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A B S T R A C T

Road dust is a non-exhaust source that can significantly contribute to atmospheric particulate by resuspension.
Beside the issue of the overcoming of guidelines limits for the air quality, the characterization of this matrix is of
crucially high interest for the inherent toxicity of resuspended particles, that can act as carriers of heavy metals
and toxic-carcinogenic components.

In this paper, road dust collected in the Venice international airport is characterized with a multi-technique
approach in order to identify the main pollutant sources and to highlight the differences between airside/
landside places. The most polluted sites are identified and a preliminary risk assessment is performed taking into
account ingestion, dermal intake and inhalation of fugitive particulate pathways. Specifically, the main sources
are related to construction activities, anti-icing safety procedures, and brake, tire and road wear; streets are the
most polluted landside places; PAHs, Na, Al, Cu, Zn, Ag, Cd are more concentrated in airside area; as regards the
risk assessment As, BaP, Cr, Sb, BaA, and BbF are the most critical pollutants.

Considering the high number of people passing or working in this airport and the ongoing works related to its
enlargement which promotes the emission and the resuspension of fugitive dusts, this research addresses a
fundamental step for the protection of potential receptors.

1. Introduction

Road traffic is an important source of atmospheric particulate
matter in urban and industrialized areas (e.g., Thorpe and Harrison,
2008; Wik and Dave, 2009; Franco et al., 2013; Kumar et al., 2013; Pant
and Harrison, 2013; Amato et al., 2014; Grigoratos and Martini, 2015;
Suvarapu and Baek, 2016; Timmers and Achten, 2016). It includes
exhaust and non-exhaust emissions. The former are related to the fuel
combustion, the others are due to the wear of brake systems (pads and
discs), tires, road surface abrasion and re-suspension of road dust (RD)
finer particles. The latter matrix is composed by natural and anthro-
pogenic materials that accumulate on the road surface mainly close to
the pavements (Pant and Harrison, 2013, and references therein) and
that can be resuspended by wind and traffic flow.

In the last decade the relative contribution to fine atmospheric
particulates of non-exhaust sources has become more and more relevant
because most of the recent policy actions and technological upgrades in
the automotive field were just focused on the reduction of exhaust
emissions (Bukowiecki et al., 2009; Rexeis and Hausberger, 2009; van

der Denier Gon et al., 2012; Timmers and Achten, 2016). In this regard,
it is worth to highlight that electric vehicles may not reduce levels of
atmospheric particulate as much as expected, because of their relatively
high weight (on average 24% heavier than equivalent internal com-
bustion engine) which increase the emissions of non-exhaust sources
such as the brake, tire and asphalt wear (Timmers and Achten, 2016).

As mentioned above, RD is a non-exhaust source by resuspension of
finer particles which chemical composition, size distribution and per-
centage contribution to the atmospheric particulate is site specific
(Bukowiecki et al., 2009; EMEP/EEA, 2016; Grigoratos and Martini,
2014; Pant and Harrison, 2013; Valotto et al., 2015). In this regard,
since RD is also composed of particles originated from other non-ex-
haust sources, the discrimination between particles directly emitted
from abrasion process and those related to the re-suspension is an open
issue (Pant and Harrison, 2013).

The technical guidance of European Environment Agency (EMEP/
EEA, 2016) for the evaluation of non-exhaust contributions includes the
wear of tires, brakes and road surfaces categories, but ignores the re-
suspension process which dominates in some European areas
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(Weinbruch et al., 2014; Amato et al., 2014 and references therein).
Otherwise, more complex models such as TNO URBIS (URBIS, 2016;
Amato et al., 2016) and NORTRIP (Denby et al., 2013a, b) take into
account also the road dust resuspension to predict the whole non-ex-
haust particle emissions.

Although the inherent toxicity of RD particles that can act as car-
riers of heavy metals and carcinogenic components it is well assessed
(e.g.: Dong and Lee, 2009; Shi et al., 2011; Pant and Harrison, 2013), up
to now does not exist a dedicated model to perform the risk assessment
for this matrix. Indeed, most of the researches focused on this topic use
the approaches provided by US Environmental Protection Agency
which allow to estimate the soil contamination of superfund sites
(USEPA, 1996, 2002), to evaluate the exposure pathways of RD matrix
and the respective potential health risks (e.g.: Li et al., 2015; Chen
et al., 2016; Wan et al., 2016; Yekeen et al., 2016).

The inorganic composition of RD in the Venice mainland has been
previously studied with a wide (Zannoni et al., 2016) and a very lo-
calized (Valotto et al., 2015) sampling campaigns which allowed to
identify the main sources of particles. However, the characterization of
organic compound and the related risk assessment are still lacking in
this area.

In this work, risk assessment related to the exposure of inorganic
and organic components of RD collected in the Venice international
airport area was performed taking into account the following intake
pathway: ingestion, dermal intake and inhalation of fugitive particles.
The sampling site, whose air pollution was deeply investigated (Valotto
et al., 2014; Valotto and Varin, 2016), is a sensitive area due to the high
number of workers and tourists which attend it. Indeed, it was the
fourth busiest Italian airport in 2015 in terms of number of flights
(≈82,000) and the fifth in terms of number of passengers
(≈8,800,000) (Assaeroporti, 2016). Moreover, the existing main-
tenance and extension builds (Marcopolodomani, 2016) promote the
emission and the resuspension of fugitive dusts, placing this research a
fundamental step for the protection of potential receptors. To the best
of the authors knowledge, the risk related to RD exposure has never
been assessed in any airport areas and the PAHs bound to RD particles
has never been characterized in Italy.

Samples were collected in landside and airside areas of the airport,
and characterized by a multi-technique approach to determine the
different composition depending on sampling sites peculiarities and to
identify the main pollutant sources of particles. Specifically, particle
size distribution as well as elemental and molecular (polycyclic aro-
matic hydrocarbon - PAHs) composition of sub-samples most subjected
to re-suspension process (characterized by particle size lower than
37 μm and between 37 and 63 μm) were probed by laser diffraction
analysis, Total Carbon (TC) analysis, High Performance Liquid
Chromatography (HPLC), Inductively Coupled Plasma Optical Emission
Spectroscopy (ICP-OES), and Inductively Coupled Plasma Mass
Spectrometry (ICP-MS). Data were processed with Cluster Analysis (CA)
and Principal Component Analysis (PCA) statistical approaches.

2. Materials and methods

2.1. Sampling sites

The Venice international airport is located near the Venice Lagoon
in the North-Eastern Italy between the Po Valley, and the Adriatic Sea.
Twenty RD samples were collected in the airport area on 27 May 2016
after two days without rainfall events. The former nine days (16th–24th
May 2016) were characterized by 10mm of total rain. 19 samples (#
1–19) were collected in landside using small brooms and dustpans (one
couple for each sample which is of about 300 g) inside the parking lots,
close to the sidewalks of the main streets and near the roundabouts
neighboring to the airport as indicated in Fig. 1 (for further details see
Sampling Sites.kmz file of Supplementary Materials). One sample (# 20)
was collected in the storage area of RD gathered by sweepers cleaning

the taxiways and airport apron (airport area where aircraft are parked,
unloaded or loaded, refueled, or boarded), which is deposited tem-
porarily until it was transported to treatment and disposal facilities.
Moreover, about 1000 g of soil were collected between 3 and 15 cm
depth at the nearby park “Forte Bazzera” (#21), in order to investigate
the enrichment factors (EFs) and Pollution Load Index (PLI) of RD
samples.

Soil and RD samples were initially dry sieved using a series of de-
creasing mesh ASTM standard sieves to obtain sub-samples character-
ized by grain sizes < 37 μm (referred to in the text as “fine fraction”).
Subsequently, sub-samples characterized by grain sizes > 37 μm were
wet sieved with de-ionized water to obtain powders with particles size
between 37 and 63 μm (referred to in the text as “coarse fraction”).
After sieving all powder samples were conditioned in an oven at 50 °C
for about seven days and subsequently stored in PTFE sample holders.

It is worth to note that samples 1 and 9 contain a low quantity of
both fractions (< 37 μm and 37–63 μm), which did not allow to accu-
rately characterize these sub-samples with all the techniques described
below.

2.2. Particle sizes

About 0.3 and 0.6 g of fine and coarse dust sub-samples, respec-
tively, were dispersed in 700ml of diluted Tween®20 (vol/vol= 1/
100,000), and investigated with a Mastersizer 3000® (Malvern, UK)
laser diffractometer to characterize the particle size distributions.
During measurements stirrer speed and ultrasonics were set to
2200 rpm and 50% to prevent the sedimentation and the aggregation of
suspended particles, respectively. Ten measurements were performed
for each sample using the Fraunhofer approximation and general pur-
pose analysis model, obtaining very precise results. Subsequently re-
presentative average volume distribution curves were calculated pro-
cessing only measurements with weighted residual lower than 1% (at
least 9 measurements for each sample). Note that sub-samples 1<37,
137–63 and 9<37 were not probed.

2.3. TC

About 9mg of each sub-sample were characterized by Shimadzu
(Japan) TOC - V CPH equipped with a solid sample combustor SSM-
5000A module, by catalyzed oxidative conversion to CO2 at 900 °C and
subsequent detection with a NDIR detector. The instrument calibration
was performed with D(+) glucose anhydrous (AnalytiCals Carlo Erba).
For further details about the quality assurance and quality control (QA/
QC), refer to supplementary materials. Note that sub-sample 1<37 was
not probed.

2.4. PAHs

Eight PAHs, including fluoranthene (Fluo), pyrene (Py), benzo(a)
anthracene (BaA), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene
(BkF), benzo(a)pyrene (BaP), benzo(g,h,i)perylene (BghiP), indeno
(1,2,3-c,d)pyrene (IP) were identified and quantified after solvent ex-
traction.

A 2695 series Alliance HPLC (Waters, USA) with quaternary pump,
auto-sampler, microdegasser, column thermostat was interfaced with a
2475 multi λ fluorescence detector. HPLC was set as following: re-
versed phase chromatographic column (LC-PAH, 15 cm×3mm, 5 μm,
Supelco, USA) at a temperature of 25 °C, injection volume 20 μL, mobile
phase system consisting of a ramp mixture of ultrapure H2O and acet-
onitrile at a flow rate of 0.45mLmin−1 as reported in Table S1 of
Supplementary materials. The instrument was properly calibrated with
five diluted aliquots of a standard containing the EPA's 16 PAHs (Ultra
Scientific, USA).

About 20mg of each sub-sample was weighted with an analytical
balance of nominal sensitivity 0.01mg and ultrasonically extracted for

G. Valotto et al. Journal of Geochemical Exploration 190 (2018) 142–153

143



25min in 5ml of acetonitrile (HPLC grade, 99.9%, Sigma-Aldrich,
USA). The extracts were subsequently filtered on PTFE syringe filters
(porosity 0.22 μm). Further details about QA/QC are in supplementary
materials. Note that sub-samples 1<37 and 9<37 were not probed.

2.5. ICP-OES, ICP-MS

About 70mg of each sub-sample were weighted with an analytical
balance of nominal sensitivity 0.01mg and digested by microwave di-
gestion system (Ethos 1600, Microwave Labstation Milestone - 5min
250W, 5min 400W, 5min 600W, 60min 0W, 5min 250W, 5min
400W, 5min 600W, 120min 0W) with 6ml of HNO3, 2ml of H2O2

and 1ml of HF of analytical grade. After cooling, HF was buffered with
1ml of H3BO3 saturated solution and the resulting clear solution was
then filtered on PTFE syringe filters (porosity 0.45 μm) and diluted to
25ml with Milli-Q® water. All digested samples were then stored in
Teflon bottles. The digested and properly diluted samples were ana-
lyzed with ICP-OES (Perkin Elmer 5300DV) and ICP-MS (Perkin Elmer
NexION 350X). Na, Mg, Al, S, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Ba, Pb
were analyzed with ICP-OES; Li, Sc, V, Co, As, Mo, Ag, Cd, Sb, U were
analyzed with ICP-MS in Kinetic Energy Discrimination (KED) mode
(He gas). Commercially available 1000mg l−1 standard solutions
(Fluka TraceCERT®) of the analyzed elements were used to calibrate
ICP-OES. Multi-Element Calibration Standard 3 10mg l−1 solution
(Perkin Elmer) was used to calibrate ICP-MS. Re (5 μg l−1) was used as
internal standard for ICP-MS analysis. Diluted working solutions were

daily prepared by serial dilutions of the stock solutions (1:20 to 1:5 and
1:2, for ICP-OES and ICP-MS, respectively). Three blank solutions not
containing dusts were carried through the same procedure to correct
the elemental contributions of reagents used for samples preparation.
Further details about QA/QC are in supplementary materials. Note that
sub-samples 1<37 and 137–63 were not probed.

2.6. Statistical analysis

EF, PLI, CA and PCA were carried out in order to identify relations
between the compositions and the particle size distributions of RD
samples and to recognize the most polluted sites of the monitored area.
Analysis were performed using the commercial statistics software
package Statistica 8.0.

EF and PLI were calculated as defined in Eq. (1) (Fujiwara et al.,
2011a) and Eq. (2) (Tomlinson et al., 1980; Yekeen et al., 2016), re-
spectively:

=
( )
( )
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TC RD
X

TC soil

i

(1)

∏=
=

PLI (X )
(X )i 1
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i RD

i soil
n
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where n is the number of probed pollutants, Xi and TC are the con-
centration values of the pollutant of interest and of normalization in the

Fig. 1. Road dust and soil sampling sites.
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matrices indicated by the subscripts, respectively. We choose the total
carbon as normalization because: i) all powder samples show con-
centrations significantly higher than the respective LOQ; ii) it is char-
acterized by the lowest values of percentage standard deviation of RD
samples (14% for RD<37 and 15% for RD37–63); iii) it includes in-
organic and organic carbon and then it is suitable to calculate the EF of
both elements and PAHs; iv) soil sub-samples are characterized by
comparable concentrations of TC, which are significantly lower than
those of RD samples (4% vs 7–12%). For concentrations lower than the
respective limit of quantification (LOQ), we use the LOQ/2 value to
calculate the respective EF and PLI.

Moreover, the spatial variation of PLI in the monitored area was
investigated with the Inverse Distance Weighted (IDW) method. With
this, the continuous spatial distribution of a variable can be obtained
interpolating data from discrete points. In IDW the local contribution of
a measured point diminishes with distance and each point of the re-
sulting map is calculated as a weighted average of nearby points where
the weight is proportional to distance−1. Interpolation of PLI data for
both fractions was computed with QGIS software, using a distance
coefficient of 5. RD samples #1, #20, #21 were removed from the
interpolation dataset because: only the coarse fraction of #1 was
available; #20 is not representative of a point but of the whole cleaned
surface in the airside area; #21 is the soil control sample which was
collected outside the airport area.

CA is a statistical classification technique allowing to organize ob-
served data into meaningful structures, so that objects belonging to the
same group (named cluster) are more similar to each other than those
in other clusters (Kaufman and Rousseeuw, 2009). CA was applied to
raw data of volume particle size distributions (no pre-normalization has
been performed) to identify the groups of RD samples resolved in fine
and coarse fractions.

PCA is a statistical exploratory technique that allows for simplifying
the interpretation of acquired data by reducing the dimensionality of a
dataset. The size reduction is achieved with linear combinations of the
original variables. This operation gives a set of new non-correlated
variables named principal components (PCs), which are equal in
number to the previous ones but only a reduced number of them are
necessary to describe the main characteristics of the initial dataset. The
amount of information of each PC is usually named explained variance
and is complementary to that of the other PCs. PCA is based on the
investigation of loading and score plots; the former show the con-
tribution of the original variables in each PC, the latter are the re-
presentation of each object in the space of the selected PCs (Jolliffe,
2002). In order to reduce the number of variables related to the particle
size distributions, the respective dataset was compacted by adding the
percentage volumes of particles belonging to the following size
groups:< 1, 1–5, 5–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70,
70–80, 80–90, 90–100,> 100 μm. Accordingly, PCA was applied to the
dataset composed of 37 samples (fine and coarse fractions together) and
46 variables (13 size groups, 26 elements, 7 PAHs) to identifying pat-
terns among concentrations and particle size classes. RD sub-samples
1<37, 137–63, 9<37 were not considered due to the absence of several
information. Moreover, Ind 123cdP was excluded from the dataset due
to the high number of concentrations lower than the respective LOQ
value. As in the cases of EF and PLI, for concentrations lower than the
respective LOQ, we used the LOQ/2 value. Prior to the evaluation of the
loading and score plots, to make comparable the intensity ranges of all
variables, the values of each single variable were normalized by im-
posing the mean and standard deviation values equal to 0 and 1, re-
spectively.

2.7. Risk assessment

RD concentrations were compared with the soil screening levels
(SSLs) provided by US Environmental Protection Agency (USEPA, 1996,
2002) in order to perform a preliminary risk assessment related to the

interaction of this matrix with the potential receptors. Several works
utilized the more complex site specific modeling approach to evaluate
the exposure pathways of RD matrix and the respective potential health
risks (e.g.: Li et al., 2015; Chen et al., 2016; Wan et al., 2016; Yekeen
et al., 2016). Instead, due to the different characteristics of RD and soil
matrices, and the peculiarities of the monitored area, we preferred to
apply the generic SSLs which are more stringent because they are cal-
culated by EPA by using conservative assumptions about site condi-
tions. Specifically, we chose this precautionary approach because most
of the RD samples were collected near the potential receptors, namely
close to the sidewalks along the neighboring airport streets crossed by
passengers and workers where RD is resuspended by traffic flow (in
addition to the wind action) to a great extent than the soil source, lo-
cated farthest from the sampling sites at issue and characterized by a
significant vegetative cover (for further details refer to Sampling Si-
te.kmz file). In order to take into account the different permanence of all
potential receptors (workers, regular and occasional passengers),
RD<37 and RD37–63 concentrations (averages and highest values) were
compared with the generic SSLs for residential and commercial/in-
dustrial (outdoor and indoor workers) scenarios, and inges-
tion+ dermal intake and inhalation of fugitive particles pathways.
Results are reported as ratios between the RD concentrations and the
SSLs values.

3. Results

3.1. Particle sizes

The left panels of Fig. 2 show the hierarchical tree-plots of fine and
coarse RD samples drawn with Ward's agglomeration method and Eu-
clidean distance measure. While, the right ones depict the average
particle size distribution curves of clusters identified at Dlink/
Dmax= 50%. Results show that at this linkage distance, both sub-
samples can be grouped in three macro groups without clear corre-
spondence between fine and coarse fractions. The seeming incon-
gruence between the particle size distributions and the ASTM standard
sieves used to create the sub-samples are related to the presence of: i)
elongated particles crossing the mesh of sieves which are revealed
larger than their lower diameter, ii) clusters of fine particles which are
not disaggregated during the wet sifting.

On average, all sub-samples show quite similar particle size dis-
tributions with mode at about 24.0 and 56.6 μm for fine and coarse
fractions, respectively. The mode of each cluster and the respective
average percentage volume of particles lower than 1 μm, 2.5 μm and
10 μm are reported in Table 1, confirming that this matrix could be an
important source of atmospheric particulate by re-suspension.

Sub-samples belonging to B<37 and C<37 are characterized by a
higher amount of particles lower than 10 μm and higher than 30 μm,
respectively. While, the particle size distribution of A<37 exhibit in-
termediate characteristics between the two abovementioned clusters.
As regards the coarse fraction, F37–63 is richer in particles lower than
40 μm compared to the quite similar clusters D37–63 and E37–63.

3.2. Inorganic and organic concentrations

Table 2 shows some statistics related to the concentrations, EF and
PLI values of RD sub-samples. For the calculation of the average con-
centrations and the respective standard deviations, values lower than
LOQ where replaced with LOQ/2. Moreover, the concentrations of two
sampling campaign carried out in two hot spot traffic areas of the Ve-
nice mainland (road dust samples, Valotto et al., 2015; atmospheric
particulate samples, Valotto et al., 2017a) are also reported. While,
Fig. 3 shows the spatial variation of PLI in the monitored area.

On average, fine fractions are characterized by the higher con-
centrations, especially for PAHs, Li, Cr, As, Ag, Cd, Sb and U. Only
sodium is significantly more concentrated in the coarse fractions. For
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both the fractions, PAHs, Mg, S, Ca, Cu, Zn, Mo, Sb, and Pb show the
higher EF values. Both fractions of RD sample collected in airside (#20)
show the respective higher values of PLI because, on average, they are
characterized by higher concentrations than those of RD collected in
landside (#1, …, #19), especially for PAHs, Na, Al, Cu, Zn, Ag, Cd. On
average, RD<37 samples collected in the airport area show con-
centrations lower than the road dust with particle size lower than 37 μm
(TRD<37) and PM1 collected in two different traffic sites close to the
airport at issue. Specifically, the highest differences were detected for
PAHs bound to PM1 and for Cr, Cu, Mo, Pb of TRD<37. For further
details about concentration ratios above discussed and the algorithms
used to evaluate if values are significantly different, refer to Figs. S1–S5
and Table S3 of supplementary materials, respectively.

As regards the spatial distributions of PLI shown in Fig. 3, streets are
characterized by higher values, while the low PLI areas highlight the
airport parks.

3.3. Statistical

The loadings of significant PCs identified with Krzanowski cross-
validation method are reported in Table 3. The respective explained
and cumulative variance are also included as percentage values; overall
the cumulative explained variance of five PCs is about 85%. The higher
coefficients (as absolute value) of each PCs are in bold. Loading and
score plots are reported in Figs. S6–S10 of Supplementary materials.
Scatter score-plots of selected PCs are also reported in Fig. S11. In order
to improve the readability of this work, the loadings and scores char-
acteristics will be introduced and discussed in Section 4.

3.4. Risk assessment

Fig. 4 shows the ratios between the RD<37 concentrations and the
SSLs for residential and commercial/industrial (indoor - outdoor
workers) scenarios, resolved between ingestion+dermal intake and
inhalation of fugitive particulates pathways. The histogram bars and
whiskers are related to the average and the highest concentrations,
respectively. The ratio equal to 1 is highlighted by the red horizontal
line. The histogram of RD37–63 is reported in Fig. S12 of supplementary
materials.

Results shows that two histograms are quite similar, and that As is
the more critical pollutant. Indeed, the average concentrations of both
fractions are significantly higher than the respective SSLs for all sce-
narios (residential and commercial/industrial worker) related to the
ingestion+ dermal intake. Also the average concentration of BaP of
fine fraction is higher than the respective SSLs for the inges-
tion+ dermal intake of residential scenario. Moreover, the highest

Fig. 2. Hierarchical tree-plots (left panels) and the average particle size distribution curves of clusters identified at linkage distance Dlink/Dmax=50% (right panels) of fine and coarse
sub-samples.

Table 1
Mode values and average percentage volume of particles lower than 1 μm, 2.5 μm and
10 μm of each cluster.

Cluster Mode (μm) <1 μm (volume %) 2.5 μm (volume %) 10 μm (volume %)

A<37 23.8 1.8 5.0 18.0
B<37 22.4 2.1 6.3 24.2
C<37 27.2 1.5 4.1 13.6
D37–63 57.1 0.5 1.9 5.3
E37–63 57.1 0.6 1.9 4.8
F37–63 52.3 0.8 3.5 13.0
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Table 2
Concentrations and statistics related to RD sub-samples.

<RD 37
SD<37

MAX<37

−RD37 63
SD37–63

MAX37–63

HC #20<37?

<landside 37

#2037–63?

−landside37 63

<EF 37 MAX
EF<37

−EF37 63 MAX
EF37–63

PreC
SDPreC
Previous
Campaign

<RD PreC?37

TC (mg/g) 98
14
115

87
13
110

<37 > > 431
122
PM1

<

125
8
TRD<37

<

Fluo (μg/g) 0.24
0.51
2.28

0.13
0.25
1.18

< 37 > > 3.4 30.0 2.5 20.9

Py (μg/g) 0.23
0.39
1.75

0.13
0.20
0.95

< 37 > > 3.4 23.0 2.6 16.9

BaA (μg/g) 0.05
0.14
0.62

0.03
0.08
0.35

< 37 > > 3.7 40.9 2.9 31.2 43
28
PM1

<

BbF (μg/g) 0.08
0.13
0.61

0.05
0.08
0.37

< 37 > > 3.2 22.0 4.8 33.1 59
25
PM1

<

BkF (μg/g) 0.04
0.07
0.30

0.02
0.04
0.19

< 37 > > 2.7 20.7 4.7 33.4 32
14
PM1

<

BaP (μg/g) 0.07
0.15
0.66

0.04
0.09
0.42

< 37 > > 2.6 22.7 4.4 37.2 56
27
PM1

<

BghiP (μg/g) 0.20
0.18
0.83

0.13
0.11
0.49

< 37 > > 5.7 20.1 14.0 43.4 60
26
PM1

<

Ind 123cdP (μg/
g)

0.08
0.07
0.35

0.07
0.04
0.23

< 37 > > 1.2 4.6 1.4 4.0 41
24
PM1

<

Li (μg/g) 15
4
22

11
3
16

<37 < **** 0.2 0.3 0.2 0.3

Na (mg/g) 6
7
35

7
7
38

37–63 > > 0.3 1.2 0.4 1.7 5
1
TRD<37

****

Mg (mg/g) 14
5
23

15
5
26

**** **** > 2.3 3.8 3.1 5.2

Al (mg/g) 3
4
17

3
5
22

**** > > 0.1 0.7 0.2 1.6

S (mg/g) 3.4
0.5
4.3

3.0
0.6
4.3

< 37 **** > 2.5 2.9 2.6 3.1 8.6
0.5
TRD<37

<

K (mg/g) 11
3
20

9
4
23

<37 > > 0.2 0.3 0.2 0.5 7
1
TRD<37

****

Ca (mg/g) 113
19
150

110
19
135

**** > > 1.9 2.3 2.2 2.8 144
14
TRD<37

****

Sc (μg/g) 1.3
0.4
2.4

1.1
0.7
3.6

< 37 > > 0.2 0.4 0.4 1.2 1.1
0.2
TRD<37

****

Ti (mg/g) 4.0
0.9
6.7

3.8
0.9
6.5

< 37 **** **** 0.3 0.5 0.4 0.7 3.2
0.3
TRD<37

****

V (μg/g) 57
8
72

43
10
70

<37 < > 0.3 0.4 0.4 0.5 89
8
TRD<37

<

Cr (μg/g) 200
101
442

142
85
405

<37 **** > 1.1 2.2 1.1 3.3 959
484
TRD<37

<

Mn (μg/g) 735
234
1309

578
173
913

<37 **** > 0.6 1.0 0.6 1.0 1377
230
TRD<37

<

Fe (mg/g) 11
3
19

9
6
33

<37 **** **** 0.2 0.4 0.3 1.0 28
7
TRD<37

<

(continued on next page)
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concentrations of BaA, BbF of fine fraction, and BaP, Sb, Cr of both
fractions are higher than the respective SSLs of ingestion+ dermal
intake for some scenarios. Finally, only the highest concentration of Cr
of both fractions are higher than the SSLs related to the inhalation of
fugitive particulates for residential scenario.

4. Discussion

PC1 and PC2 account for about 36% and 26% of total explained
variance, respectively. Although they are characterized by significantly

different loading shapes, both allow to highlight the differences be-
tween fine/coarse fractions of samples collected in landside (#2, …,
#19), and between landside/airside samples as shown in Figs. S6, S7
and S11 of supplementary materials. We decided to merge both frac-
tions because the interpretation of the few significant PCs calculated
from fine or coarse sub-samples alone are not straightforward, likely
due to the low number of samples (especially compared to the high
number of variables).

PC1 shows significant high positive loadings for particle sizes lower
than 40 μm and for most of the pollutants. In particular, Co, Cd, Ba, U

Table 2 (continued)

<RD 37
SD<37

MAX<37

−RD37 63
SD37–63

MAX37–63

HC #20<37?

<landside 37

#2037–63?

−landside37 63

<EF 37 MAX
EF<37

−EF37 63 MAX
EF37–63

PreC
SDPreC
Previous
Campaign

<RD PreC?37

Co (μg/g) 9
3
18

7
3
14

<37 > > 0.5 1.0 0.5 1.0 13
5
TRD<37

****

Ni (μg/g) 41
15
79

33
19
94

<37 > > 0.6 1.1 0.8 2.3 113
27
TRD<37

<

Cu (μg/g) 295
325
1190

228
250
930

<37 > > 3.4 12.5 3.4 12.1 1814
744
TRD<37

<

Zn (mg/g) 1.7
3.3
14.5

1.5
3.7
16.4

< 37 > > 6.8 53.5 3.8 40.0 1.5
0.5
TRD<37

****

As (μg/g) 5.9
1.6
8.7

4.0
1.3
6.8

< 37 **** > 0.2 0.3 0.1 0.3 6.7
3.5
TRD<37

****

Mo (μg/g) 7
7
29

7
9
42

<37 > > 8.6 35.7 9.7 64.0 29
10
TRD<37

<

Ag (μg/g) 1.0
1.1
4.4

0.7
1.3
5.1

< 37 > > 0.2 1.0 0.3 2.1 1.9
0.7
TRD<37

****

Cd (μg/g) 1.2
1.3
4.5

0.7
1.0
4.0

< 37 > > 1.0 3.3 1.1 5.5 2.7
0.8
TRD<37

****

Sb (μg/g) 21
22
97

13
14
63

<37 **** **** 6.0 30.4 5.2 28.4 51
52
TRD<37

****

Ba (μg/g) 300
67
467

228
49
341

<37 > > 0.3 0.5 0.3 0.5 379
122
TRD<37

****

Pb (μg/g) 102
72
289

98
67
231

**** **** **** 3.5 10.7 2.0 5.9 678
127
TRD<37

<

U (μg/g) 2.3
0.2
2.6

1.6
0.3
2.7

< 37 < > 0.3 0.5 0.4 0.5

PLI 2.3
1.0
6.2

2.3
1.3
7.4

With:
<RD 37 =average concentration of samples (#1, …, #20) with particle size < 37 μm.

SD<37= standard deviation of <RD 37.
MAX<37= highest concentration of samples (#1, …, #20) with particle size < 37 μm.

−RD37 63 =average concentration of samples (#1, …, #20) with particle size 37–63 μm.
SD37–63= standard deviation of −RD37 63 .
MAX37–63= highest concentration of samples (#1, …, #20) with particle size 37–63 μm.
HC=Higher Concentration in the fraction (< 37 μm or 37–63 μm).

<landside 37 =average concentration of samples (#1, …, #19) with particle size < 37 μm.

−landside37 63 =average concentration of samples (#1, …, #19) with particle size 37–63 μm.

<EF 37 =average values of EF of samples (#1, …, #20) with particle size < 37 μm.
MAX EF<37= highest EF of samples (#1, …, #20) with particle size < 37 μm.

−EF37 63 =average values of EF of samples (#1, …, #20) with particle size 37–63 μm.
MAX EF37–63= highest EF of samples (#1, …, #20) with particle size 37–63 μm.
PreC =average concentration of the Previous Campaign.
SDPreC= standard deviation of PreC .
PM1=previous campaign of PM1 collected in traffic area (Valotto and Varin, 2016).
TRD<37= previous campaign of Road Dust with particle size < 37 μm collected in traffic area (Valotto et al., 2015).
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are characterized by the highest values. Instead, particle sizes higher
than 40 μm show significant negative values. Fine sub-samples show
positive scores because (in addition to the obvious contribution pro-
vided by the loadings related to the particle sizes) they are character-
ized by higher values of almost all pollutants compared to the coarse
sub-samples, as shown in the Fig. S1 of supplementary materials. For
the note, Cd and U are among the pollutants significantly more con-
centrated in the fine fraction. Both fractions of sample collected in
airside (#20) show highest positive scores because, on average, they are
characterized by the highest concentrations as shown in the Figs. S2
and S4 of supplementary materials. In this view we suggest as label for
this PC “general difference between fine/coarse and airside/landside
samples”.

Likewise PC1, PC2 shows positive and negative loadings for fine
(< 30 μm) and coarse fractions (> 40 μm), respectively. Otherwise, it is
characterized by high negative values for several pollutants (less than
PC1). Specifically, PAHs (except BghiP), Na, Al and Zn show the lowest
loadings. Alike PC1, fine and coarse samples show positive and negative
scores, respectively. Instead, both fraction of airside sample (#20) are
characterized by the highest negative scores due to their highest con-
centrations, especially for Fluo, Py, BaA, BbF, BkF, BaP, Na, Al and Zn
as shown in Fig. S2 of supplementary materials.

In urban and industrialized areas the dominant source of RD par-
ticles rich in PAHs are the vehicular traffic (fuel combustion and tire
wear), the oil combustion and refining, the coal and coke combustion,

the bitumen and asphalt production, and the biomass burning (e.g.:
Fang et al., 2004; Dong and Lee, 2009; Majumdar et al., 2016 and re-
ferences therein). On average, RD samples show high EF values for
these compounds; moreover, it is interesting to note that the fine
fraction shows the higher EF for PAHs with low molecular weight, in-
stead the coarse fraction is characterized by higher values for PAHs
with high molecular weight. According with Dong and Lee (2009) and
Zhao et al. (2009), PAHs are significantly more concentrated in the fine
fraction of RD (Fig. S1) likely due to the high specific surface of par-
ticles which promotes the bonding of these compounds. The same
pattern was noticed for atmospheric particulate collected in very dif-
ferent worldwide locations (e.g.: Bi et al., 2005; Ladji et al., 2009;
Zhang et al., 2016) although the significantly higher concentrations
compared to those of RD at issue. For the note, even the PAHs con-
centrations of PM1 collected in a traffic area near the Venice airport
(Valotto et al., 2017a) are significantly higher than those of RD at issue
as shown in Fig. S5 of supplementary materials. In addition to the
particle size distributions of two matrices, this outline is probably re-
lated to the different residence time and the relative photochemical
degradation process affecting them (e.g.: Behymer and Hites, 1985;
Kamens et al., 1988). Indeed, PM1 was sampled near a busy highway
where freshly emitted particles could be reasonably collected; instead,
RD is composed by a significant amount of aged particle accumulated
on road surface. The highest PAHs concentrations of both fractions of
airside sample (#20), some of them are higher than the respective SSLs

Fig. 3. Spatial variation of PLI fine (left panel) and coarse (right panel) fraction. Contour lines with PLI values are calculated at 0.25 intervals; sampling points are depicted as white dots
with underlined labels.
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of ingestion+ dermal intake of some receptors (Figs. 4, S12), are likely
related to fuel spills during aircraft refueling.

Na is a typical tracer of sea spray contribution (Valotto et al., 2015).
Due to the proximity of the sampling sites at issue (included the control
soil sample #21) with the Venice lagoon, this element is characterized
by low EF values (Fig. S3). It is the only one element significantly more
concentrated in the coarse fraction (Table 2 and Fig. S1) and the highest
concentrations were revealed in the airside sample (#20, Fig. S2) likely
due to the use of anti-icing salt in the taxiway and airport apron, and to
a lesser extent due to the greater closeness to the lagoon compared to
the other RD samples.

RD particles Al rich typically originate from surrounding soils
(Gunawardana et al., 2012) indeed it is often used as normalization
element for EF evaluations (e.g.: Cesari et al., 2012 and references
therein). However, in the last two decades the vehicular traffic is an
additional source of this element because aluminium alloys have been
increasingly adopted to reduce the weight of vehicles (Miller et al.,
2000; Fujiwara et al., 2011b). As regards the landside RD samples we
can claim that Al have mainly crustal origin because the low EF values

(Fig. S3). Instead the high concentrations of airside sample (Fig. S2) are
likely related to the wear of aircraft components. Indeed, Aluminium
alloys have been the primary material for the structural parts of aircraft
for> 80 years (Dursun and Soutis, 2014).

High Zn concentrations of RD matrix are often associated to tire
wear emission source (Councell et al., 2004; Pant and Harrison, 2013;
Valotto et al., 2015; Valotto et al., 2017b). Unlike Na and Al, Zn is
characterized by high EF values because all RD samples show elevated
concentrations which are comparable with those of RD collected in a
traffic area close to the airport (Valotto et al., 2015), as shown in
Table 2 and Fig. S5 of supplementary materials. Instead, as Na and Al
the highest concentrations of Zn were revealed in airside sample (#20,
still lower than all SSLs), in particular in the coarse fraction as shown in
Table 2 and Fig. S2 of supplementary materials. Several works report
that most of the particles emitted by tire wear traffic source are char-
acterized by sizes significantly lower than 37 μm (Wik and Dave, 2009;
Mathissen et al., 2011). Then, assuming that the main source of Zn in
the airside are the particles emitted by the wear of aircraft tires, it is
conceivable that these are on average significantly larger than those of
traffic source, probably due to the highest stresses to which wells are
subjected, in particular during landing.

In this view we suggest as label for this PC2 “specific difference
between fine/coarse and airside/landside samples”.

PC3 account for about 10% of explained variance and shows high
positive loadings (> 0.5) for Cr, Fe, Mo, Sb and to a lesser extent Mg,
Co, Ni, Cu, Pb. Sb and Cu are tracer of brake pads wear (Hulskotte et al.,
2007; Varrica et al., 2013; Grigoratos and Martini, 2015; Valotto et al.,
2015; Valotto et al., 2017b), while Ni, Cr, and Mo in addition to Fe and
C are typical steel constituent (Tomita and Okabayashi, 1985). Because
the brake discs are made of steel, and Mg and Co were identified in
brake dust (Grigoratos and Martini, 2015) we suggest as representative
pollutant source of PC3 the “brake wear”. Indeed, samples character-
ized by higher scores are both fractions of #2 and #14 which were
collected at the end of two down ramps where brakes are typically most
stressed. For the note these last two are among the landside samples
characterized by the higher PLI values (Figs. 3 and S4), suggesting that
the brake wear is a significant pollutant source in the monitored area.
However, only the highest values of Sb and Cr, which on average are
more concentrated in the fine fractions, are higher than some SSLs
(Figs. 4 and S12). Moreover, it is worth noting that Mo and Sb show
high EF, only Cu is significantly more concentrated in airside (sug-
gesting an additional source of this element or a different composition
of aircraft brakes compared to those of ground vehicles), and the con-
centrations of the representative elements of this PC are significantly
lower (in particular Cr, Mo, Cu and Pb) than those of RD samples col-
lected in a traffic area close to the airport, as shown in Table 2 and Figs.
S1–S3, S5 of supplementary materials.

PC4 (8% explained variance) show significant positive and negative
loadings for As, Pb and TC, Mg, S, Ca, Mn, respectively. Pb is a well
assessed traffic tracer related to the fuel combustion, even though
leaded fuel was legally banned in Italy since January 2002 (DPCM,
2001; Vecchi et al., 2007; Amato et al., 2009; Mori et al., 2015). Be-
sides, As is a trace contaminant of different fuels (Brandão et al., 2006;
Talebi and Abedi, 2005). Instead, the association TC-Mg-Ca-Mn is ob-
viously related to carbonate compositions. These minerals are com-
monly found in atmospheric particulate and road dust samples, and are
usually used as tracers for re-suspended soil dust, handling of con-
struction materials and building projects (Lu et al., 2008; Yuan et al.,
2008; Arsene et al., 2011; Bardelli et al., 2011; Cuccia et al., 2011;
Jancsek-Turóczi et al., 2013; Valotto et al., 2015). In this work, the
most likely sources of carbonate are the construction works related to
the airport expansion, even if the wear of aggregates used in the asphalt
concrete for paving the road and the soil dust resuspension cannot be
ruled out. According with Valotto et al. (2015) and Zannoni et al.
(2016), the high negative loading of sulfur in this PC is likely related to
the reaction between acid rains and carbonate particles which are

Table 3
Loadings, explained and cumulative variance of PCs identified with Krzanowski cross-
validation method. For each PC, the 15 highest absolute loading values (33% of the
variables) are shown in bold.

PC1 PC2 PC3 PC4 PC5

Explained variance (%) 36 26 10 8 5
Cumulative variance (%) 36 62 72 80 85
<1 μm 0.69 0.69 −0.10 −0.06 −0.08
1–5 μm 0.61 0.71 −0.12 0.06 −0.17
5–10 μm 0.65 0.69 −0.11 0.00 −0.15
10–20 μm 0.75 0.64 −0.11 −0.02 0.01
20–30 μm 0.81 0.54 −0.13 0.00 0.12
30–40 μm 0.70 0.06 −0.16 0.02 0.39
40–50 μm −0.75 −0.62 0.11 −0.01 0.04
50–60 μm −0.79 −0.59 0.12 −0.01 −0.01
60–70 μm −0.80 −0.58 0.13 0.00 −0.05
70–80 μm −0.79 −0.59 0.13 0.01 −0.07
80–90 μm −0.77 −0.60 0.14 0.02 −0.10
90–100 μm −0.74 −0.62 0.14 0.03 −0.14
> 100 μm −0.54 −0.65 0.14 0.08 −0.24
TC 0.48 0.00 −0.10 −0.67 0.32
Fluo 0.62 −0.71 −0.26 −0.03 0.04
Py 0.64 −0.68 −0.28 −0.08 −0.06
BaA 0.59 −0.74 −0.25 −0.02 0.04
BbF 0.63 −0.70 −0.28 −0.01 −0.01
BkF 0.60 −0.73 −0.27 −0.03 −0.02
BaP 0.59 −0.74 −0.27 −0.03 −0.02
BghiP 0.60 −0.51 −0.37 0.02 −0.27
Li 0.42 0.43 0.02 0.36 −0.42
Na 0.50 −0.82 −0.19 0.08 −0.05
Mg 0.20 −0.26 0.47 −0.42 −0.19
Al 0.55 −0.78 −0.08 0.04 −0.06
S 0.52 −0.06 −0.01 −0.76 0.11
K 0.60 −0.53 −0.29 0.38 −0.22
Ca 0.30 −0.29 0.01 −0.79 0.09
Sc 0.62 −0.47 0.00 0.38 −0.11
Ti 0.05 0.15 0.07 0.33 0.67
V 0.62 0.32 0.11 −0.18 0.02
Cr 0.48 0.07 0.58 −0.36 −0.40
Mn 0.43 0.19 0.29 −0.52 −0.53
Fe 0.36 −0.05 0.78 0.16 −0.23
Co 0.65 −0.18 0.49 0.23 0.31
Ni 0.58 −0.32 0.54 −0.03 0.28
Cu 0.60 −0.54 0.49 −0.02 0.04
Zn 0.58 −0.75 −0.07 0.04 0.09
As 0.56 0.22 0.04 0.67 −0.34
Mo 0.39 −0.31 0.76 −0.14 0.06
Ag 0.52 −0.46 0.00 −0.03 −0.13
Cd 0.65 −0.47 0.32 0.17 0.29
Sb 0.25 0.19 0.66 0.03 −0.01
Ba 0.78 −0.10 0.18 0.32 −0.14
Pb 0.20 −0.12 0.53 0.50 0.31
U 0.81 0.36 0.11 0.11 0.04
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covered with a thin layer of gypsum. For the note, samples character-
ized by higher positive and negative scores were collected near the fuel
aircraft storage and close to construction sites or uncovered soils, re-
spectively. Accordingly, because this PC allows to discriminate samples
characterized by high contributions of two different pollutant sources,
the appropriate label of this PC could be “construction vs fuel”. Finally,
it is worth noting that the representative elements of this PC shows low
EF, As (on average, more concentrated in the fine fraction) is the most
critical elements as regards the SSLs, and although the airside sample
(#20) show low scores it is anyway characterized by high concentra-
tions of As.

PC5 (5% explained variance) show positive and mildly negative
loadings just for Ti, 30–40 μm and Mn, respectively. Titanium alloys are
employed in aerospace and, to a lesser extent, in automotive industry
due to their highest resistance to extreme stresses (e.g.: Boyer, 1996;
Schauerte, 2003; Saito, 2004; Boyer and Briggs, 2005; Kainer, 2006).
Also, Ti is commonly used in white paints in the form of TiO2 and in
brake pads, especially in metallic-ceramic compounds (ANAS, 2007;
Zannoni et al., 2016). Because samples characterized by highest scores
were collected inside parking areas and airside sample does not show
concentration higher than landside samples (Fig. S2), we can claim with
reasonable confidence that the main source of particles Ti rich with size
30–40 μm in the monitored area is the wear of the white road lines
which, for the note, are denser in car parks than streets. Indeed, the Ti
average concentration of RD collected in a traffic area (without parks)
close to the airport is lower than that of RD sampled in Venice airport
(Fig. S5). In this view we suggest as representative pollutant source of
this PC the “white paint wear”. Finally, it is worth stressing that parks
are the areas characterized by lower PLI as shown in Fig. 3.

As regards the risk assessment it is worth noting that most of the
concentrations (average and highest values) above SSLs are related to
residential scenario, which is quite inapt for the monitored area, al-
though some housing areas are not far away to the airport. Instead, if
industrial scenario is taken into account, just the average concentration
of As overcomes the SSLs for ingestion+ dermal intake pathways of
indoor and outdoor worker receptors. However, it is worth remember
that the SSLs at issue are defined for soil matrix which is quite different
to RD samples probed in this and in several other works where risk
assessments were performed. Therefore, it is mandatory to pursue this

topics and create a guide which taken into account the peculiarities of
RD matrix (e.g.: concentrations as a function of the particle sizes, total
RD mass m−2, flow and type of traffic, wind speed, precipitations) for a
more appropriate risk assessment.

5. Conclusions

In this work we performed a deep characterization and a pre-
liminary risk assessment of road dust collected in the Venice interna-
tional airport, highlighting the hot-spot areas and the differences be-
tween airside and landside sites. Considering the high number of
workers and tourists which attend this airport and the ongoing works
related to its enlargement, this research addresses a fundamental step
for the protection of potential receptors and emphasizes the need to
deep investigate this topic in this and other popular sites.

Results confirmed that road dust can be an important source of at-
mospheric particulate by re-suspension, and that it is also composed of
particles originated by non-exhaust sources such as the brake, tire and
road wear, and other local sources such as the activities related to
construction sites and anti-icing safety procedures. Moreover, streets
are the most polluted landside places; while road dust of airside area is
significantly more concentrated in PAHs, Na, Al, Cu, Zn, Ag, Cd. Finally,
as regards the risk assessment, the most critical pollutants (in concern
order) are: As, BaP, Cr, Sb, BaA, and BbF.
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Fig. 4. Ratios between the high (whiskers), the average (bars) RD<37 concentrations and the SSLs for investigated scenarios. The ratio equal to 1 is highlighted by the red horizontal line.
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These data include the Google map of the most important areas de-
scribed in this article.
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