 0.5 on average
in the Euro area and in the advanced OECD economies14 so this is the most
natural choice in our simulation, as commonly used in the literature.

A crucial issue is the setting of the parameters of the variables in the fiscal
rules, as they represent the reaction of discretionary fiscal actions, as measured
by ∆CAPB, to the economic cycle and to the initial fiscal conditions. When the
policies are sticky, i.e. φc+ 1 = 0.8, the implied φc in equation (1) is −0.2; when
policies are instead completely flexible, i.e. φc + 1 = 0.1, we have φc = −0.9.

We expect φg and φd not to be very high in absolute values, as the effect
of discretionary actions is by its nature limited when compared to the effect

11In this latter case, unrealistic values for the unobserved individual-specific effects variances
generate a trend in the series.

12In fact, it would then be unrealistic to assume that very severe fiscal shocks could affect
only one Country without affecting the other economies.

13The dynamics of the economic cycle, measured by α, is generally very slow; the inertia
of the fiscal policies, measured by the autoregressive coefficient of the CAPB, i.e. φc + 1, is
commonly very strong.

14The average ω for the Members of the EU-15 is generally between 0.45 and 0.50 and it is
on average around 0.45 for the New Members of the EU. See IMF Fiscal Monitor [2011] and
OECD Economic Outlook [2011] for further details.
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of automatic stabilizers. The chosen values for φg and φd are respectively 0.1
and 0.00515. The choice about the value of φg is also a relevant issue. Set-
ting a coefficient φg = 0.10 implies the assumption that discretionary fiscal
decisions are strongly counter-cyclical, while they could also be pro-cyclical or
even a-cyclical. As the main aim of our simulation exercise is to compare the
performances of alternative estimators rather than to check whether the fiscal
policies are cyclically symmetric or not, what matters here is the absolute value
of the output gap coefficient, rather than its sign. As a robustness check, we
also run simulations with φg = −0.10. An interesting case is also to assume
that fiscal policy are a-cyclical and set φg = 0, in order to investigate whether
the alternative estimators are able to detect such a-cyclicality.

3 Monte Carlo experiments for the CAPBmodel

3.1 Relevant econometric issues
The model of interest, as specified in equation (1), is a dynamic model for

panel data in which time-invariant Country-specific effects are allowed and the
variables are generally highly persistent.

The output gap in a fiscal rule is likely not to exogenous; accounting for
that, in the simulation model, the output gap is generated as predetermined
but not strictly exogenous, due to the presence in its generating process of the
lagged fiscal shocks that also appears in the fiscal rule in their realisation con-
temporaneous to ∆CAPBit. Such endogeneity of the output gap has therefore
to be tackled in the estimation procedure. A similar reasoning also holds true
for the public debt, which can be hardly assumed as exogenous to shocks in
the CAPB: in our simulated model, the debt is by construction endogenous
and needs therefore to be instrumented. A different kind of endogeneity is due
to the dynamic specification of the fiscal rule: the lagged dependent variable is
correlated with the Country-specific effects in the model, so that it is not strictly
exogenous, giving rise to the well-known dynamic panel bias. Both the within
transformation and the first difference transformation, the latter being also a
pillar of GMM estimation, induce a correlation between the transformed lagged
dependent variable and the transformed error terms and thus imply endogeneity
problems in the model. An instrumental variable approach is therefore needed in
this framework. In the GMM-estimation of the model, we will therefore instru-
ment all the regressors. We need to be aware that the recourse to instruments

15It is also worth noticing that, despite the fact that the adjustment to the output gap
and to initial fiscal conditions seems small at a first sight, these parameters imply a long run
adjustment relationship as follows:

CAPB∗ =
0.1
0.2

GAP ∗ +
0.005
0.2

DEBT ∗ = 0.5GAP ∗ + 0.025DEBT ∗ (11)

that is far from being economically irrelevant.
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for all the regressors can easily lead to a problem of instrument proliferation
that could bias the GMM estimates16 and weaken the tests for overidentifying
restrictions. It is therefore opportune to try to detect this problem and adopt
proper solutions to face it.

Another relevant issue is that the most realistic simulated scenario, with
φg = 0.8 and φc + 1 = 0.8, implies a high degree of persistence of the series
of interest. In this context, the weak instrument issue could easily arise in the
difference-GMM estimation of the model as the instruments in levels are only
weakly correlated to the lagged first-differenced endogenous variables17.

3.2 Estimation results on simulated data
We now present the outcomes of the Monte Carlo exercise, which allow to

analyze the performance of alternative estimators for the coefficients of the fiscal
rule in equation (1).

For each setting of the parameters in the simulation model, we run 1000
iterations on samples with 225 observations and report the mean of each esti-
mated coefficient over all the iterations (mean), the standard deviation of the
estimated coefficient (sd), the power of the t-test for each coefficient (sig)18 and
the average Hansen-test p-value (hansenp).

Equation (1) is estimated with the following panel data estimators (the ab-
breviations used in the tables are within brackets): Ordinary least squares
(OLS); Fixed-effects estimator (FE); Anderson-Hsiao estimator (AH) using
only instruments in levels; Arellano-Bond difference-GMM estimator exploiting
the full set of moment conditions (ABa); Blundell-Bond system-GMM estimator
exploiting the full set of moment conditions (BBa)19; Arellano-Bond difference-
GMM estimator with a limited set of instruments (ABl) which only uses the
t− 2 and t− 3 lags of the endogenous regressors as instruments; Blundell-Bond
system-GMM estimator with a limited set of instruments (BBl) which only
uses the t− 2 and t− 3 lags of the endogenous regressors as instruments for
the equation in first differences; Arellano-Bond difference-GMM estimator with
a collapsed set of instuments (ABc) in which the full instrument set is col-
lapsed following Roodman [2009a]; Blundell-Bond system-GMM estimator with
a collapsed set of instruments (BBc); Arellano-Bond difference-GMM estima-
tor with a limited collapsed set of instruments (ABlc) where the limited set

16See Ziliak [1997], Roodman [2009a] and Bowsher [2002] for further references.
17See Blundell and Bond [1998] for the discussion of this well-known issue.
18For each coefficient, we test the null hypotesis H0 : β = 0 against the alternative hypoth-

esis Ha : β 6= 0 at a 5% significance level. The power of the test gives us the probability of
rejecting H0 when it is false. Only in the case of simulated data for which φg = 0, sig should
be interpreted as the size of the test, as it gives the probability of rejecting H0 when it is true.

19In this specification, all the potentially available lags from t− 2 backward are used as
instruments in levels for the model in first differences and the lagged first-difference of the
endogenous regressors is used as instrument for the equation in levels.
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of instruments is also collapsed; Blundell-Bond system-GMM estimator with
a limited collapsed set of instruments (BBlc); Arellano-Bond difference-GMM
estimator with an instrument set reduced by means of the Principal Component
Analysis (PCA)20 according to the average criterion (ABpcaa)21; Arellano-Bond
difference-GMM estimator with an instrument set reduced by means of the PCA
according to the variability criterion (ABpcav)22; Blundell-Bond system-GMM
estimator with an instrument set reduced by means of the PCA according to the
average criterion (BBpcaa); Blundell-Bond system-GMM estimator with an in-
strument set reduced by means of the PCA according to the variability criterion
(BBpcav). The dependent variable is always the change in the cyclically-adjust-
ed primary balance, namely ∆CAPBit. Since all the regressors are considered
as not strictly exogenous, they are all instrumented. All the estimates are made
robust to the potential heteroskedasticity of the disturbances. With respect to
the GMM estimator, only one-step estimates of the parameters are reported23.
The true parameters for the lagged DEBT and GAP are respectively φd and
φg whose values are set as in Table (1); with respect to the lagged value of the
dependent variable instead, its true parameter will be φc = −0.2 when we set
φc + 1 = 0.8 and φc = −0.9 when φc + 1 = 0.1.The core of our simulations
is run on a 15-year pre-sample so that the length of the pre-sample equals the
number of periods considered in the analysis.

The estimation results for the CAPB model are presented through Table
(2) to Table (7).

For the sake of brevity, in the comments to the estimates we will refer to
DIFF and SYS GMM to indicate, respectively, the system and the difference
GMM. UNTR, COL and LIM will indicate respectively that the estimators ex-
ploit the untransformed, collapsed or limited24 set of instruments. PCA stands
for the set of instruments reduced by means of PCA25. When two reduction
techniques are combined, two abbreviations are also combined (e.g. LIMCOL).

We adopt a 15-year pre-sample in our experiments. As a preliminary ro-
bustness check, however, Table (2) and Table (3) present the estimation results
when we set either a 1-year pre-sample or a 35-year pre-sample. The setting of
the parameter is the baseline one, with φc = 0.8 and φg = 0.8. In general, what

20For details on the the application of PCA on the GMM-style instrument matrix see Bon-
tempi and Mammi [2012].

21We keep in the analysis only the principal components whose eigenvalues are above the
average of the eigenvalues.

22We keep a number of principal components such that the explained variance is the 70%
of the total variance in the original data.

23Though more efficient in large samples and well performing in simulated samples, the
two-step estimator suffers a poor finite sample performance and it is rarely used in empirical
analyses. We also estimated all the coefficient by two-step GMM and found larger biases and
variances due to a small sample. Two-steps results are available upon request.

24We sometimes specify 1 or 2 to indicate a lag depth of 1 or 2.
25The additional letters A and V will indicate, respectively, that the principal components

are retained according to the average and the variability criteria.
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emerges in this first scenario is that the behavior of the alternative estimators
is sufficiently in line with what is generally expected in a dynamic panel data
framework, in the case of both a short and a very long pre-sample: the GMM
estimators perform better than the OLS estimator, as the latter does not take
into account the presence of Country-specific time-invariant effects, while the
FE estimator, that accounts for this heterogeneity, gives results closer to the
GMM estimates, to the Arellano-Bond in particular. With respect to the es-
timates of the parameter of interest φg, we find that different specifications of
the DIFF estimator tend in general to perform slightly better in terms of mean
than the alternative specifications of the SYS estimator when the pre-sample
is shorter, though the variance is smaller for the SYS GMM estimators: such
behaviour is reversed with a longer pre-sample, with the SYS GMM estimator
still having the lowest variance. The SYS estimator, however, seems to have
the best performance overall: this could be due to the fact that, once the ini-
tial conditions satisfy the Blundell-Bond assumptions, it is less sensitive to the
accumulation of shocks and individual heterogeneity over time that is intrinsic
in our simulation process. An evident feature is the under-rejection of H0 for
φg by the DIFF estimator: this problem becomes more serious as the number
of instruments decreases and useful information is dropped from the instrument
matrix. In DIFF GMM frameworks, the instruments are weak if the series are
persistent and a reduction in their count comes out to be problematic. With
respect to φc, the behaviour of the alternative estimators is the standard one for
dynamic panel data models: the OLS estimator overestimates the coefficient,
the DIFF GMM is systematically biased downwards, while the SYS estimator
is the best performing, being less biased, in particular when the pre-sample
is short. It is worth stressing the good performance of alternative SYS PCA
estimators, especially for the estimate of φg, and, on the contrary, the very
poor behaviour of the DIFF PCA estimators. In a dynamic model with very
persistent series, the reduction of the DIFF GMM instrument matrix through
PCA further worsens the weak instrument problem already present. When the
instruments are relevant, as for the SYS GMM estimator, the use of PCA to
reduce the instrument count does not worsen the estimates. As far as φd is
concerned, in both the scenarios the most evident feature is the very misleading
under-rejection of H0: only in a minority of cases the coefficient is detected
as significant, as it actually is. Overall, the adjustment of fiscal policy to the
initial public debt is either overestimated or underestimated and it is in general
estimated far from the true value of 0.005.

Interestingly, the Hansen test p-values are far from 126 only for LIM COL
estimates, suggesting a severe and generalized problem of instrument prolifera-
tion and invalid over-identifying restrictions. However, such lower Hansen test
p-value does not come together with a significant improvement of estimators

26The implausible p-value of 1 is interpreted as a symptom of instrument proliferation
problems, as argued in Roodman [2009a].
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performance with respect to the UNTR estimates; rather, it comes along with
an under-rejection of the null hypotheses of non significant coefficients.

3.2.1 Sticky policies and very persistent gap: φc+ 1 = 0.8 and α = 0.8

In Table (4) we report the results of our baseline scenario with a pre-sample
of 15 years. We have very persistent economic cycle and very persistent fiscal
policies.

With respect to φg, the OLS estimator not surprisingly gives the most biased
estimates because it neglects the presence of Country-specific effects, that are by
construction very relevant in this framework. The DIFF and SYS GMM UNTR
estimators give similar estimates, though the SYS estimator has systematically
a lower variance. When the instrument count is reduced, the performance of
the DIFF estimators suffers a severe worsening, while the SYS estimators do
not change significantly their behaviour. The bad performance of the DIFF es-
timators with transformed instrument sets is generally accompanied by a severe
under-rejection of H0 of φg = 0. In parallel, the SYS PCA estimator gives the
least biased estimates overall, while the DIFF PCA is the estimator that suf-
fers the most. Applying the PCA on the DIFF GMM set of weak instruments
further worsens the weak instrument problem due to very feeble covariances
between the instruments. By adding the instruments in first differences, we
overcome this weakness issue and we have valid instruments that can be safely
reduced in their count: in fact, SYS PCA estimates are better than SYS UNTR
estimates. It is remarkable the fact that the Hansen test systematically gives
an implausible p-value of 1 or very close to 1, except for LIM COL estimates:
the more reliable p-value, though not really “safe” yet27, does not come along
with a sensible improvement in the estimates, that are worse than the LIM es-
timates. The collapsing of the instrument matrix is not effective in this context
and gives less robust estimates. In other terms, the number of instruments un-
avoidably becomes very large in this context, but this does not seem to affect
significantly the estimates: the UNTR GMM or, at most, the LIM estimator28
perform well and a further reduction in the instrument count by collapsing does
not seem required or can be misleading at worst. Considering the estimates for
φc, we find a high degree of heterogeneity in the estimates and features that
are typical in GMM estimation of dynamic panel data models: the OLS esti-
mator, that ignores the individual heterogeneity, seriously underestimates the
dynamics of the CAPB, by severely overestimating the coefficient; the DIFF
estimators tend to systematically estimate a too low coefficient and have very
high standard deviations. Things improve a lot when the coefficients are esti-

27Roodman [2009a] suggests on worrying whenever a p-value above 0.25 is obtain, as higher
values are symptoms of a weakening of the tests on over-identifying restrictions due to instru-
ment proliferation.

28The lag depth truncation is very common in the empirical literature whenever we have a
large number of endogenous regressors.
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mated by SYS GMM, as this estimator is both less biased and more efficient.
The SYS LIM and the SYS PCA estimates are the closest to the true value of
φc. The collapsing of the instrument matrix comes along with more biased esti-
mates and, when associated also with the limitation of the lags, with a marked
under-rejection of the null hypothesis for φc. The reduction of the instrument
set through PCA in DIFF GMM appears to be very dangerous because of a
worsening of weak instrument problems. The tendencies already underlined for
the output gap coefficient are exacerbated when the coefficient of the lagged
dependent variable is considered. In a context characterized by stickiness of
the fiscal policies and a high persistence of the output gap, it appears reason-
able to estimate the adjustment effects by SYS UNTR or by SYS LIM GMM
estimators: the instrument proliferation problem does not appear to be a true
issue in fiscal rule estimation and in our simulations there is not evidence of a
concrete risk of overfitting of the endogenous variables, despite the controversial
results of the Hansen test. With respect to φd, it is confirmed that there is a
general tendency to under-reject H0 : φd = 0 and that the estimates are often
not sufficiently close to the true value, except for the SYS estimates, which are
also those with the lowest variance.

3.2.2 Less persistent policies and gap: φc + 1 = 0.1 and α = 0.1

In Table (5) we consider a less realistic scenario where α = 0.1, so that the
economic cycle is very fast, and φc + 1 = 0.1 is such that the fiscal policies
present almost no inertia at all. The aim of the simulation with this particular
setting of the parameters is to check whether the previous findings are robust
to different degrees of persistence of the series. The true values of φg and φc are
respectively 0.10 and -0.90.

As far as φg is concerned, the behaviour of the alternative estimators is in line
with that found in the baseline scenario, with SYS UNTR and the SYS PCA
being the best performing estimators and the ones with the lowest variance.
Overall, a slight difference is that the estimates for the output gap generally
tend to be closer to the true value of φg: since here the output gap is set as
not persistent, the weak instrument problem is mitigated and the DIFF GMM
estimates are less affected than in the previous scenario. Also the tendency to
under-reject the null hypothesis on φg is alleviated and the COLL estimates,
even in the case of the DIFF estimators, are closer to the true value. In a
less persistent scenario, the estimates are less sensitive to the specifications of
the GMM estimators and they are not worsened by the adoption of instrument
reduction techniques. It is remarkable however the bad performance of the DIFF
PCA estimator in this case: if the series are close to being white noise, the lagged
levels of the endogenous regressors have very weak covariances between them
and are not suitable to undergo the PCA. In general, if the series were not
persistent, every choice about the specification of the GMM estimators would
be relatively safe and would give reliable estimates. When the series are very
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persistent, the issue of instrument weakness seem to dominate that of instrument
proliferation. If the instruments are weak, a reduction in their number through
the collapsing of the instrument matrix can bring the estimates far from the
true values of the coefficients. On the other hand, when the instruments are
stronger, the reduction of the instrument count has a very little impact on the
estimates. The estimates of φc follows the same regularities as above: the OLS
estimator overestimates φc and has a very high variance in the experiment; the
DIFF estimators overestimate the effect of the lagged CAPB by giving a too
large coefficient. When the CAPB is less persistent, φc is always detected as
statistically significant. In this last scenario, the estimation of φd comes out to
be the most problematic, as the parameter of the debt is very often stated not
significant, especially when the SYS GMM estimator is used; the DIFF GMM
tends to find the debt statistically significant many more times, but this is due
to the fact that it generally overestimates the adjustment effects of the fiscal
policies to the initial stock of debt. From the analysis of the results in Table
(2) through Table (5), the sign of φg is always correctly estimated by the GMM
estimator; on the other hand, the estimates of φg point to an a-cyclicality of
discretionary fiscal policies too often.

3.2.3 Alternative cyclicality of the policy stance: φg = −0.10 and
φg = 0

As a further robustness check, in Tables (6) and (7) we consider again the
scenario characterized by the high persistence of both the gap and the CAPB,
but we set respectively φg = 0 and φg = −0.10, so that discretionary fiscal
policies are assumed to be a-cyclical in the first case and pro-cyclical in the
second one.

With respect to φc and φd we find that in both cases there are not relevant
differences with respect to the results presented above. The same is also true
for the Hansen test p-value that is still in line with the values found before.
What we are most interested in here is whether and how there are changes in
the estimates of φg.

In the scenario in which φg = 0, we can check for the size of alternative
estimators through the frequency of rejection of the null hypothesis of a non
significant coefficient for the output gap. We have here an over-rejection of H0,
as the size of the test is above the 5%. In particular, the estimates tend too
often to a pro-cyclicality or to a counter-cyclicality of the fiscal policies when
they are actually a-cyclical. The SYS COL estimator tends to exacerbate this
problem. However, this tendency is not as marked as the one, detected above,
to find a-cyclicality when the policies are actually not neutral to the economic
cycle.

When φg = −0.10, the estimates are generally in line with that in the case
in which φg = 0.10, though they are slightly less biased and the tendency to
under-reject H0 is less severe. In particular, the OLS estimator is much closer
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to the true parameter and the DIFF estimates are more similar to the SYS
ones. It is confirmed that the SYS PCA estimator performs impressively well
in a context where fiscal policies are very sticky. The adoption of instrument
reduction techniques does not necessarily improve the estimate, though it lowers
the Hansen-test p-value.

Overall, the main conclusion we draw from these Monte Carlo experiments is
that even when the best performing estimator, the SYS GMM in all its variants,
is used, it is frequent to detect a misleading reaction of discretionary fiscal
policies to the economic cycle.

4 Estimation of the PB model
Up to now, we have focused on the CAPB model with the aim of estimating

the cyclical reaction of discretionary fiscal policies.
Another approach commonly adopted in the literature is the estimation of

alternative fiscal response functions that focus on the reactions of the overall
budget. Among these models, the PB model aims at estimating the overall
reaction of fiscal policies to the economic cycle, rather than the discretionary
responses only as in the case of the CAPB model. In the PB model, the depen-
dent variable, which represents the decision of the policymaker, is the change
in the unadjusted overall primary balance, while the explanatory variables are
given by the lagged primary balance, the lagged debt and the lagged output
gap. The PB model reads therefore as follows:

∆PBit = φPBp PBi,t−1 + φPBd DEBTi,t−1 + φPBg GAPi,t−1 + uit (12)

where uit is an error terms that collects unobserved individual heterogeneity,
fiscal policy shocks and idiosyncratic errors.

The primary balance is, by definition:

PBit ≡ CAPBit + ωitGAPit, (13)

that is the sum of the cyclically-adjusted primary balance, that captures the
structural or discretionary budget, and a cyclical component given by the prod-
uct of the output gap and the effect of automatic stabilizers. It is therefore
straightforward too see that the change in the primary balance measures the
full fiscal action.

The main parameter of interest is in this case φPBg , as it gives indications
on whether fiscal policies are pro-cyclical, in case of a negative sign, or counter-
cyclical, in case of positive coefficient.

As the PB model allows to estimates only gross effects, it is common in
the fiscal policy literature to estimate the reaction of discretionary policies to
the cycle by subtracting the coefficient ω29, that is the average of ωit, from

29ω has generally a value around 0.5.
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the estimated coefficient of the output gap in the PB model (φPBg )30. The
cyclicality of discretionary policies is thus estimated as:

φ
PB(discr)
g ≈ φPBg − ω. (14)

We estimate the PB model in equation (12) on the simulated data. We run
1000 iterations, exploit the same estimators used for the CAPB and consider
all the regressors as endogenous so that they are all instrumented. The baseline
settings used for the CAPB model are maintained. In Tables (8) and (9) we
report the estimates for the scenario in which both the gap and the cyclically-
adjusted primary balance are very persistent and in which the two processes are
almost not persistent at all. In this framework, the true value of the coefficient
for the output gap in the CAPB is set to 0.10. In the tables we also report
the estimates of φPB(discr)

g that are implied by equation (14); we use ω = 0.5 in
all our experiments. For convenience’s sake, in the last rows of Tables (8) and
(9) we report the estimates of φCAPBg obtained in exactly the same experiment
setting31. Both in the more persistent and in the less persistent scenarios, the
estimates of φPBg are not very different from those obtained for φCAPBg : when
we use the alternative specifications of the SYS GMM, we get estimates for φPBg
that are in the range 0.06−0.09, not very far from those in the range 0.095−0.11
obtained by estimating the CAPB model. In other words, the estimated φPBg
is far from being higher than the estimated φCAPBg of about 0.5. This gets
evident when we consider the estimates of φPB(discr)

g : if subtracting ω from the
estimated φPBg were a correct strategy in order to estimate the discretionary
reaction in the PB model, we would expect the estimated φPB(discr)

g to have an
average close to φCAPBg = 0.10. This is not the case here as we systematically
get a very large negative estimate of φPB(discr)

g : this would point to a very strong
pro-cyclicality of discretionary fiscal policies in a context in which the policies
have been set as counter-cyclical. These evidences are generally confirmed also
in the less persistent framework.

We have argued that the most realistic profile is the one where the gap and
the deficit are strongly persistent: we find here that, in this context, it can be
very misleading to estimate the discretionary effects according to equation (14)
because of the risk of drawing wrong conclusions about the cyclicality of the
policies, no really matters which estimator is used. In order to estimate the
reaction of discretionary policies to the economic cycle, the best strategy is to
estimate φCAPBg .

30See, among the others, Bouthevillain et al. [2001], Balassone and Franzese [2004] and
Socol and Socol [2009].

31These estimates are from Tables (4) and (5).
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4.1 Algebraic links between the parameters of the PB
model and the CAPB model

We aim here at discovering the reasons why the estimates of φCAPBg and of
φPBg do not differ as much as we would expect.

We recall here that the CAPB model is:

∆CAPBit = φCAPBc CAPBi,t−1 +φCAPBd DEBTi,t−1 +φCAPBg GAPi,t−1 +µi+ εit

and that the PB model is:

∆PBit =φPBp PBi,t−1 + φPBd DEBTi,t−1

+ φPBg GAPi,t−1 + uit.

By exploiting the equivalence PBit ≡ CAPBit+ ωGAPit, we can derive the
exact relationships between the coefficients in the two models.

By substituting the expression for PBit into the PB model we have, through
some algebraic manipulations:

∆CAPBit =φPBpb CAPBi,t−1 + φPBd DEBTi,t−1+

φPBpb ωGAPi,t−1 + φPBg GAPi,t−1−
ωGAPit + ωGAPi,t−1 + υit (15)

It is straightforward that the coefficient of CAPBi,t−1 in the CAPB model
is the same as the coefficient of PBi,t−1 in the PB model and that the coefficient
of the lagged debt is the same in the two models. We thus have:

φPBpb = φCAPBc (16)

φPBd = φCAPBd . (17)

In order to derive an analogous link for the gap coefficient, we need to
substitute αGAPi,t−1 + ηi + ξεi,t−1 + υit as in equation (5) for GAPit. We get:

∆CAPBit =φPBpb CAPBi,t−1 + φPBd DEBTi,t−1+

+ (ωφPBpb + φPBg + ω− αω)GAPi,t−1 (18)
− ω(ηi + ξεi,t−1 + υit) + uit. (19)

The relationship between the gap parameters in the two models is therefore
the following:

φCAPBg = ωφPBpb + φPBg + ω(1− α). (20)

Note also that both φPBpb and α play a role in this relationship and are crucial
in order to determine how close the estimates in the two models are.
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We have just seen that φPBpb = φCAPBc so that, if for example we set ω = 0.5
and φCAPBc + 1 = 0.8, we will get φPBpb = φCAPBc = −0.2 from which ωφPBpb =
−0.1. When the autoregressive coefficient of the output gap is set to α = 0.8, we
have that ωφPBpb = ω(1− α) = 0.1: in this case, the output gap parameters in
the two models are the same, i.e. φCAPBg = φPBg as the first and the last terms
cancel out. Whenever the dynamics of the primary balance and of the output
gap are similar, the two terms will tend to annul each other and estimates of
the coefficients for the gap in the two models very close each other are expected.
For the relationship φ

PB(discr)
g ≈ φPBg − ω to be reasonable, the dynamics of

the two processes are required to be approximately the same in magnitude but
with opposite signs32. It is evident that such a scenario is not realistic.

After having made the link between the coefficients explicit, we can go back
to the estimation results for the PB model in Tables (8) and (9). In the tables
the implied φCAPBg as deriving from equation (20) are reported33. Imposing
the same dynamics for the primary balance and for the output gap, we obtain
estimates of the gap coefficient in the PB model close to those in the CAPB
model, though they are not as close as we would expect according to equation
(20). The estimates of the gap are more heterogeneous than the respective ones
in the CAPB model and present a much higher variance. When compared to
the estimates for φCAPBc in Tables (3) and (4), the estimates for φPBpb are much
more volatile than those in the CAPB and are generally far from the value
of −0.2 we would expect according to equation (17). In the most persistent
scenario, the behaviour of the estimators reflects the one we have underlined
in the CAPB estimation: the OLS estimator largely underestimates the effect
by overestimating the coefficient, the DIFF GMM estimators gives too large
coefficients, while the SYS GMM estimators are the best and the most efficient.
The SYS UNTR and the SYS PCA give estimates close to −0.2 and with the
smallest variance overall. In the case in which α = 0.1 and φCAPBc + 1 = 0.1 we
have less heterogeneity in the estimates and an overall better performance of the
DIFF estimators over the SYS ones: in a less persistent framework, the weak
instrument problem is mitigated and parsimony in the number of instruments
is beneficial.

Overall, the estimates of the coefficients in the PB model are more biased
and display a much larger variance than those for the CAPB model: this reflects
in an incorrect implied φCAPBg coefficient as derived from the PB estimates. As
both the estimates of φPBpb and φPBg enter equation (17), if the are biased and
imprecise, the estimate of φCAPBg will also be likely to be biased. If the estimates

32The relationship would hold, for example, if the primary balance were a static process
and the output gap were a unit root process or if φCAPBg + 1 = x and α = −x.

33It is worth saying that here we generate the PB series according to equation (7), that is
we scale both CAPB and GAP by the term 1 +GAP , so that the relationship in equation
(13) does not perfectly hold: the denominator, however, is very close to 1, as the gap moves
within the range −5/5%, so we should not expect very significant deviations in the estimates.
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of φPBpb and φPBg were better, we would expect that the relationship φPBg =

φCAPBg would approximately hold, as the two terms ωφPBpb and ω(1−α) would
tend to cancel out. Here, instead, the dynamics of the primary balance and
the response to the gap are estimated very imprecisely and the implied φCAPBg

is therefore a very weak, and often misleading, estimate of the discretionary
response to the gap. This larger bias and imprecision of the estimates in the
PB model could be explained by the fact that the PB model estimates gross
unadjusted effects and introduces much more noise in the variables, with respect
to the CAPB model that filters out the cycle effects from the primary balance.
We can have an intuition of that by looking at the term −ω(ηi+ ξεi,t−1 + υit) in
equation (19): this noise is part of the error term in the CAPB model, while it
is part of the PB variable in the PB model. Overall measures of the deficit are
therefore more likely to be endogenous to the shocks in the model than already
adjusted measures.

For the sake of completeness, we report in Tables (10) and (11) the results for
the alternative mixed scenarios α = 0.8;φc + 1 = 0. and α = 0.1;φc + 1 = 0.8.
In this cases we give the CAPB and the GAP different dynamics and we ex-
pect to find estimates of φPBg far from 0.10 as the terms ωφPBpb and ω(1−α) do
not cancel out anymore. This is exactly what happens, as the estimates of the
gap coefficient are centered respectively around 0.30 and −0.20: in both cases
the estimate of φ(PB)discr

g is very misleading as it implies a very strong pro-
cyclicality of the discretionary policies, especially in the second scenario, when
they are instead set as counter-cyclical. The estimate of the implied φCAPBc is
less biased, but only when the SYS GMM estimator is used. Neither in this
case, however, the strategy of using equation (17) in order to estimate the dis-
cretionary response to the gap is completely safe, due to the large heterogeneity
in the estimates of the coefficients φPBg and φPBpb .

In conclusion, if we want to assess how discretionary policies react to the
cycle, the safest strategy is the estimation of φCAPBg directly in the CAPB
model by SYS GMM. Moreover, it is not reasonable to estimates φ(PB)discr

g by
subtracting ω from the estimated φPBg : in case it is only possible to estimate the
PB model, it is advisable to estimate the discretionary response by applying
the strategy suggested in this section.

5 Estimation of the CAPB model on real data
We estimate the CAPB model on the dataset used in Golinelli and Momigliano

[2009] and we adopt the alternative specifications of the GMM estimator already
employed in our simulations. The sample includes data for 11 Countries of the
European Monetary Union over the period 1994-2008. Data for the cyclically
adjusted primary balance and the output gap are taken from the OECD Eco-
nomic Outlook [n. 83, June 2008]; data for the stock of public debt derive from
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the European Commission AMECO database [June 2008]34. We choose the
specification of the CAPB model as in Table (4) of Golinelli and Momigliano
[2009] where, in addition to the lagged dependent variable, debt and gap, we in-
clude two additional explanatory variables that are by now standard in empirical
analysis of fiscal rules: an election variable (Elect)35, that is a dummy variable
equal to 1 in years in which regular elections take place (0 otherwise), and a
Maastricht variable (Maas), capturing the role of EU rules, that is different
from 0 when the deficit is above the 3 per cent target threshold36.

The model we estimate on real data is therefore:

∆CAPBit =φcCAPBi,t−1 + φdDEBTi,t−1 + φgGAPi,t−1

+ βMaasi,t−1 + δElectit + µi + τt + εit (21)

where µi are unobserved individual-specific effects, τt are time effects and εit is
the idiosyncratic term.

We estimate the model in equation (21) by GMM and by OLS37. All the
estimates include time dummies. In line with Golinelli and Momigliano [2009]
and with the previous Monte Carlo experiments, we take the lagged dependent
variable, the output gap and the Maastricht variable as endogenous: these three
variables are therefore instrumented by their own lags in levels in the equation
in first-differences and by their lagged first difference in the equation in levels.
With respect to the debt, we adopt two alternative strategies: first, following
Golinelli and Momigliano [2006], we consider the debt as an exogenous regres-
sor38; second, we consider also the debt as endogenous and we instrument it
with GMM-style instruments39. We keep the same abbreviations as in Section
3.2 for the alternative estimators in the tables: however, when we lag-truncate

34Details on the definitions of the variables and on the sources of data are in the Appendix
of Golinelli and Momigliano [2009].

35Data are from the International Institute for Democracy and Electoral Assistance (IDEA).
36The Appendix of Golinelli and Momigliano [2009] provides technical details on the con-

struction of the Maastricht variable.
37Our main interest is in GMM estimation of fiscal response functions with alternative

specification of the GMM estimator. We therefore omit here the FE estimates, as they are
supplanted by the Arellano-Bond estimator in empirical analysis, and Anderson-Hsiao es-
timates, as they have proved to be greatly biased also in a controlled experiment. These
additional results are available upon request.

38In this perspective, the potential endogeneity of the debt in an economic sense does not
translate into an endogeneity in a pure statistical sense, as it happens instead in the case of the
lagged dependent variable; therefore the debt does not necessarily need to be instrumented.
This strategy is in line with the common habit of using GMM-style instruments only for the
lagged dependent variable when other potential endogenous regressors are not endogenous in
a statistical sense. See, e.g., Arellano and Bond [1991].

39In our simulations, the debt was endogenous by construction, as generated sequentially
in such a way that it incorporated fiscal policy shocks, economic cycle shocks and individual
effects, and it necessarily needed to be instrumented. In a real world, we are inclined to
believe the debt to be truly correlated with fiscal policy shocks and to the economic cycle, and
therefore necessarily correlated with the error term. We thus prefer to consider it endogenous.
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the instrument matrix, we consider both the case in which only one lag is kept
(l1 and lc1 stand for the limited and collapsed matrix)40 and the case, as above,
in which we keep two lags of each endogenous variable (l2 and lc2 for the limited
and collapsed matrix). All the estimates are made robust to the potential het-
eroskedasticity of the errors; GMM estimates are always one-step. In each table,
we report the estimate of the coefficient, the standard error and the t-statistic.

We want first to replicate the results in column (4) of Table (4) in Go-
linelli and Momigliano [2009]; we then estimate the model by all the alternative
estimators. In the original paper, the estimates are not made robust to het-
eroskedasticity; they are obtained by one-step SYS GMM and use only the
first available lag for the endogenous regressors41; as hinted above, the authors
consider the debt exogenous.

We use the command xtabond2 for GMM estimation of dynamic panel data
in Stata42 in the latest available version for Stata 12. The authors obtained
their estimates in Stata 9 with the release of the xtabond2 command available
at the time the paper was published.

In Table (12), in the first column we replicate the original estimate not robust
to heteroskedasticity; in the second column we make it robust using the version
of xtabond2 exploited by the authors; in the third and the fourth columns we
replicate the estimates of the first and the second ones by using the latest version
of xtabond2.

In Table (12), we do not find any difference in the point estimates of the coef-
ficients, while we have discrepancies in the estimated standard errors only when
the estimates are not made robust to heteroskedasticity of the errors. Inference
can be affected by whether or not we account for potential heteroskedaticity: in
the case of the lagged dependent variable, e.g, we find a coefficient significant
at a 10% significance level when estimates are not robust, not significant when
they are robust.

In Table (13) we report the results for the model in equation (21) when the
debt is assumed to be exogenous. A noticeable heterogeneity in the estimates
of the coefficient φg is found: there is not any agreement on the estimated sign
of the coefficient and the response to the gap is never found to be statistically
significant. The estimates are particularly imprecise and unreliable, since they
are characterized by a very large standard error, in particular when any tech-
nique is adopted in order to reduce the number of instruments. In line with
the findings in our Monte Carlo simulations, the SYS GMM estimators tend
to give more counter-cyclical coefficients than the DIFF GMM estimators and
estimates with a smaller variance. This is particularly evident for the LIM COL
estimates. When we look at the t-statistic, all the estimators point to the a-
cyclicality of the discretionary fiscal policies. With respect to the coefficient of

40This choice is made in line with Golinelli and Momigliano [2009] who use only the first
valid lag for the regressors.

41The original estimate is the BBl1 in our notation.
42Details about the syntax are in Roodman [2009b].
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the lagged dependent variable, in line with the Monte Carlo experiment, the
DIFF estimators systematically tend to give larger coefficients than the SYS es-
timators and larger standard errors. There is a strong tendency of the estimates
to become less negative or even positive when we adopt LIM, COL or LIMCOL
estimators. The smaller the transformed instrument set, the less negative the
coefficient. This gets along with a propensity to go towards a non significance of
the coefficient as more as we reduce the number of instruments: for the UNTR
estimator we find an estimate of φc around -0.2 and the coefficient comes out
to be strongly statistically significant; for the LIM2 GMM the estimates re-
main very close to the untransformed ones and strongly significant, both in the
case of the SYS and DIFF GMM estimation; LIM1 GMM gives smaller esti-
mated coefficients that also become not significant. The SYS COLL estimator
returns not significant estimates. Things worsen when the LIMCOL estimator
is used: for LIM1COL we get estimates of the coefficient with a positive sign43,
though not significant. Mindful of the results in the Monte Carlo experiment,
we are inclined to believe that the “true” value of φg is in a neighborhood of
−0.15/− 0.2, close to the value estimated by the untransformed system-GMM
estimator. As we know that the CAPB is by its nature a dynamic and very
persistent process, we expect a significant φc coefficient, and we are suspicious
whenever the coefficient is detected as not significant.

A sensible reduction in the instrument count in this framework comes along
with a too severe loss of information that results in an impossibility to obtain
reliable estimates of the fiscal response function. The instrument reduction
techniques proposed by Roodman [2009a] reveal themselves as potentially dan-
gerous in the current context where the lack of information in the data is a
crucial issue. On the other hand, it is worth noticing that, when we adopt a
purely statistical technique (such as PCA) to reduce the number of instruments,
we have a smaller reduction in the instrument count but we safeguard the signif-
icance of the coefficients and we get estimates in line with those obtained on the
untransformed instrument set. The Hansen test gives systematically a p-value
of 1 even when the instrument count is drastically reduced: in the light of the
previous simulations we can argue that we should not worry too much about
this value, as an excessive number of instruments is likely to be less dangerous
than the loss of information deriving from a reduction in the instrument count.
With respect to the debt coefficient, it is detected as significant only when es-
timated by DIFF GMM; this comes along with a larger absolute value of the
coefficient when compared to the SYS GMM estimator.

The two additional regressors appear to have a relevant explanatory power as
their coefficients are very large and are generally found to be strongly significant:
in particular, the Maastricht variable is found to have a systematically significant

43It is worth reminding here that an estimate of φc with a positive sign would imply an
autoregressive coefficient for the CAPB, given by φc + 1, that is above 1: we would deal with
the unrealistic scenario of an explosive primary balance series.
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effect that is estimated around -0.5/-0.7 in the best GMM specifications; the
regular elections appear to play a relevant role, suggesting a systematic fiscal
loosening in the election years44.

This evidence supports the idea that these additional variables have to ap-
pear in a fiscal response function. Additional variables generally not included
in the standard CAPB model, such as institutional factors or budgetary rules,
could play a relevant role in explaining the discretionary response of fiscal poli-
cies and their omission could potentially affect the inference on the coefficients
of the variables included.

We could argue that, in the EMU context, the discretionary action of the
policy maker is driven more by the provisions of the Stability Growth Pact
rather than by the output gap and the actual stock of debt.

In Table (14) we report the estimate for the CAPB model in the case where
also the debt is treated as an endogenous regressor. The outcome does not
change much with respect to the previous case. The main parameter of interest,
φg, is again constantly not significant in all the cases except for ABl1c45. With
respect to φc, the estimates mirror those in Table (13), with a considerable
tendency to be statistically significant and around -0.20 when the SYS GMM
estimator is used, and to become implausibly positive and not significant when
the dimension of the instrument matrix is reduced to the minimum. Again, we
are inclined to believe the true parameter is not far from -0.20. With respect to
φd, we find a significant coefficient as estimated by DIFF GMM and also when
the instrument set is reduced through PCA or contemporaneously limited and
collapsed. In contrast with what happens for the other endogenous regressors,
whose significance is affected by a reduction in the instrument count, the co-
efficient of debt gets more significant as we reduce the number of instruments.
Overall, there is not a clear indication on the role of the initial state of finances,
as captured by the debt, in determining discretionary fiscal actions: the esti-
mates are not robust to the alternative choices about the instrument matrix.
Even in this second case, the two explanatory variables are found to be very im-
portant in explaining the discretionary fiscal action and this evidence is robust
to the estimator used.

6 Conclusions
This work compares alternative dynamic panel data estimators for the esti-

mation of fiscal response functions. To this end, we run extensive Monte Carlo
simulations where we allowed various parameters in the fiscal rule to change.

44The coefficient looses in significance only when the instrument count is drastically reduced.
45The statistical significance in this case comes along with an implausibly high estimated

coefficient. The most likely explanation is again the bias due to a too drastic reduction in
the number of instrument together with the well-known tendency of the DIFF estimator to
overestimate the coefficients.
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First, we estimated the CAPB model by different estimators, always ac-
counting for the dynamic structure of the model, for the endogeneity of the
regressors, and for the risk of instrument proliferation in GMM estimation.
We found significant heterogeneity in the estimates in all the scenarios and we
showed that the System GMM estimator is the safest in this context as it gives
the least biased estimates and the lowest variance. We also warned about the
risk of getting very biased and misleading estimates when strategies to dras-
tically reduce the number of instruments were adopted. In case of multiple
endogenous regressors, we could lower significantly the p-value of the Hansen
test only by paying the risk of obtaining unreliable estimates. We found that
the safest instrument reduction strategy is the purely data-driven one, namely
the application of the PCA on the instrument set. From the Monte Carlo ex-
periment, we drew the recommendation to be cautious in the interpretation of
the estimated coefficients in a fiscal rule: the coefficients were often detected
as not significant when they actually were; on the other hand, there was also a
tendency to label a coefficient as significant when it actually was not.

Second, we estimated the PB model on simulated data and we cast new
light on the risks of assessing the discretionary response of fiscal actions to the
cycle by simply subtracting the effect of automatic stabilizers from the estimated
coefficient of the output gap in the PB model. In fact, when the dynamics of
the gap and of the CAPB are close each other and the discretionary policies are
set to be counter-cyclical, this strategy points systematically to a pro-cyclicality
of the policies. We suggested an alternative way to estimate the discretionary
response starting from the coefficients of the PB model and we found that it is
generally safer than the commonly adopted one. However, we concluded that
the best strategy in order to assess the response of discretionary policies to the
cycle remains the direct estimation of the CAPB model.

Third, we estimated the CAPB model on the dataset of Golinelli and
Momigliano [2009] for the EMU Countries. We confirmed that the estimates
obtained by SYS GMM estimation are the most reliable; a too drastic reduction
in the instrument count through a huge limitation of the lag depth and the
collapsing of the instrument set seemed harmful for the estimates as it led to
an implausible non-significance of the coefficient of the lagged dependent vari-
able. We found that the detected a-cyclicality of discretionary fiscal policies in
this sample is robust to all the specifications of the estimators. Across all the
estimators, we systematically found a relevant importance of the SGP rules and
of the regular elections in explaining discretionary fiscal actions and we argued
that we should care more about potentially relevant institutional factors that
can not be omitted a priori.
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Table 12: CAPB model on real data: reproduction of Golinelli and Momigliano
[2009]

Dependent variable: ∆CAPB
Variable BBl1 orig. BBl1 orig. rob. BBl1 not rob. BB1l1 rob.
L.GAP coeff

sd
t

L.CAPB coeff
sd
t

L.DEBT coeff
sd
t

L.Maas coeff
sd
t

Elect coeff
sd
t

0.069 0.069 0.069 0.069
0.07 0.048 0.072 0.048

1 1.44 0.96 1.44
-0.123 -0.123 -0.123 -0.123
0.073 0.104 0.076 0.104
-1.67 -1.18 -1.62 -1.18
0.004 0.004 0.004 0.004
0.005 0.008 0.005 0.008

0.76 0.46 0.74 0.46
-0.74 -0.74 -0.74 -0.74
0.176 0.212 0.182 0.212
-4.21 -3.49 -4.07 -3.49

-0.466 -0.466 -0.466 -0.466
0.178 0.188 0.184 0.188
-2.61 -2.47 -2.52 -2.47

Obs. (N × T ) 165 165 165 165
T 15 15 15 15
Instruments 124 124 124 124
hansenp 1 1
Autocorrelation 0.044 0.038 0.051 0.038
Notes:
a. Data are for 11 EMU Countries over the period 1994-2008. The dataset
is the same used by Golinelli and Momigliano [2009].
b. We report the point estimates for the coefficients (coeff), the estimated
standard deviation (sd) and the t-statistic (sig) for the significance of the
coefficients.
c. Details on the abbreviations for the estimators are in section 3.2.
d. In the first column we reproduce the original estimates of the authors; in
column 2 we make standard errors robust; in column 3 and 4 we replicate
the estimates in column 1 and 2 with the most recent version of the estima-
tion commands in Stata 12.
e. Instruments is the number of instruments used in the estimates.
f. hansenp is the p-value for the Hansen over-identifying restriction test
(robust but weakened by many instruments; see Roodman [2009a-b].)
g. Autocorrelation reports the p-value of the residuals’ second-order auto-
correlation test.

39



Ta
bl
e
13
:
C
A
PB

m
od

el
on

re
al

da
ta

w
ith

ex
og
en

ou
s
de

bt

D
ep

en
de

nt
va

ri
ab

le
:

∆
C
A
P
B

V
ar

ia
b

le
O

L
S

A
B

a
B

B
a

A
B

l1
B

B
l1

A
B

l2
B

B
l2

A
B

c
B

B
c

A
B

l1
c

B
B

l1
c

A
B

l2
c

B
B

l2
c

A
B

pc
aa

A
B

pc
av

B
B

pc
aa

B
B

pc
av

L
.G

A
P

co
eff

sd t

L
.C

A
P

B
co
eff

sd t

L
.D

E
B

T
co
eff

sd t

L
.M

aa
s

co
eff

sd t

E
le

ct
co
eff

sd t

-0
.0

08
-0

.0
50

0.
02

1
0.

00
4

0.
06

9
-0

.0
55

0.
01

6
-0

.0
66

-0
.0

08
0.

02
5

0.
25

8
-0

.0
49

0.
17

3
-0

.0
49

-0
.1

39
0.

00
9

-0
.0

21

0.
06

2
0.

06
5

0.
03

7
0.

13
5

0.
04

8
0.

07
8

0.
04

7
0.

07
3

0.
07

2
0.

27
0.

22
9

0.
17

3
0.

19
1

0.
06

9
0.

13
0.

04
5

0.
04

7

-0
.1

3
-0

.7
7

0.
57

0.
03

1.
44

-0
.7

0.
34

-0
.9

-0
.1

1
0.

09
1.

13
-0

.2
9

0.
9

-0
.7

-1
.0

7
0.

19
-0

.4
5

-0
.1

56
-0

.2
85

-0
.1

98
-0

.2
08

-0
.1

23
-0

.3
10

-0
.2

11
-0

.3
01

-0
.1

26
0.

17
7

0.
32

5
-0

.0
41

0.
17

7
-0

.3
25

-0
.4

06
-0

.2
39

-0
.2

62

0.
06

2
0.

06
0

0.
05

3
0.

2
0.

10
4

0.
10

1
0.

07
5

0.
09

4
0.

10
5

0.
28

6
0.

21
9

0.
18

3
0.

17
7

0.
07

9
0.

12
3

0.
06

6
0.

06
6

-2
.5

3
-4

.7
4

-3
.7

6
-1

.0
4

-1
.1

8
-3

.0
7

-2
.8

2
-3

.2
1

-1
.2

0.
62

1.
48

-0
.2

3
1

-4
.1

1
-3

.3
-3

.6
4

-3
.9

6

0.
00

5
0.

01
6

0.
00

8
0.

02
7

0.
00

4
0.

02
6

0.
00

8
0.

02
3

0.
00

4
0.

04
9

-0
.0

16
0.

03
8

-0
.0

09
0.

02
2

0.
05

6
0.

01
0

0.
01

1

0.
00

4
0.

00
5

0.
00

5
0.

01
2

0.
00

8
0.

01
0.

00
6

0.
01

0.
00

7
0.

01
9

0.
01

3
0.

01
3

0.
01

0.
00

6
0.

01
9

0.
00

6
0.

00
6

1.
1

3.
10

1.
41

2.
25

0.
46

2.
65

1.
33

2.
36

0.
59

2.
53

-1
.2

2
2.

93
-0

.9
2

3.
54

3
1.

72
1.

84

-0
.5

55
-0

.4
50

-0
.5

78
-0

.7
82

-0
.7

40
-0

.5
47

-0
.6

20
-0

.4
71

-0
.7

35
-1

.2
61

-1
.3

66
-0

.9
27

-1
.0

95
-0

.4
63

-0
.5

18
-0

.5
37

-0
.5

08

0.
14

7
0.

14
5

0.
13

3
0.

17
5

0.
21

2
0.

12
3

0.
16

9
0.

14
2

0.
20

6
0.

35
3

0.
35

7
0.

19
6

0.
27

0.
12

5
0.

18
1

0.
14

5
0.

16
4

-3
.7

7
-4

.0
9

-4
.3

3
-4

.4
7

-3
.4

9
-4

.4
5

-3
.6

6
-3

.3
2

-3
.5

7
-3

.5
7

-3
.8

3
-4

.7
3

-4
.0

6
-3

.7
-2

.8
5

-3
.7

1
-3

.1

-0
.4

26
-0

.5
13

-0
.4

68
-0

.4
11

-0
.4

66
-0

.4
00

-0
.4

60
-0

.4
76

-0
.3

98
-0

.2
93

-0
.3

90
-0

.3
23

-0
.3

79
-0

.4
84

-0
.4

30
-0

.3
73

-0
.4

33

0.
17

7
0.

16
8

0.
15

6
0.

21
3

0.
18

8
0.

18
4

0.
16

6
0.

18
1

0.
18

2
0.

22
5

0.
22

5
0.

21
7

0.
21

3
0.

16
6

0.
2

0.
17

8
0.

19
8

-2
.4

-3
.0

9
-3

-1
.9

2
-2

.4
7

-2
.1

7
-2

.7
7

-2
.6

2
-2

.1
9

-1
.3

-1
.7

3
-1

.4
9

-1
.7

8
-2

.9
1

-2
.1

5
-2

.0
9

-2
.1

9

O
bs

.
(N

×
T
)

16
5

15
4

16
5

15
4

16
5

15
4

16
5

15
4

16
5

15
4

16
5

15
4

16
5

15
4

15
4

16
5

16
5

T
15

14
15

14
15

14
15

14
15

14
15

14
15

14
14

15
15

In
st

ru
m

en
ts

15
4

22
6

68
12

4
11

8
17

4
96

10
1

20
25

24
29

13
0

94
18

5
13

5

ha
ns

en
p

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A
ut

oc
or

re
la

ti
on

0.
03

7
0.

03
9

0.
03

0
0.

03
8

0.
03

4
0.

03
7

0.
03

7
0.

04
2

0.
06

5
0.

08
5

0.
04

5
0.

06
9

0.
03

5
0.

03
1

0.
03

7
0.

03
0

N
ot
es
:

a.
D
at
a
ar
e
fo
r
11

E
M
U

C
ou

nt
ri
es

ov
er

th
e
pe
ri
od

19
94

-2
00

8.
T
he

da
ta
se
t
is

th
e
sa
m
e
us
ed

by
G
ol
in
el
li
an

d
M
om

ig
lia

no
[2
00

9]
.

b.
W
e
re
po
rt

th
e
po
in
t
es
ti
m
at
es

fo
r
th
e
co
effi

ci
en
ts

(c
oe
ff
),

th
e
es
ti
m
at
ed

st
an

da
rd

de
vi
at
io
n
(s
d)

an
d
th
e
t-
st
at
is
ti
c
(s
ig
)
fo
r
th
e
si
gn

ifi
ca
nc
e

of
th
e
co
effi

ci
en
ts
.

c.
D
et
ai
ls

on
th
e
ab
br
ev
ia
ti
on

s
fo
r
th
e
es
ti
m
at
or
s
ar
e
in

se
ct
io
n
3.
2.

d.
In
st
ru
m
en
ts

is
th
e
nu

m
be
r
of

in
st
ru
m
en
ts

us
ed

in
th
e
es
ti
m
at
es
.

e.
ha

ns
en
p
is

th
e
p
-v
al
ue

fo
r
th
e
H
an

se
n
ov
er
-i
de
nt
if
yi
ng

re
st
ri
ct
io
n
te
st

(r
ob
us
t
bu
t
w
ea
ke
ne
d
by

m
an

y
in
st
ru
m
en
ts
;
se
e
R
oo
dm

an
[2
00

9a
-b
].
)

f.
A
ut
oc
or
re
la
ti
on

re
po
rt
s
th
e
p
-v
al
ue

of
th
e
re
si
du

al
s’

se
co
nd

-o
rd
er

au
to
co
rr
el
at
io
n
te
st
.

40



Ta
bl
e
14
:
C
A
PB

m
od

el
on

re
al

da
ta

w
ith

en
do

ge
no

us
de

bt

D
ep

en
de

nt
va

ri
ab

le
:

∆
C
A
P
B

V
ar

ia
b

le
O

L
S

A
B

a
B

B
a

A
B

l1
B

B
l1

A
B

l2
B

B
l2

A
B

c
B

B
c

A
B

l1
c

B
B

l1
c

A
B

l2
c

B
B

l2
c

A
B

pc
aa

A
B

pc
av

B
B

pc
aa

B
B

pc
av

L
.G

A
P

co
eff

sd t

L
.C

A
P

B
co
eff

sd t

L
.D

E
B

T
co
eff

sd t

L
.M

aa
s

co
eff

sd t

E
le

ct
co
eff

sd t

-0
.0

08
-0

.0
34

-0
.0

07
-0

.0
01

0.
03

6
-0

.0
44

-0
.0

01
-0

.0
42

-0
.0

04
0.

49
3

0.
06

3
0.

18
7

0.
06

3
-0

.1
07

-0
.1

51
0.

01
0

-0
.0

34

0.
06

2
0.

05
9

0.
04

5
0.

10
1

0.
04

6
0.

06
7

0.
04

1
0.

06
4

0.
06

6
0.

24
1

0.
09

3
0.

13
2

0.
09

6
0.

09
7

0.
13

0.
05

3
0.

04
3

-0
.1

3
-0

.5
7

-0
.1

5
-0

.0
1

0.
78

-0
.6

5
-0

.0
3

-0
.6

6
-0

.0
6

2.
05

0.
68

1.
42

0.
65

-1
.1

-1
.1

6
0.

19
-0

.7
9

-0
.1

56
-0

.2
67

-0
.2

36
-0

.2
87

-0
.2

16
-0

.3
11

-0
.2

55
-0

.2
76

-0
.1

92
0.

45
3

0.
08

6
0.

09
9

-0
.0

12
-0

.3
17

-0
.4

17
-0

.2
09

-0
.2

75

0.
06

2
0.

05
8

0.
06

2
0.

15
2

0.
09

9
0.

08
3

0.
07

5
0.

08
2

0.
10

1
0.

22
4

0.
23

7
0.

16
2

0.
21

7
0.

10
3

0.
13

8
0.

07
7

0.
06

9

-2
.5

3
-4

.6
-3

.7
9

-1
.8

9
-2

.1
9

-3
.7

3
-3

.4
-3

.3
8

-1
.9

2.
02

0.
36

0.
61

-0
.0

5
-3

.0
8

-3
.0

2
-2

.7
-4

.0
1

0.
00

5
0.

01
4

0.
00

6
0.

00
7

0.
00

2
0.

01
6

0.
00

6
0.

01
9

-0
.0

04
-0

.0
70

-0
.0

44
-0

.0
33

-0
.0

47
0.

02
0

0.
05

3
0.

00
8

0.
01

6

0.
00

4
0.

00
5

0.
00

5
0.

01
4

0.
00

6
0.

00
5

0.
00

6
0.

01
0.

01
4

0.
05

0.
02

2
0.

01
9

0.
02

1
0.

00
7

0.
02

0.
00

6
0.

00
6

1.
1

2.
68

1.
11

0.
46

0.
37

3.
01

1.
14

1.
9

-0
.2

7
-1

.3
9

-2
.0

3
-1

.7
2

-2
.2

2.
88

2.
65

1.
36

2.
7

-0
.5

55
-0

.5
23

-0
.5

24
-0

.7
11

-0
.6

12
-0

.5
32

-0
.5

39
-0

.5
10

-0
.6

07
-1

.4
11

-1
.1

19
-0

.8
91

-0
.8

41
-0

.3
87

-0
.4

97
-0

.5
05

-0
.5

26

0.
14

7
0.

11
7

0.
13

7
0.

16
6

0.
16

4
0.

11
7

0.
14

9
0.

13
1

0.
16

8
0.

35
7

0.
39

3
0.

22
1

0.
29

3
0.

12
5

0.
14

3
0.

13
4

0.
14

5

-3
.7

7
-4

.4
9

-3
.8

2
-4

.2
9

-3
.7

3
-4

.5
4

-3
.6

2
-3

.8
8

-3
.6

2
-3

.9
6

-2
.8

4
-4

.0
2

-2
.8

7
-3

.0
9

-3
.4

9
-3

.7
7

-3
.6

2

-0
.4

26
-0

.4
96

-0
.4

66
-0

.4
97

-0
.4

75
-0

.4
66

-0
.4

42
-0

.4
13

-0
.3

98
-0

.4
51

-0
.4

12
-0

.4
25

-0
.4

41
-0

.4
55

-0
.4

36
-0

.4
22

-0
.4

22

0.
17

7
0.

16
1

0.
15

5
0.

18
5

0.
18

6
0.

15
7

0.
15

7
0.

20
1

0.
19

9
0.

26
6

0.
22

2
0.

22
6

0.
21

5
0.

18
8

0.
19

4
0.

19
1

0.
18

6

-2
.4

-3
.0

8
-3

.0
1

-2
.7

-2
.5

6
-2

.9
8

-2
.8

1
-2

.0
5

-2
-1

.7
-1

.8
5

-1
.8

8
-2

.0
5

-2
.4

2
-2

.2
5

-2
.2

1
-2

.2
7

O
bs

.
(N

×
T
)

16
5

15
4

16
5

15
4

16
5

15
4

16
5

15
4

16
5

15
4

16
5

15
4

16
5

15
4

15
4

16
5

16
5

T
15

14
15

14
15

14
15

14
15

14
15

14
15

14
14

15
15

In
st

ru
m

en
ts

15
4

23
9

81
15

1
14

4
21

4
10

9
11

5
20

26
25

31
10

5
10

0
15

8
15

1

ha
ns

en
p

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

A
ut

oc
or

re
la

ti
on

0.
03

7
0.

03
8

0.
03

1
0.

03
5

0.
03

4
0.

03
6

0.
03

6
0.

04
0

0.
10

2
0.

05
2

0.
05

9
0.

04
8

0.
03

7
0.

02
8

0.
03

8
0.

03
0

N
ot
es
:

a.
D
at
a
ar
e
fo
r
11

E
M
U

C
ou

nt
ri
es

ov
er

th
e
pe
ri
od

19
94

-2
00

8.
T
he

da
ta
se
t
is

th
e
sa
m
e
us
ed

by
G
ol
in
el
li
an

d
M
om

ig
lia

no
[2
00

9]
.

b.
W
e
re
po
rt

th
e
po
in
t
es
ti
m
at
es

fo
r
th
e
co
effi

ci
en
ts

(c
oe
ff
),

th
e
es
ti
m
at
ed

st
an

da
rd

de
vi
at
io
n
(s
d)

an
d
th
e
t-
st
at
is
ti
c
(s
ig
)
fo
r
th
e
si
gn
ifi
ca
nc
e

of
th
e
co
effi

ci
en
ts
.

c.
D
et
ai
ls

on
th
e
ab
br
ev
ia
ti
on

s
fo
r
th
e
es
ti
m
at
or
s
ar
e
in

se
ct
io
n
3.
2.

d.
In
st
ru
m
en
ts

is
th
e
nu

m
be
r
of

in
st
ru
m
en
ts

us
ed

in
th
e
es
ti
m
at
es
.

e.
ha

ns
en
p
is

th
e
p
-v
al
ue

fo
r
th
e
H
an

se
n
ov
er
-i
de
nt
if
yi
ng

re
st
ri
ct
io
n
te
st

(r
ob
us
t
bu
t
w
ea
ke
ne
d
by

m
an

y
in
st
ru
m
en
ts
;
se
e
R
oo
dm

an
[2
00

9a
-b
].
)

f.
A
ut
oc
or
re
la
ti
on

re
po
rt
s
th
e
p
-v
al
ue

of
th
e
re
si
du

al
s’

se
co
nd

-o
rd
er

au
to
co
rr
el
at
io
n
te
st
.

41



 


