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We revisit the Nash bargaining model and axiomatize a procedural solution that
maximizes the probability of successful bargaining. Our characterization spans several
known solution concepts, including the special cases of the Nash, egalitarian, and util-
itarian solutions. Using a probability-based language, we offer a natural interpretation
for the product operator underlying the Nash solution: when the bargainers’ individual
acceptance probabilities are independent, their product recovers the joint acceptance
probability.

KEYWORDS: Cooperative bargaining, mediation, arbitration, benchmarking, copu-
las.

1. INTRODUCTION

THE AXIOMATIC FOUNDATIONS of two-person bargaining theory laid out by Nash
(1950) stand out as a cornerstone for simplicity and elegance. They have spawned a huge
body of literature; see Thomson (1994). But there is something amiss among their many
successful applications.

The Nash solution recommends to pick an outcome that maximizes the product of bar-
gainers’ utilities. Many economic models turn this precept into a shortcut for predicting
how unstructured bargaining will be resolved, but hardly anybody uses it in real situa-
tions. One reason for this disconnect is that the Nash solution “lacks a straightforward
interpretation since the meaning of the product of two von Neumann–Morgenstern util-
ity numbers is unclear” (Rubinstein, Safra, and Thomson, 1992, p. 1172). It is difficult to
advocate a solution that the bargainers cannot make sense of.

We revisit the Nash model and address this difficulty, switching from a utility-based
language to a probability-based language. We assume that bargainers have ordinal pref-
erences over physical alternatives, relaxing the (covert) requirement that they also rank
lotteries among alternatives. Next, we introduce uncertainty over which alternatives bar-
gainers are willing to accept. Then we illustrate and axiomatize a solution that selects an
alternative to maximize the probability that the bargainers reach an agreement. This pro-
cedure encompasses the standard Nash solution and provides a sound prescriptive advice
in real situations.

An example may be useful to illustrate our approach. Two agents bargain over a set A of
feasible alternatives, described in physical terms. Assume that A is a nonempty, compact,
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and convex subset of Rn. Each bargainer i = 1�2 has an ordinal continuous preference �i

over A. The two agents hire a mediator to recommend a solution and help them reach an
agreement. The agents’ ordinal preferences are commonly known, but the mediator does
not know what it takes for an agent to accept a proposal a from A.

More formally, suppose that i = 1�2 accepts a proposal a if and only if a�i ti, where ti
in A is i’s acceptance threshold or, for short, his target. The mediator has incomplete in-
formation about the bargainers’ targets: she believes that each target is a random variable
Ti taking values in A. For any proposal a, her beliefs give a pair of individual acceptance
probabilities (p1�p2), where pi = P(a�i Ti). If she also believes that the two targets are
stochastically independent, the probability that both accept a is the product p1 ·p2 of the
individual acceptance probabilities.

The mediator can recommend any feasible alternative, but she cannot impose it: if she
suggests a, it is left to the bargainers to accept it. Her goal is to find a proposal that
maximizes the probability that the agents consent to it: if she believes that the bargainers’
targets are stochastically independent, she should advance a proposal a that maximizes
the product p1 · p2. In this example, we interpret the Nash solution as a rule for the
mediator: maximize the probability that the bargainers reach an agreement, given that
their targets are private information and independently distributed. From a prescriptive
viewpoint, the mediator may use p1 ·p2 to construct a ranking over alternatives consistent
with bargainers’ ordinal preferences, and she can provide a clear-cut argument for her
recommendation.

Moving beyond the Nash product, we characterize the general case where individual
acceptance probabilities are aggregated under an arbitrary dependence structure. In par-
ticular, we recover axiomatizations for the special cases of the egalitarian and the utili-
tarian solutions. This offers a unifying interpretation for several solution concepts, up to
which dependence structure is presumed.

A switch from a utility-based language to a probability-based language carries modeling
advantages. Consider the special case where the mediator is to propose a division for a
homogeneous cake of unit size, by offering a portion of size x1 = x to i = 1 and the
complementary portion of size x2 = 1 − x to i = 2. Then A = {(x�1 − x) : x ∈ [0�1]}.
Suppose that each bargainer has preferences increasing in his own portion of the cake.
Given a proposal a = (x1�x2) and the mediator’s beliefs on i’s target Ti, she assesses
i’s acceptance probability by the distribution function Fi(xi) = P(xi �i Ti). If bargainers’
targets are stochastically independent, she maximizes the probability of joint acceptance
by solving

max
x∈[0�1]

F1(x)F2(1 − x)�

The Nash model presumes instead that it is commonly known that each bargainer has
EU-preferences and (after a suitable normalization) solves

max
x∈[0�1]

u1(x)u2(1 − x)�

There is a formal analogy between the two problems, but Nash’s approach abstracts away
all the particulars except for the bargainers’ risk attitudes. If the agents are risk-neutral
and the cake is worth 1 euro to the first one and v euro to the second one, the Nash solu-
tion prescribes the same division whether v = 1 or v = 1000. The mediator, on the other
hand, formulates her beliefs with respect to a specific bargaining problem: she can assess
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different distributions for the individual targets depending on v = 1 or v = 1000. A me-
diator who acknowledges that the value v affects bargainers’ targets comes to different
recommendations.

The utility-based literature offers two alternative interpretations for the product op-
erator. First, Trockel (2008) viewed the Nash product as a social welfare function that
aggregates the two bargainers’ (normalized) utilities into a social ranking and evaluates
a pair u = (u1�u2) by the Lebesgue measure of the set of utility pairs that are Pareto-
dominated by u. In our approach, the product aggregates the two individual acceptance
probabilities into a social (or mediator’s) ranking, but the evaluation is interpreted as the
probability of joint acceptance.

Second, Roth (1979, Section I.C) framed the bargaining model as a single-person de-
cision problem, where i chooses a claim that maximizes his expected utility under the
belief that the utility demanded by the other bargainer j = 3 − i is uniformly distributed;
see also Anbar and Kalai (1978). Then the Nash solution emerges from the independent
choices of the two bargainers. From a game-theoretic viewpoint, Roth noted that juxta-
posing the bargainers’ decision problems makes their expectations mutually inconsistent.
But our mediator deals with a genuine single-person decision problem where her goal is
to maximize the probability of success with respect to her own beliefs.

Section 2 describes our framework and traces it back to Nash (1950). Section 3 char-
acterizes the probability-based Nash solution. Section 4 axiomatizes the class of solutions
that maximize the probability to reach an agreement; moreover, we characterize the egal-
itarian and utilitarian solutions as special cases. Section 5 formalizes a benchmarking pro-
cedure to align the incomplete information of an agent with the ordinal preferences of a
bargainer and discuss its implications for the utility-based Nash model. Section 6 reviews
the relationships of our approach with Nash bargaining. Section 7 offers a commentary
and a few additional results. Technicalities and proofs are relegated to the Appendix.

2. THE FRAMEWORK

The bargaining problem in Nash (1950, p. 155; emphasis added) considers a situation
where two parties may cooperate to their mutual benefit, but “no action taken by one of
the individuals without the consent of the other can affect the well-being of the other one.”
Thus, either agent is able to enforce a default outcome. Nash postulated “that the two
individuals are highly rational, that each can accurately compare his desires for various
things, that they are equal in bargaining skill, and that each has full knowledge of the
tastes and preferences of the other.” Then he argued that “a theoretical treatment of
bargaining situations [abstracts] from the situation to form a mathematical model in terms
of which to develop the theory.” Our framework complies with these desiderata.

There is a set A of available (physical) alternatives, including a default outcome δ that
occurs if bargaining breaks down. We assume that A is a subset of a topological space,
endowed with the relative topology. Each bargainer i = 1�2 has a continuous1 preference
relation �i on A; thus, he has a most preferred element for each compact subset of A.

The quadruple (A�δ;�1��2) is a bargaining problem with ordinal preferences. It is a
modest but uncontroversial assumption that any alternative a∗ associated with a solution
to this problem should be:

feasible: a∗ ∈ A;

1A preference relation is continuous on A if, for any a ∈ A, the set W (a) = {b ∈ A : b ≺ a} of strictly worse
alternatives and the set B(a) = {b ∈A : b � a} of strictly better alternatives are open.
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individually rational: a∗ �i δ for i = 1�2;
Pareto optimal: there is no a in A such that a�i a

∗ for i and a�j a
∗ for j = 3 − i.

Individual rationality recognizes that no rational bargainer would consent to an out-
come strictly worse than what he can unilaterally enforce. Pareto optimality prevents
wasting any opportunity to benefit an agent without harming the other one.

Let A∗ be the set of feasible alternatives that are individually rational and Pareto opti-
mal for the bargaining problem (A�δ;�1��2). Clearly, i and j have opposing preferences
on A∗. We assume that A∗ is compact so each bargainer i has a best choice Mi in A∗. With-
out loss of generality, let Mi be unique and M1 �= M2. Then Mi �i Mj for j = 3 − i and Mj

is the worst choice in A∗ for i. All of the above is commonly known to the bargainers and
to any third party—for example, a mediator.

A (nonempty) subset of A∗ is a solution. When it can be rationalized as the set of
maximal outcomes with respect to a complete ranking on A, we say that it is a procedural
solution. This paper is concerned with procedural solutions.

Nash (1950) refined the bargaining problem with ordinal preferences by adding the
assumption that bargainers maximize expected utility.2 It is common knowledge that
each bargainer has expected utility preferences over the set of lotteries on A, with a
von Neumann–Morgenstern utility ui : A → R consistent with �i and unique up to
increasing affine transformations. For short, we say that the two bargainers have EU-
preferences based on the (vNM-)utility functions u1, u2.

The solution axiomatized by Nash concerns the smaller class of bargaining problems with
EU-preferences (A�δ;u1�u2). The Nash solution is procedural, because it is rationalized
by the ranking associated with the product[

u1(a)− u1(δ)
] · [u2(a)− u2(δ)

]
�

This paper demonstrates a more general approach to refine ordinal preferences and
uses it to derive procedural solutions. The key technical step in Nash’s treatment relies
on the expected utility assumption to map the problem (A�δ;u1�u2) into a pair (S�d),
where S ⊆ R

2 and d ∈ S are respectively the (convex hull of the) image of A and the
image of δ. After the mapping from (A�δ;u1�u2) to (S�d) is established, Nash’s axioms
concern sets or points in R

2.
Mapping the original bargaining problem to R

2 makes for a simple and elegant ax-
iomatization, but Nash’s approach forcibly casts (S�d) into a utility-based language; see
Rubinstein, Safra, and Thomson (1992). In the next section, we cast an analogous map-
ping in a probability-based language (LiCalzi, 1999) and axiomatize a procedural solution
that nests the Nash solution. Our approach is consistent with, but does not require, the
assumption that bargainers have expected utility preferences.

3. MEDIATOR-ASSISTED NASH BARGAINING

Let (A�δ;�1��2) be a bargaining problem with ordinal preferences. Consider a third
party—a mediator—who is hired by the two bargainers to recommend an alternative over
which they can reach an agreement. The mediator can choose any alternative from A,
but cannot impose it. After she irrevocably selects a proposal a, each bargainer decides—
individually and simultaneously—whether to accept or refuse it. The mediation is success-
ful if both accept the mediator’s proposal; otherwise, the bargainers obtain the default
outcome δ.

2Nash (1950) offered no justification for this modeling choice. Bleichrodt, Li, Moscati, and Wakker (2016)
suggested why he might have found it so compelling to eschew a discussion.
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The mediator’s goal is to maximize the probability of a successful mediation in a spe-
cific bargaining problem. We expect her to acquaint herself with all relevant information,
including bargainers’ claims, prevailing social norms, customary or legal precedents, and
other contextual elements that bear relevance. Eventually, she confronts her (subjective)
uncertainty about what each bargainer i is willing to accept and for any alternative a she
turns to the question: “how likely is bargainer i to accept this proposal?”

Having reached her best understanding of the bargaining problem under considera-
tion, the mediator assesses the probability Pi(a) that the alternative a will be accepted by
bargainer i. Let Pi : A → [0�1] denote the mediator’s assessment for bargainer i = 1�2.
This assessment might be generated by a model of i’s behavior as in the example from
the Introduction, but this is not a requirement. We assume only that the two mediator’s
assessments are continuous and satisfy two minimal properties of consistency with her
knowledge of the bargaining problem.

C.1—Monotonicity: Pi(a) represents �i on A.

This states that the mediator ranks the acceptance probabilities for each bargainer i
consistently with i’s ordinal preferences over alternatives; that is, i likes a better than a′

if and only if the mediator believes that i is more likely to accept a than a′.

C.2—Bargainers’ rationality: Pi(δ)= 0 and Pi(Mi)= 1.

The first part states that the mediator believes that i would refuse the default outcome
for sure, because he could secure it without going through the hassle of bargaining. The
second part states that she believes that i would accept for sure his best choice Mi from
the set A∗: a rational bargainer i knows that he cannot obtain more than Mi, because j
would veto it. If he were not willing to accept his best choice Mi, he would have refused
to enter (or would have walked away from) the bargaining situation. Thus, conditional on
i’s status as a bargaining party, he must be willing to accept Mi.

Section 5 axiomatizes a benchmarking procedure by which the mediator can construct
a consistent assessment Pi against a standard of reference. Theorem 7 provides sufficient
conditions for the existence of two continuous assessments P1 and P2 that satisfy C.1 and
C.2. For expositional purposes, the current and the next section assume that the pair
(P1�P2) of mediator’s assessments is given.

The pair (P1�P2) maps a bargaining problem with ordinal preferences (A�δ;�1��2)
into a subset B ⊆ [0�1]2, where each element of B is a pair of acceptance probabilities
(p1�p2); see Figure 1. The default outcome δ is mapped to the point (P1(δ)�P2(δ)) =
(0�0); thus B contains the origin. The best choices M1 and M2 are mapped to two points
(1�p2) and (p1�1), with p2 = P2(M1) and p1 = P1(M2): both the intersections of B with
the line p1 = 1 and with the line p2 = 1 are not empty. Finally, the image of the (compact)
Pareto optimal set A∗ maps to a (compact) Pareto frontier B∗ in [0�1], because P1 and P2

are continuous.
In short, the mediator’s assessments map the bargaining problem with ordinal prefer-

ences (A�δ;�1��2) to a subset B ⊆ [0�1]2 of pairs of acceptance probabilities (p1�p2),
which includes the origin, intersects p1 = 1 and p2 = 1, and has a compact Pareto fron-
tier B∗.

The analogy with Nash’s reformulation of a bargaining problem with EU-preferences as
a pair (S�d) should be apparent. The Nash construction uses the mapping (u1�u2) associ-
ated with the two bargainers’ utility functions and abstracts away the particulars except for



842 L. BASTIANELLO AND M. LICALZI

FIGURE 1.—Mapping alternatives to acceptance probabilities.

their risk attitude.3 Our construction uses the mapping (P1�P2) associated with the two
mediator’s assessments and abstracts away the particulars except for the individual accep-
tance probabilities. The Nash solution concerns bargaining problems with expected utility
preferences. Our solution concerns bargaining problems with mediator’s assessments. We
discuss in Section 6 how more deeply the analogy runs for unassisted bargaining. The rest
of this section provides a behavioral characterization for a procedural solution on A, ra-
tionalized by the ranking associated with the product P1(a) · P2(a).

A Behavioral Characterization

We assume that the mediator has a ranking over all pairs of acceptance probabilities
in [0�1]2, consistent with her goal to maximize the probability of a successful mediation.
Intuitively, one may imagine that she aggregates her (individual) probability assessments
P1 and P2 into a single (joint) assessment for the probability of a successful mediation.
The equivalent of the Nash solution is recovered when the two mediator’s assessments
are stochastically independent: then the probability that an alternative a is accepted by
both bargainers is the product of P1(a) and P2(a).

Denote by p = (p1�p2) an element in [0�1]2. We view [0�1]2 as a mixture space
for the ⊕ operation, under the standard interpretation where αp ⊕ (1 − α)q is a lot-
tery that delivers p in [0�1]2 with probability α in [0�1] and q in [0�1]2 with the com-
plementary probability 1 − α; see Herstein and Milnor (1953). Moreover, let p ∨ q =
(max(p1� q1)�max(p2� q2)) and p ∧ q = (min(p1� q1)�min(p2� q2)).

We assume that the mediator’s ranking  over [0�1]2 satisfies four properties.

A.1—Regularity:  is a complete preorder, continuous and mixture independent.

This implies that there exists a real-valued function V : [0�1]2 → [0�1], unique up to
increasing affine transformations, that represents the mediator’s ranking  and is linear
with respect to ⊕; that is, V (αp ⊕ (1 − α)q) = αV (p) + (1 − α)V (q), for any α in [0�1]
and any p, q in [0�1]2. See Theorem 8.4 in Fishburn (1970). Nash (1950, p. 157) took for
granted a similar assumption under EU-preferences: he defined a “two-person anticipa-
tion as a combination of two one-person anticipations” and stated that the two-person
anticipation “will have the same linearity property.”

3This is an implicit assumption of invariance to isomorphic transformations, formalized in Valenciano and
Zarzuelo (1997).
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A.2—Non-triviality: (1�1)� (0�0).

This states that the mediator ranks a proposal accepted for sure by both bargainers
strictly above a proposal refused for sure by both bargainers. Its purpose is to rule out the
trivial case where the mediator is always indifferent.

A.3—Disagreement indifference: For any p, q in [0�1], (p�0)∼ (0� q).

This is named after Assumption DI in Border and Segal (1997), who studied a prefer-
ence relation over utility-based solutions. In our framework, this property states that the
mediator is indifferent about which bargainer refuses a proposal for sure. Intuitively, the
identity of the refuser is irrelevant.

A.4—Consistency: For any p�q ∈ [0�1],

p(1� q)⊕ (1 −p)(0� q)∼ (p�q) and p(q�1)⊕ (1 −p)(q�0)∼ (q�p)�

This is a separability property. Suppose that each bargainer i is known to accept a pro-
posal with probability q. Then the mediator is indifferent between proposing an alterna-
tive that bargainer j = 3− i accepts with probability p, or facing a lottery where bargainer
j accepts with probability p and rejects with probability 1 −p.

Our first result characterizes when the mediator’s ranking aggregates pairs of accep-
tance probabilities using the product rule.

THEOREM 1: The ranking  on [0�1]2 satisfies A.1–A.2–A.3–A.4 if and only if it is repre-
sented by the product p1 ·p2.

This result uncovers an appealing interpretation for the product operator underlying
the Nash solution. Given her probability assessments P1, P2 on A, the mediator’s ranking
over pairs of acceptance probabilities in [0�1]2 induces a preference relation over alter-
natives in A represented by the function V (a) = P1(a) · P2(a). Thus, she recommends an
alternative a that maximizes the product P1(a) ·P2(a). If the bargaining problem is framed
with respect to acceptance probabilities (instead of utilities), the product operator corre-
sponds to the assumption that the individual acceptance probabilities are stochastically
independent.4

Our result is a behavioral characterization. However, it also fits the normative view ex-
pounded in Border and Segal (1997, p. 5), who interpreted “axioms as characteristics of
the arbitrator that both bargainers can accept.” Similarly, it is consistent with the practi-
tioners’ view as argued by Subramanian (2010, p. 109): “the implications for negotiation
strategy change dramatically when we move away from the assumption that dealmakers
will accept deals that are just better than their [default outcome] to the more realistic
and nuanced assumption that the likelihood the other side will say yes increases with the
incentives to do so.”

4For expositional simplicity, we assume two bargainers. An extension of Theorem 1 to the case of n ≥ 2
bargainers is given in Appendix A.5.
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4. MEDIATOR-ASSISTED BARGAINING

An Example

Theorem 1 axiomatizes the case where the mediator postulates that the individual ac-
ceptance probabilities are stochastically independent. For example, let us return to the
case where the mediator is to divide a homogeneous cake of unit size by offering portions
of size x to i = 1 and of size 1−x to i = 2. If the mediator believes that the bargainers’ tar-
gets have i.i.d. uniform distributions on [0�1], she maximizes the probability of reaching
an agreement by solving

max
x∈[0�1]

F1(x) · F2(1 − x) = x(1 − x)

and recommends the division where 1 receives x∗ = 1
2 .

The mediator might want to disallow the premise of stochastic independence. For ex-
ample, imagine that the mediator believes that the joint distribution for the bargainers’
targets is uniform, but is convinced that 1 has a more ambitious target than 2 and so
T1 ≥ T2. Using the theory of order statistics, the marginal cumulative distributions for the
bargainers’ targets are F1(x)= x2 and F2(y)= 2y − y2 for x� y ∈ [0�1].

Consistent with the information that T1 ≥ T2, the mediator conjectures that 1 should be
offered a larger portion than 2, that is, x∗ ≥ 1

2 . If she incorrectly maintains the assumption
of stochastic independence and uses the Nash product, she solves

max
x∈[0�1]

F1(x)F2(1 − x)= x2
[
2(1 − x)− (1 − x)2

] = x2
(
1 − x2

)
and recommends the division where 1 receives xN =

√
2

2 . However, since the joint proba-
bility of acceptance under a division (x�1−x) with x≥ 1

2 is F(x�1−x)= (3x−1)(1−x),
the mediator should maximize this expression and propose instead x∗ = 2

3 <
√

2
2 = xN .

Bargainer 1 should be offered a larger portion than bargainer 2, but less than the Nash
solution would recommend.

This section generalizes Theorem 1 and provides a representation result for any depen-
dence structure between individual acceptance probabilities.

The General Characterization

We assume that the mediator’s ranking satisfies five properties. (Appendix A.2 shows
that, under the first one, the other four properties are logically independent.) The first
three properties A.1–A.2–A.3 have been introduced for mediator-assisted Nash bargain-
ing and need not be stated again. We present only the two new ones.

A.4w—Weak consistency: For any p in [0�1],
p(1�1)⊕ (1 −p)(0�1)∼ (p�1) and p(1�1)⊕ (1 −p)(1�0)∼ (1�p)�

This is a weakening of A.4 (Consistency) in Section 3 and states the following. Assume
that bargainer i = 1�2 is believed to accept for sure. Then a lottery where the other party
j = 3 − i accepts with probability p and refuses with probability (1 −p) is ranked on a par
with a proposal that j accepts with probability p. Intuitively, the first lottery has an “ob-
jective” probability p of success, while the second proposal has a “subjective” probability
with the same value p. The mediator is indifferent over these two modalities.
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A.5w—Weak complementarity: For any p, q in [0�1]2,

(1/2)(p ∨ q)⊕ (1/2)(p ∧ q) (1/2)p ⊕ (1/2)q� (4.1)

This is an analog of Axiom S in Francetich (2013). If (p1 − q1)(p2 − q2) ≥ 0, the left-
hand side (LHS) and the right-hand side (RHS) are the same and (4.1) holds trivially.
Assume p1 > q1 and p2 < q2. Then p ∨ q = (p1� q2) (respectively, p ∧ q = (q1�p2)) re-
arranges the probabilities in p and q and matches the higher (lower) values. Weak com-
plementarity states that the mediator never ranks a fifty-fifty lottery over matched pairs
strictly below a fifty-fifty lottery over unmatched pairs. Intuitively, the individual accep-
tance probabilities are (weakly) complementary with respect to the probability of joint
acceptance.

The motivation for A.5w is the following. By C.1 (Monotonicity), pi = Pi(a) rep-
resents i’s ordinal preferences over A. Let ap denote an alternative such that p =
(P1(ap)�P2(ap)), with analogous notation for the alternatives aq, a∨, a∧. If p1 > q1 and
p2 < q2, the first agent has preferences a∨ ∼1 ap �1 aq ∼1 a∧ and we say that he has high
value for a∨ and ap and low value for aq and a∧. Similarly, the second agent has high
value for a∨ and aq and low value for ap and a∧. From the viewpoint of either bargainer,
the equal-chance lotteries in the LHS and in the RHS of (4.1) deliver either a high or a
low value, and thus might be considered indifferent. But the mediator is concerned about
the approval of both bargainers: she realizes that the LHS leads to high or low values for
both bargainers, whereas the RHS delivers high value for one and low value for the other.
Because one disgruntled bargainer (with low value) suffices to put successful bargaining
at risk, she ranks the LHS weakly above the RHS.

The next result gives a behavioral characterization for the mediator’s ranking. The rep-
resentation takes as input the two bargainers’ individual acceptance probabilities and de-
livers as output the probability of successful bargaining, via a unique copula function.
Appendix A.1 recalls a few notions about copulas.

THEOREM 2: The ranking  on [0�1]2 satisfies A.1–A.2–A.3–A.4w–A.5w if and only if
there exists a unique copula C : [0�1]2 → [0�1] that represents , in the sense that

p  q if and only if C(p) ≥ C(q)�

This result has a straightforward interpretation. A pair (p1�p2) of individual accep-
tance probabilities represents the mediator’s beliefs. If her ranking satisfies A.1–A.2–A.3–
A.4w–A.5w, there exists a (unique) copula C(p1�p2) aggregating p1 and p2. The media-
tor ranks an alternative a mapping to a pair of acceptance probabilities (P1(a)�P2(a)) =
(p1�p2) in B by its probability of joint acceptance C(p1�p2). For instance, consider the
example opening this section: a proposal (x�1 − x) has individual acceptance probabil-
ities p1 = F1(x) = x2 and p2 = F2(1 − x) = 1 − x2, with joint distribution F(x�1 − x) =
(3x− 1)(1 − x). Then the copula delivering the probability of joint acceptance is

C(p1�p2)=
{
(2

√
p1 − 1 + √

1 −p2)(1 − √
1 −p2) if 0 ≤ 1 − √

1 −p2 ≤ √
p1 ≤ 1�

p1 otherwise�

Some technical comments are in order. First, Theorem 2 characterizes a ranking 
that has a maximal element (and thus a procedural solution exists), because any copula
is Lipschitz continuous and B∗ is compact; note that B is not required to be convex or
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even connected. Second, the procedural solution may not be unique: in general, the set of
maximal elements is an equivalence class of pairs of individual acceptance probabilities.
Third, the theorem puts no restriction on the dependence structure between P1 and P2

because the copula is arbitrary. Fourth, the copula is linear with respect to ⊕, in the sense
that C(αp ⊕ (1 − α)q)= αC(p)+ (1 − α)C(q); the mediator evaluates the probability of
success for a lottery over p and q by assessing first their respective probabilities of success
C(p) and C(q), and then mixing those with the same “objective” weights of the lottery.

There are stronger versions of Theorem 2. We present two of them, concerning respec-
tively the case when (a) the mediator’s ranking  respects the (strong) Pareto ordering;
or (b)  satisfies an elementary notion of fairness. These two properties are independent
and may hold concurrently. Proofs are omitted, because they are trivial modifications of
the proof for Theorem 2.

Because any copula C is (weakly) increasing in each argument, the mediator’s rank-
ing  in Theorem 2 satisfies the (weak) Pareto ordering: if p1 ≥ q1 and p2 ≥ q2,
then (p1�p2)  (q1� q2). But it might violate the (strong) Pareto ordering for which
(p1 − q1)(p2 − q2) > 0 implies (p1�p2)� (q1� q2). A mild strengthening of A.5w rules out
this possibility. Let p �� q denote that p and q are not comparable in the component-wise
ordering; that is, (p1 − q1)(p2 − q2) < 0.

A.5—Complementarity: For any p �� q in [0�1]2,

(1/2)(p ∨ q)⊕ (1/2)(p ∧ q)� (1/2)p ⊕ (1/2)q�

In combination with A.1–A.2–A.3–A.4w, this property rules out “thick” indifference
curves and implies that  is consistent with the (strong) Pareto ordering. This follows
from the next result, because any strictly supermodular copula is strictly increasing in
each argument.

THEOREM 3: The ranking  satisfies A.1–A.2–A.3–A.4w–A.5 if and only if it is repre-
sented by a unique strictly supermodular copula C : [0�1]2 → [0�1].

The second version incorporates the requirement that the mediator’s ranking  should
not be affected by the bargainers’ identity.

A.6—Anonymity: For any p, q in [0�1], (p�q) ∼ (q�p).

This states that the mediator’s ranking for any pair (p�q) of individual acceptance prob-
abilities is invariant to their permutation, and hence is anonymous. The following result
is immediate.

THEOREM 4: The ranking  satisfies A.1–A.2–A.3–A.4w–A.5w–A.6 if and only if it is
represented by a unique symmetric copula C : [0�1]2 → [0�1].

Theorem 2 and its two variants characterize the mediator’s ranking as the aggregation
(via a suitable copula) of two individual acceptance probabilities into a joint probability of
successful bargaining. Their generality leaves unspecified the dependence structure mod-
eled by the copula. Our next results specialize the dependence structure and recover char-
acterizations for the analogs of two other well-known bargaining solutions: egalitarian
and (relative) utilitarian. Whereas the Nash solution presumes stochastic independence,
these two solutions correspond to the extreme cases of maximal positive dependence and
maximal negative dependence, respectively.
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Special Cases

The Egalitarian Solution

In the utility-based language consistent with Nash’s approach, the egalitarian solution
(Kalai, 1977) recommends the point on the Pareto frontier at which utility gains from the
disagreement point d are equal. Given a bargaining problem with EU-preferences, the
egalitarian solution is procedural because it is rationalized by the ranking associated with
the function min{(u1 − d1)� (u2 − d2)}.

In a probability-based language, the egalitarian solution for a bargaining problem with
ordinal preferences arises when the mediator’s ranking  aggregates the two bargainers’
acceptance probabilities through the copula M(p�q) = min(p�q). This copula obtains
under the following property.

A.7—Meet indifference: For any p, q in [0�1], (p�p∧ q) ∼ (p∧ q�q).

This is an analog of Meet preservation in Voorneveld (2014). It states that the rank-
ing is indifferent when pairs of acceptance probabilities have the same minimum value.
Intuitively, the evaluation of a pair (p�q) is consistent with prioritizing the smallest
value between p and q. Clearly, A.7 implies A.3 (Disagreement indifference) and A.6
(Anonymity). Lemma A.3 in the Appendix shows that A.1–A.2–A.4w–A.7 imply A.5w.
Then the following characterization of the egalitarian copula is immediate.

THEOREM 5: The ranking  satisfies A.1–A.2–A.4w–A.7 if and only if it is represented by
the copula M(p�q) = min(p�q).

The copula M(p�q) = min(p�q) is known as the Fréchet upper bound, associated with
the strongest possible positive dependence between two marginal distributions. The egal-
itarian solution recommends to maximize the probability of successful bargaining under
the premise that the mediator’s assessments are maximally positively dependent. Intu-
itively, she believes that bargainers’ propensities to accept a deal are perfect complements
with respect to the probability of successful bargaining.

The Utilitarian Solution

There exist alternative formulations of the utilitarian solution for the Nash model. They
share the general principle that the solution recommends an alternative that maximizes
the sum of utilities (or utility increments over the disagreement point). We follow Arrow
(1951) and consider relative utilitarianism, based on the sum of cardinal utility functions
with range normalized to the interval [0�1]; see Dhillon and Mertens (1999). When using
a probability-based language, the normalization is a natural step before mapping the util-
itarian precept into the recommendation of maximizing the sum of individual acceptance
probabilities.

We show that this recommendation is consistent with maximizing the probability of suc-
cessful bargaining, when the mediator’s assessments are maximally negatively dependent.
Consider the following property.

A.8—Average indifference: For any p, q in [0�1], (p�q) ∼ (p+q

2 � p+q

2 ).

This states that the mediator’s ranking does not change if the probability assessments
on the segment between (p�q) and (p+q

2 � p+q

2 ) make the increase of one term exactly com-
pensate the diminution of the other. Intuitively, the mediator believes that the bargain-
ers’ propensities to accept a deal are perfect substitutes with respect to the probability of
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successful bargaining. Lemma A.4 in the Appendix shows that A.1–A.2–A.4w–A.8 imply
A.5w. The following characterization of the utilitarian copula holds.

THEOREM 6: The ranking  satisfies A.1–A.2–A.3–A.4w–A.8 if and only if it is repre-
sented by the copula W (p�q)= max(p+ q− 1�0).

The copula W (p�q) = max(p + q − 1�0) is known as the Fréchet lower bound, as-
sociated with the strongest possibile negative dependence between two marginal distri-
butions. Therefore, this procedural solution recommends to maximize the probability of
successful bargaining under the premise that the mediator’s assessments are maximally
negatively dependent.

The copula W (p�q) is strongly Pareto increasing on the triangle above the diagonal
from (0�1) to (1�0), but is zero on the rest of its domain. Hence, the mediator’s ranking
 characterized in Theorem 6 is indifferent over all pairs below the diagonal, because any
feasible proposal mapping to any such pair will be refused and thus it is as good as the
default outcome.

Another Class of Solutions

The literature has other bargaining solutions amenable to our copula-based approach.
For example, Blackorby, Bossert, and Donaldson (1994) defined a bargaining solution as
the (set of) maximizers for a generalized Gini ordering corresponding to distinct levels of
inequality aversion, and represented by a quasi-concave, increasing function that is linear
on the rank-ordered subsets of [0�1]2. In particular, for 0 ≤ α≤ 1/2, let �1 ⊆ [0�1]2 be the
triangle with vertices at (α�α), (0�1), and (1�1) and let �2 ⊆ [0�1]2 be the triangle with
vertices at (α�α), (1�0), and (1�1). Then the family of symmetric copulas

Cα�α(p�q) =

⎧⎪⎪⎨
⎪⎪⎩
p− α

1 − α
(1 − q) if (p�q) ∈ �1�

q− α

1 − α
(1 −p) if (p�q) ∈ �2�

0 otherwise�

defines a continuum of (affine) generalized Gini orderings. Blackorby, Bossert, and Don-
aldson (1994) interpreted α as an index of inequality aversion, whereas our approach
views it as an index of stochastic dependence. This family of symmetric copulas includes
the egalitarian solution for α = 0 and the utilitarian solution for α = 1/2. If we drop the
analog of A.6 (Anonymity) assumed in Blackorby, Bossert, and Donaldson (1994), this
family may be embedded in a more general class of asymmetric two-parameter copulas
Cα�β; see Nelsen (2006, Exercise 3.8).

Uniqueness

A copula-based procedural solution may not be unique, because our approach imposes
no convexity assumptions on either A or its image in [0�1]2 via the Pi’s mappings. Nash
(1950, p. 159) stated bluntly: “Convexity makes [the solution] unique.” We concur with
Blackorby, Bossert, and Donaldson (1994, p. 1162) who argued that the generalized Gini
solutions “are multi-valued solutions (unless attention is restricted to strictly convex prob-
lems). [� � �] relaxing this assumption enlarges the class of solutions considerably. Hence,
single-valuedness is not merely an assumption of convenience but, rather, an assumption
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of substance.” One can recover uniqueness for copula-based solutions by adding adequate
richness assumptions on the domain or on the bargainers’ preferences. When the solution
is not unique, there is a set of alternatives for which the probability of successful bar-
gaining is the same. By analogy with social choice correspondences, Blackorby, Bossert,
and Donaldson (1994) suggested that the mediator might issue her final recommendation
through a random selection.

5. BENCHMARKING AND EU-PREFERENCES

The Benchmarking Procedure

Given a bargaining problem (A�δ;�1��2) with ordinal preferences, its solution is an
alternative a in A. As described in Figure 1, and consistently with the Nash model, our
approach maps the original problem to a subset B ⊆ [0�1]2 of acceptance probabilities,
finds a solution p∗ in B, and then maps it back to some a∗ in A. The path to a proce-
dural solution has three stages: (1) reduction of the problem (A�δ;�1��2) to a simpler
representation B; (2) axiomatization of the ranking to select p∗; (3) retrieval of the corre-
sponding alternative from A.

Until now, we have focused on the second stage, that is, the axiomatization. This section
is concerned with the first stage and formalizes a procedure to construct the probability
assessments that map (A�δ;�1��2) into B.

Let (A�δ;�1��2) be a bargaining problem with ordinal preferences. We axiomatize a
benchmarking procedure by which an agent k �= i (e.g., the mediator) formulates beliefs
consistent with bargainer i’s ordinal preferences, using a standard of reference to cali-
brate her assessment Pk(i)(a) for the probability that i accepts a as bargaining outcome.
This procedure generates a unique assessment for the acceptance probabilities of i, as
perceived by agent k.

The standard of reference is the set Li of simple lotteries over {Mi�δ}. A simple lottery
Lp = pMi ⊕ (1 − p)δ in Li yields Mi with probability p in [0�1] and δ with probability
1 − p. Suppose that k uses Lp to select a recommendation for i: with probability p, she
proposes Mi and i accepts, and with probability 1 − p, she proposes δ and i refuses. Let
P̂k(i) : Li → [0�1] be k’s assessment for a lottery Lp; we assume P̂k(i)(Lp) = p for any p,5
because the outcome of Lp is accepted with (objective) probability p.

The benchmarking procedure extends P̂k(i) on Li to an assessment Pk(i) on A ∪ Li by
comparing each alternative a against the lotteries in Li: if agent k feels that a is as likely
to be accepted by i as Lp, she sets Pk(i)(a)= p.

Formally speaking, let �i be the preference relation of bargainer i on the set of alter-
natives A and let k(i) be a preorder on A ∪ Li. We interpret an element in A ∪ Li as a
proposal to bargainer i: this can be an alternative a or (unbeknown to the bargainer) a
Chance decision between Mi and δ. The preorder k(i) represents agent k’s ranking over
such proposals, where x k(i) y if and only if agent k believes that bargainer i is not less
likely to accept x than y .

The two consistency requirements C.1 and C.2 for Pi from Section 3 correspond to two
conditions on the agent’s ranking k(i):

B.1—Monotonicity: The preorder k(i) represents �i on A.

5This is the natural choice, but the construction proceeds essentially unchanged if one replaces p with any
continuous and increasing bijection g(p) from [0�1] onto [0�1].
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B.2—Bargainers’ rationality: δ∼k(i) L0 and Mi ∼k(i) L1.

We impose two additional properties. The first one is that shifting probability from δ to
Mi increases k’s confidence that i accepts the proposal.

B.3—Stochastic dominance: If p> q, then Lp �k(i) Lq.

The last condition is technical. The subset A has the relative topology. The set Li has
the natural topology generated by the metric d(Lp�Lq)= |p−q|. We endow the set A∪Li

with the disjoint union topology: a set O ⊂ A∪Li is open if and only if O ∩A and O ∩Li

are open in A and in Li, respectively.

B.4—Continuity: The preorder k(i) is continuous in the disjoint union topology.

Our next result characterizes the benchmarking procedure.

THEOREM 7: Suppose that the preorder k(i) satisfies B.2–B.3–B.4. Then the benchmark-
ing procedure uniquely extends the assessment P̂k(i) on Li to a continuous assessment Pk(i) on
A ∪Li with Pk(i)(δ) = 0 and Pk(i)(Mi) = 1, that represents k(i). Moreover, the restriction of
Pk(i) to A is continuous and, if B.1 holds, also represents �i.

Expected Utility and Target-Based Preferences

As it turns out, the commonly known EU-preferences in Nash (1950, 1953) are a special
case of the benchmarking procedure, where the set of feasible proposals includes all ran-
domizations over the available (physical) alternatives in A. Under expected utility, the
preferences of bargainer i are defined over the set L(A) of lotteries on A. The choice
space is no longer A but L(A), and an EU-preference is represented by the expected
value of a vNM-utility function ui : A → R, consistent with �i on A and unique up to
increasing affine transformations.

Suppose that an agent k �= i formulates beliefs Pk(i) on L(A) consistent with i’s prefer-
ences on this set. Note that i’s preferences and k’s benchmarking concern L(A) ⊇A∪Li:
the agent k �= i derives beliefs for i’s probability to accept a (randomized) proposal from
the larger set L(A), but her task is made easier because k knows i’s preferences over all
lotteries on A. Applying B.1 and B.2 on the domain L(A), it follows immediately that k
sets Pk(i)(α) = Eui(α) for any (possibly, degenerate) lottery α ∈ L(A), where ui is nor-
malized so that ui(δ) = 0 and ui(Mi) = 1. That is, k’s assessment for the probability that
i would accept a (randomized) proposal α equates i’s expected utility.6

This observation ties nicely the Nash solution and mediator-assisted Nash bargaining.
Suppose that the mediator k �= i faces a bargaining problem with EU-preferences and
knows i’s and j = (3 − i)’s preferences on L(A). If her ranking respects B.1 (Monotonic-
ity) on the domain L(A) of i’s preferences and B.2 (Bargainers’ rationality), then she sets
Pk(i)(α)=Eui(α); hence, her assessment for i’s acceptance probability of a (randomized)

6Expected utilities and probabilities may sometimes be swapped. When he claimed the equivalence between
Zeuthen’s and Nash’s theories of bargaining, Harsanyi (1956, p. 149) derived Zeuthen’s model by postulating
that “each party can estimate correctly the probability that the other party will definitely reject a certain offer.”
After the equivalence had been acknowledged, Harsanyi (1962, p. 29) subsumed Zeuthen’s and Nash’s theories
presuming that both parties “know [� � �] each other’s attitudes towards risk.”
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proposal α coincides with its expected utility for bargainer i. That is, given a bargaining
problem with EU-preferences, Theorem 1 states that the mediator ranks alternatives as
if she is maximizing the Nash product of the expected utilities for the two bargainers.

The target-based example from the Introduction is another special case of the bench-
marking procedure. Suppose that the mediator k �= i believes that each bargainer i ac-
cepts any proposal that meets his own target, but she knows only the probability distribu-
tions for T1 and T2. Then she would set Pk(i)(a) = P(a�i Ti); see Castagnoli and LiCalzi
(1996). If the mediator believes that T1 and T2 are stochastically independent and have
continuous distributions, Theorem 1 applies again. And, more generally, Theorem 2 deals
with the case when independence does not hold.

6. BILATERAL BARGAINING

The Nash bargaining model is concerned with the axiomatization of solution concepts,
defined as maps from utility-based representations (S�d) to pairs in S. Our probability-
based approach derives procedural solutions as maximal outcomes under a ranking  on
[0�1]2, attributed to a mediator. We argue that the ranking  and its properties may be
ascribed to bilateral bargaining.

Our perspective is inspired by Border and Segal (1997). Motivated by their variety in
the literature, they studied preferences over solution concepts and offered a set of axioms
under which the Nash solution is unanimously preferred. Our approach is different be-
cause we characterize a ranking over pairs of acceptance probabilities. But they advanced
two interpretations that are germane to our discussion.

The first interpretation is that the two bargainers delegate the decision to a third party
and “hire an arbitrator to make choices for them” (p. 1). Differently from the mediator,
the arbitrator imposes her choice. Then the axioms circumscribe what notion of fairness
underlies her ranking. As in social choice, this viewpoint is normative.7

The second ancillary interpretation is prescriptive: the bargainers agree to submit the
axioms as ex ante guidelines to the arbitrator. These need not represent the bargainers’
true preferences over the final choice, but must be consistent with a genuine effort to
consent to ex ante mutually acceptable principles. Framing bargaining in a probability-
based language is consistent with either interpretation.

Finally, imagine two bargainers who formulate ex ante a shared ranking  on [0�1]2

under a veil of ignorance: they do not know which alternatives will be available and under
which circumstances they will bargain. If they channel the uncertainty about the future
into acceptance probabilities, they should agree on a ranking that maximizes the (future)
chances of successful bargaining.

The implications are different when we consider the reduction stage that precedes the
axiomatization stage in the path to a solution. The reduction stage concerns the modeling
of a specific bargaining problem: it should allow for great flexibility. Nash entrusted this
burden with the bargainers’ vNM-utilities u1(a) and u2(a), focusing on their risk attitudes.
Our probability-based approach offers a richer perspective, based on the mediator’s (or
arbitrator’s) beliefs about the individual acceptance probabilities P1(a) and P2(a) for the
situation at hand.

There are other cases when P1(a) and P2(a) have a natural interpretation. Consider
two negotiators who act on behalf of their principals: they have common knowledge of

7Kaneko and Nakamura (1979) and Mariotti and Veneziani (2018) characterized social welfare functions
based on the Nash product. When the ranking  is a social preference relation, our results characterize social
welfare functions based on copulas.
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the principals’ acceptance probabilities and seek a deal to submit for the principals’ ap-
proval. For instance, think of two diplomats negotiating a treaty on behalf of their govern-
ments. More generally, if there is common knowledge that both bargainers have the same
incomplete information about their acceptance probabilities, then they are in agreement
on P1(a) and P2(a). Compare with Nash’s assumption that there is common knowledge
that the bargainers have EU-preferences with given vNM-utility functions.

There is another distinction between the two stages. Reduction is usually carried out
ad interim, after a specific problem is presented and before a solution is offered; charac-
terization applies to an abstract space and is discussed ex ante. The reduction stage poses
a challenge, first acknowledged in Harsanyi (1962). Given the solution concept down-
stream, mapping a bargaining problem to a subset of R2 leaves room for manipulation.
Mediator-assisted bargaining avoids this issue because the mediator’s only interest is that
both bargainers agree to her proposal. (Consider what could happen if bribes were al-
lowed.)

The problem becomes relevant in unassisted bargaining, when a third party is not avail-
able. Nash shut down the risk of manipulation by imposing that agents’ EU-preferences
are common knowledge. Our approach is consistent with this strong assumption: if the
bargainers’ EU-preferences or the distribution of their targets are commonly known, the
benchmarking procedure leaves no room for manipulation.

Harsanyi (1962) considered “the more general case where the two parties do not know
(and know they do not know) each other’s utility functions.” He identified two condi-
tions that mitigate the problem. The first one occurs when “in a given society with well-
established cultural traditions people tend to enter bargaining situations with more or
less consistent expectations about each other’s utility functions.” People from the same
culture may use observable features (such as age, social position, education) to reliably
assess others’ preferences or others’ acceptance probabilities. The second condition oc-
curs when consistent expectations are “the result of mutual adjustment [� � �] during the
bargaining process itself.”

Another approach that we do not pursue here is the design of strategy-proof mecha-
nisms for eliciting truthful reduction. Miyagawa (2002) took a first step and provided a
simple four-stage sequential game that fully implements a reasonably large class of two-
person bargaining solutions in subgame-perfect equilibrium. Compared to our setup, the
crucial restriction is that the copula must be quasi-concave. This does not hold in gen-
eral, but many common examples—including the three copulas characterized above—
are quasi-concave. Therefore, the Nash, egalitarian, and utilitarian solutions are imple-
mentable.

7. COMMENTARY

This section offers closing comments, organized in two parts. Section 7.1 reviews the
ordinal Nash solution by Rubinstein, Safra, and Thomson (1992) and shows that it is con-
sistent with our probability-based approach. Section 7.2 deals with applications, covering
testable restrictions, comparative statics, and bargaining power.

7.1. The Ordinal Nash Solution

Rubinstein, Safra, and Thomson (1992, p. 1172) put forward a “switch from utility lan-
guage to alternatives-preference language” for the Nash bargaining model. Based on this
language, they introduced the ordinal Nash solution for a class of bargainers’ preferences
larger than expected utility.
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Specifically, suppose that each bargainer has a preference relation �i over the space
L(A) of lotteries on A. An alternative a∗ from A is an ordinal Nash solution if pa⊕ (1 −
p)δ �i a

∗ implies pa∗ ⊕ (1 − p)δ�j a, for all p in (0�1] and a in A. If both agents have
EU-preferences over L(A), the ordinal Nash solution coincides with the standard Nash
solution. But their richer language interprets the ordinal Nash solution as an alternative
for which no bargainer can raise an admissible objection.

Grant and Kajii (1995) extended this approach to a wider class of preferences over
L(A) and developed a cardinal characterization for the ordinal Nash solution, recovering
it as the maximizer of a Nash product. Appendix A.4 provides the details and a mild
generalization of their results, but the gist of their argument is the following.

Grant and Kajii (1995) assumed that each bargainer i = 1�2 has a preference relation
�i over the space L(A). The preference relation �i has a disagreement linear (DL) repre-
sentation if there exists a continuous function vi(a) (with vi(δ)= 0) such that

pa⊕ (1 −p)δ�i qa
′ ⊕ (1 − q)δ if and only if pvi(a)≥ qvi

(
a′)�

Lemma 1 in Grant and Kajii (1995) characterizes a class of preferences that have a DL
representation. These include expected utility and some examples of rank-dependent util-
ity. Lemma 2 shows that a∗ is an ordinal Nash solution if and only if it maximizes the Nash
product v1(a) · v2(a) over the set A of the alternatives.

In our setup, the bargainers have preferences with a DL representation where vi(a) =
Pi(a). Therefore, their Lemma 2 applies and the Nash copula delivers the same alter-
natives as the ordinal Nash solution. We do not pursue it here, but one may extend the
benchmarking procedure beyond DL representations by using a standard of reference
different from P̂k(i)(Lp)= p; see Footnote 5.

7.2. Modeling Issues

Testable Restrictions

We describe a simple test that generates falsifiable predictions for our copula-based
approach. For any problem B in [0�1]2, a solution selects (at least) a point in B. The
copula-based approach recommends a solution by maximizing a suitable copula C over B.
Suppose that B contains a point p = (p1�p2) with p1 + p2 > 1. The Fréchet lower
bound implies C(p) ≥ p1 + p2 − 1 > 0 for any copula C. Similarly, given another fea-
sible point q = (q1� q2), the Fréchet upper bound implies C(q) ≤ min(q1� q2). Therefore,
if min(q1� q2) < p1 + p2 − 1, then C(p) > C(q): the point p must be strictly preferred to
q, and q cannot be in the solution for any copula C. By picking a point p∗ that maximizes
p1 +p2 − 1 in B, we can formulate the following more stringent test.

PROPOSITION 8: Let p∗ ∈ arg maxB(p1 +p2 − 1). Define the quadrant

Q := {
q ∈ [0�1]2 : min(q1� q2)≥ p∗

1 +p∗
2 − 1

}
�

Then the solution must belong to B ∩Q.

The copula-based approach implies other restrictions. Because a procedural solution
is rationalized by the maximization of a copula, it can recover only solutions that satisfy
independence of irrelevant alternatives; see Peters and Wakker (1991). In particular, our
model cannot yield the Kalai and Smorodinsky (1975) solution (for short, KS solution)
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except in special cases. Formally speaking, this solution violates A.1 as shown by the fol-
lowing simple example. Let B1 be the convex hull in [0�1]2 of the three points (0�0),
(0�1), and (1�0). Then the KS solution uniquely prescribes the point p = (1/2�1/2). On
the other hand, if B2 is the convex hull in [0�1]2 of the four points (0�0), (0�1), (1/2�1/2),
and (1/2�0), then the KS solution uniquely prescribes the point q = (1/3�2/3). As both
p and q belong to B2 ⊂ B1, the first KS solution reveals p � q while the second one re-
veals q � p, so A.1 fails. It is possible to rationalize the KS solution as the outcome of a
lexicographic maximization, but we find this approach cumbersome and do not pursue it
here.

Comparative Statics

We make three observations. First, our approach allows for comparative statics based
on (partial) orderings for copulas. We consider a simple example. Given two copulas C1

and C2, the concordance ordering states that C1 is more concordant than C2 if C1(p) ≥
C2(p) for all p in [0�1]2. Suppose that C1 is more concordant than C2. Given B, let p∗

i be
a solution under the copula Ci, for i = 1�2. Since

C1

(
p∗

1

) ≥ C1

(
p∗

2

) ≥ C2

(
p∗

2

)
�

the joint probability of success at the solution is increasing in the concordance ordering.
Agents with concordant targets are more likely to strike a deal.

Second, we can reinterpret known results. For example, consider Theorem 1 in
Kihlstrom, Roth, and Schmeidler (1981): “The utility which Nash’s solution assigns to
a player increases as his opponent becomes more risk averse.” This result compares the
solution when the utility ui of an agent is replaced by a function vi that is an increas-
ing concave transformation of ui. Recall from Section 5 that the probability assessment
Pk(i)(a) may be set equal to the vNM-utility function ui(a) with ui(δ)= 0 and ui(Mi)= 1.
Then Theorem 1 in Kihlstrom, Roth, and Schmeidler (1981) states that the Nash cop-
ula makes j = 3 − i better off when the probability assessment Pk(i) is replaced by an
assessment Qk(i) that is an increasing concave transformation of Pk(i). Because probability
assessments are normalized to [0�1], this implies Qk(i)(a)≥ Pk(i)(a) for any a. Hence, the
Nash copula makes j = 3 − i better off if the assessment for i is more optimistic. Under
target-based preferences, this occurs when i’s target is less demanding in the sense of
first-order dominance. In general, whenever i is believed to be more accommodating, the
Nash copula rewards the other bargainer.

The third observation points out to comparative statics beyond the risk attitudes. Con-
sider the division of a homogeneous cake of unit size when both bargainers have target-
based preferences that are unimodal; that is, the distribution function Fi(x) for the target
Ti is S-shaped with an inflection point at its mode x = mi.8 We are interested in the com-
parative statics for x∗ (the portion of the first bargainer) with respect to the two modes
m1, m2.

As an example, for m in [0�1), consider the family of distributions

Fi(x) = x2

x2 + q(mi)(1 − x)2 for x ∈ [0�1]�

8This is more general than assuming that a density function exists and has a maximum at mi .
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where

q(m) = m2(3 − 2m)

(1 −m)2(1 + 2m)

is a strictly increasing (and hence, injective) convex function from [0�1) onto R
+. Each

distribution has a unique mode at m and the family is ordered in the sense of first-order
dominance with respect to m.

Given the bargaining problem

maxF1(x)F2(1 − x)= x2

x2 + q(m1)(1 − x)2 · (1 − x)2

(1 − x)2 + q(m2)x
2 �

the maximizer x∗(m1�m2) satisfies(
x

1 − x

)4

= q(m1)

q(m2)
�

and we obtain

x∗(m1�m2)=
4
√
q(m1)

4
√
q(m1)+ 4

√
q(m2)

�

Using the properties of q(m), it follows that x∗(m1�m2) is increasing in m1 and decreasing
in m2, ranging onto [0�1] with x∗ ≥ 1/2 if m1 ≥ m2. As m1 increases, the first bargainer
becomes more demanding and the Nash copula offers him a larger portion.

This example highlights a connection between unimodal targets and S-shaped utilities;
see LiCalzi (1999). Suppose that each agent i has EU-preferences with a vNM-utility
function ui(x) and a reference point mi such that he is risk averse over gains (x >mi) and
risk seeking over losses (x <mi). Then the Nash solution x∗ for the utility-based model is
the same as for the unimodal targets, after replacing ui(x) for Fi(x).

Continuing the example, agent i is also loss averse if mi ≥ 1/2. When both bargainers
are loss averse, one can show that x∗ ≤ m1 and 1−x∗ ≤ m2. When the reference points for
two loss averse bargainers are too high, the Nash copula delivers a solution where each of
them receives a portion lower than his reference point: they both end up in their “loss”
domain. See Shalev (2002) for some results on bargaining and loss aversion.

Bargaining Power

The economic literature uses an asymmetric version of the Nash solution as a re-
duced form for differences in the agents’ bargaining power. Given a Nash bargaining
problem (S�d), the asymmetric Nash solution obtains as the maximizer of the product
(u1 − d1)

b1(u2 − d2)
b2 , where bi ≥ 0 denotes the bargaining power of i = 1�2. This solution

favors the first agent as his relative strength s = b1/(b1 + b2) increases from 0 to 1. The
popularity of the asymmetric Nash solution is due to its technical convenience, without
much concern for its foundations or interpretation; see Harsanyi and Selten (1972) for a
notable exception.

Our approach allows for asymmetric copulas, but it cannot replicate the asymmetric
Nash solution for all s. The maximand Ns(p�q) = psq1−s is not a copula because it fails
D.2 in Section A.1. One may consider other copulas. For instance, by Theorem 2.1 in
Liebscher (2008), for any copula C, the expression

Cs(p�q) = psq1−sC
(
p1−s� qs

) = Ns(p�q) ·C(
p1−s� qs

)
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defines an asymmetric copula related to Ns. However, there are technical limitations. Let
�(C) = sup0≤p�q≤1 |C(p�q) − C(q�p)| be the degree of asymmetry for a function C over
the domain [0�1]2. It is known that �(C) ≤ 1/3 for any copula C (Nelsen, 2007); and, if C
is also quasi-concave, then �(C) ≤ 1/5 (Alvoni and Papini, 2007). Computing the degree
of asymmetry for Ns yields

�(Ns)=
∣∣∣∣
(

1 − s

s

) 1−s
2s−1

−
(

1 − s

s

) s
2s−1

∣∣∣∣�
This is symmetric around s = 1/2 and increasing in |s−1/2|; its range goes from �(Ns)= 0
at s = 1/2 to �(Ns)= 1 at s = 0 or s = 1. In particular, because �(Ns) > 1/3 for |s−1/2| >
0�22, no copula can replicate Ns when s is outside of the interval (�28� �72).

Nonetheless, our probability-based approach can recover the asymmetric Nash solution
when the bargaining problem concerns a homogeneous cake of unit size and agents have
target-based preferences. Suppose that the target Ti for i = 1�2 has a distribution P(x�i

Ti) = xbi on the support [0�1]: a greater bi models a more demanding agent i, whose
target Ti is higher in the sense of stochastic dominance. Then maximizing the Nash copula
returns the asymmetric Nash solution.

APPENDIX

A.1. Basics on Bivariate Copulas

Copulas are functions that link multivariate distributions to their one-dimensional
marginal distributions; see Nelsen (2006). They are used to model stochastic dependence.
We summarize some basic notions about bivariate copulas.

A (bivariate) copula is a function C : [0�1]2 → [0�1] that satisfies two properties:
(D.1) for any p, q in [0�1], C(p�0)= C(0� q)= 0, C(p�1)= p, and C(1� q)= q;
(D.2) for any p1 > q1 and p2 > q2 in [0�1], C(p1�p2) + C(q1� q2) ≥ C(p1� q2) +

C(q1�p2).
Property D.2 is often called supermodularity. The combination of D.1 and D.2 implies
that C(p�q) is increasing in each argument; see Nelsen (2006, Lemma 2.1.4). When the
weak inequality in D.2 is replaced by a strict one, the copula C is strictly supermodular
and strictly increasing in each argument.

A characterization from Sklar (1959) elucidates how the copula connects a bivariate
distribution to its univariate marginals.

THEOREM 9:Let (X�Y) be a random vector with marginal distributions F(x) and G(y).
The following are equivalent:

(i) H(x�y) is the joint distribution function of (X�Y);
(ii) there exists a copula C(p�q) such that H(x�y) = C[F(x)�G(y)] for all x, y .

If F(x) and G(y) are continuous, then C(p�q) is unique. Otherwise, C(p�q) is uniquely
defined on the cartesian product Ran(F) × Ran(G) of the ranges of the two marginal dis-
tributions. Conversely, if C(p�q) is a copula and F(x) and G(y) are distribution functions,
then the function H(x�y) in (ii) is a joint distribution function with marginal distributions
F(x) and G(y).

A prominent example of a copula is the product Π(p�q) = p · q associated with
stochastic independence. Other important examples are W (p�q)= max(p+q−1�0) and
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M(p�q) = min(p�q). These two copulas are respectively known as the Fréchet lower and
upper bound, because W (p�q) ≤ C(p�q) ≤ M(p�q), for any copula C and any (p�q) in
[0�1]2. Intuitively, the copula M describes the strongest possible positive dependence be-
tween X and Y , given the marginal distributions F and G. Similarly, W captures the
strongest possible negative dependence.

A.2. Logical Independence of A.2–A.3–A.4w–A.5w

We show that, given A.1, the four axioms A.2–A.3–A.4w–A.5w in Theorem 2 are logi-
cally independent. Recall that A.1 implies that the preference relation  is representable
by a real-valued function V : [0�1]2 → [0�1], unique up to increasing affine transforma-
tions and linear with respect to ⊕. We provide a counterexample for each property, omit-
ting obvious quantifiers.

A.2 (Non-Triviality)

Consider V (p�q) = k, for some constant k in [0�1]. Then A.3 holds because V (p�0)=
k = V (0� q); A.4w holds because pV (1�1)+ (1 −p)V (0�1) = k = V (p�1), and similarly
for the second relation. And A.5w holds because (1/2)V (p ∨ q) + (1/2)V (p ∧ q) = k =
(1/2)V (p)+ (1/2)V (q). But A.2 does not hold because V (1�1)= k= V (0�0).

A.3 (Disagreement Indifference)

Consider V (p�q) = p. Then A.2 holds because V (1�1) = 1 > 0 = V (0�0); A.4w holds
because pV (1�1)+ (1 −p)V (0�1) = p = V (p�1), and pV (1�1)+ (1 −p)V (1�0) = 1 =
V (1�p). And A.5w holds because

1
2
V (p ∨ q)+ 1

2
V (p ∧ q)= 1

2
(p1 ∨ q1)+ 1

2
(p1 ∧ q1)= 1

2
p1 + 1

2
q1 = 1

2
V (p)+ 1

2
V (q)�

However, A.3 does not hold: for p> 0 and any q, we have V (p�0)= p> 0 = V (0� q).

A.4w (Weak Consistency)

Consider V (p�q) = p2q. Then A.2 holds because V (1�1)= 1 > 0 = V (0�0); A.3 holds
because V (p�0)= 0 = V (0� q). And A.5w holds because the first mixed derivative of V is
positive, and hence V is supermodular. But A.4 does not hold because pV (1�1) + (1 −
p)V (0�1)= p>p2 = V (p�1).

A.5w (Weak Complementarity)

Consider the function

V (p�q) =
⎧⎨
⎩min

(
p�q�

1
3
�p+ q− 2

3

)
if

2
3

≤ p+ q ≤ 4
3
�

max(p+ q− 1�0) otherwise�

borrowed from Nelsen (2006, Exercise 2.11). Then A.2 holds because V (1�1) = 1 > 0 =
V (0�0); A.3 holds because V (p�0) = 0 = V (0� q). And A.4w holds because pV (1�1) +
(1 − p)V (0�1) = p = V (p�1), and similarly for the second relation. However, A.5w

does not hold: let p = (1/3�2/3) and q = (2/3�1/3), so that p ∨ q = (2/3�2/3) and
p ∧ q = (1/3�1/3). Then V (p ∨ q) + V (p ∧ q) − V (p) − V (q) = −1/3 < 0, contradict-
ing supermodularity.
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A.3. Proofs

Proof of Theorem 1

LEMMA A.1: Suppose that the ranking  satisfies A.1–A.2–A.3–A.4. Then

(p�q) ∼ pq(1�1)⊕ (1 −pq)(0�0)

for all (p�q) in [0�1]2.

PROOF: By A.4, (p�q) ∼ p(1� q) ⊕ (1 − p)(0� q) and (1� q) ∼ q(1�1) ⊕ (1 − q)(1�0).
By A.3, (0� q) ∼ (1�0) ∼ (0�0). Using A.1 (mixture independence) repeatedly, we have
(p�q) ∼ p(q(1�1)⊕ (1 − q)(0�0))⊕ (1 −p)(0�0)= pq(1�1)⊕ (1 −pq)(0�0). Q.E.D.

LEMMA A.2: If the ranking  satisfies A.1–A.2–A.3–A.4, then it satisfies A.5.

PROOF: Consider A.5. Let p �� q in [0�1]2. Assume without loss of generality p1 >
q1 and p2 < q2. Using Lemma A.1 and the reduction of compound lotteries implied by
mixture independence (see, e.g., Property M5 in Fishburn, 1982, p. 11), we have

1
2
(p ∨ q)⊕ 1

2
(p ∧ q)= 1

2
(p1� q2)⊕ 1

2
(q1�p2)

∼ 1
2
[
p1q2(1�1)⊕ (1 −p1q2)(0�0)

]
⊕ 1

2
[
q1p2(1�1)⊕ (1 − q1p2)(0�0)

]
=

(
p1q2 + q1p2

2

)
(1�1)⊕

(
1 − p1q2 + q1p2

2

)
(0�0)�

Similarly, we find

1
2

p ⊕ 1
2

q ∼
(
p1p2 + q1q2

2

)
(1�1)⊕

(
1 − p1p2 + q1q2

2

)
(0�0)�

Moreover, (p1 − q1)(q2 − p2) > 0 implies p1q2 + q1p2 > p1p2 + q1q2. By A.2, we apply
Theorem 4 in Herstein and Milnor (1953, p. 295) to obtain(

p1q2 + q1p2

2

)
(1�1)⊕

(
1 − p1q2 + q1p2

2

)
(0�0)

�
(
p1p2 + q1q2

2

)
(1�1)⊕

(
1 − p1p2 + q1q2

2

)
(0�0)

and thus
1
2
(p ∨ q)⊕ 1

2
(p ∧ q)� 1

2
p ⊕ 1

2
q� Q.E.D.

Theorem 1. The ranking  on [0�1]2 satisfies A.1–A.2–A.3–A.4 if and only if it is represented
by the copula Π(p�q) = p · q.



THE PROBABILITY TO REACH AN AGREEMENT 859

PROOF: Necessity is obvious. We prove sufficiency. Clearly, A.4 implies A.4w. More-
over, A.1–A.2–A.3–A.4 implies A.5 by Lemma A.2. Then Theorem 2 implies that  is rep-
resented by a unique copula C(p�q). Using Property D.1 from Appendix A.1, C(1� q) = q
and C(0� q)= 0 for any q in [0�1]. Because A.4 (Consistency) requires

p(1� q)⊕ (1 −p)(0� q)∼ (p�q)

for any p, q in [0�1], we obtain C(p�q)= pC(1� q)+ (1 −p)C(0� q)= pq. Q.E.D.

Proof of Theorem 2

Theorem 2. The ranking  satisfies A.1–A.2–A.3–A.4w–A.5w if and only if it is represented
by a (unique) copula C : [0�1]2 → [0�1].

PROOF: Necessity is obvious. We prove sufficiency. By A.1, the Mixture Space Theorem
(Herstein and Milnor, 1953) implies that there exists a unique (up to increasing affine
transformations) function V : [0�1]2 → R that represents  and is linear with respect to
⊕. By A.2, V (1�1)− V (0�0) > 0. Apply the appropriate increasing affine transformation
and consider the (unique) function C : [0�1]2 → [0�1] defined by

C(p�q)= V (p�q)− V (0�0)
V (1�1)− V (0�0)

�

We show that C satisfies the two properties (D.1)–(D.2) given in Appendix A.1.
By A.3, we have C(p�0)= C(0�p)= C(0�0)= 0, for any p in [0�1]. Moreover, clearly

C(1�1) = 1. By A.4w and linearity, for any p in [0�1], we get C(p�1) = C(p(1�1)⊕ (1 −
p)(0�1)) = pC(1�1) + (1 − p)C(0�1) = p; a similar argument shows that C(1�p) = p.
This proves (D.1).

By A.5w and the linearity of C, for all p, q in [0�1]2, it follows that

1
2
C(p ∨ q)+ 1

2
C(p ∧ q)= C

(
1
2
(p ∨ q)⊕ 1

2
(p ∧ q)

)
≥ C

(
1
2

p ⊕ 1
2

q
)

= 1
2
C(p)+ 1

2
C(q)�

so C is supermodular and (D.2) holds. Q.E.D.

Proofs of Theorem 5 and 6

The following lemma shows that A.5w is implied by A.1–A.2–A.4w–A.7. Given that A.7
also implies A.3, the proof of Theorem 5 is a special case of Theorem 2 and is omitted.

LEMMA A.3: If the ranking  satisfies A.1–A.2–A.4w–A.7, then A.5w holds.

PROOF: Consider p = (p1�p2) and q = (q1� q2). If (p1 −q1)(p2 −q2)≥ 0, the left-hand
side (LHS) and the right-hand side (RHS) in (4.1) are the same and A.5w holds trivially.
In the following, suppose p1 > q1 and q2 >p2.

There are six possible cases. The first one occurs when p2 ≥ p1 and the second when
q1 ≥ q2. We prove only the first case, because the argument for the second is analogous.
The other four cases obtain when p1 > p2 and q2 > q1, from the combination of the two
subcases p1 ≶ q2 and the two subcases p2 ≶ q1. We consider only the combination p1 < q2

and p2 > q1, because the argument for the other three is similar.
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Given p2 ≥ p1, we have q2 > p2 ≥ p1 > q1. By A.7, it follows p ∨ q = (p1� q2) ∼
(p1�p1) ∼ (p1�p2) = p. Similarly, p ∧ q = (q1�p2) ∼ (q1� q1) ∼ (q1� q2) = q. Then the
LHS and the RHS in (4.1) are the same and A.5w holds.

Next, given p1 < q2 and p2 > q1, we have q2 > p1 > p2 > q1. Applying A.7 thrice
and A.4w, we find p ∨ q = (p1� q2) ∼ (p1�p1) ∼ (p1�1) ∼ p1(1�1) ⊕ (1 − p1)(0�1) ∼
p1(1�1) ⊕ (1 − p1)(0�0). Similarly, p = (p1�p2) ∼ p2(1�1) ⊕ (1 − p2)(0�0). Moreover,
p ∧ q ∼ (q1�p2) ∼ (q1� q2) = q. Since p1 > p2, Theorem 4 in Herstein and Milnor (1953,
p. 295) implies (1/2)(p ∨ q)⊕ (1/2)(p ∧ q)� (1/2)p ⊕ (1/2)q. Q.E.D.

We turn to the proof of Theorem 6. A preliminary lemma shows that A.5w is implied by
A.1–A.2–A.3–A.4w–A.8.

LEMMA A.4: If the ranking  satisfies A.1–A.2–A.3–A.4w–A.8, then A.5w holds.

PROOF: We start with four preliminary claims.
Claim 1. If p1 + p2 < 1, then (p1�p2) ∼ (0�0). Using A.8 twice followed by A.3,

(p1�p2)∼ (p1+p2
2 � p1+p2

2 )∼ (p1 +p2�0)∼ (0�0) and the result follows.
Claim 2. If p1 +p2 ≥ 1, then (p1�p2)∼ (1�p1 +p2 − 1). This follows immediately from

A.8.
Claim 3. For any α�β ∈ [0�1], (1�α) � (1�β) if and only if α > β. Applying A.4w fol-

lowed by A.1 and A.3, we have (1�α) ∼ α(1�1)⊕ (1 − α)(1�0) ∼ α(1�1)⊕ (1 − α)(0�0);
the same holds for (1�β). Because (1�1) � (0�0) by A.2, the result follows from Theo-
rem 4 in Herstein and Milnor (1953).

Claim 4. For any α�β ∈ [0�1], 1
2(1�α) ⊕ 1

2(1�β) ∼ (1� α+β

2 ). Using A.1 and A.4w,
1
2(1�α)⊕ 1

2(1�β) ∼ 1
2 [α(1�1)⊕ (1 − α)(1�0)] ⊕ 1

2 [β(1�1)⊕ (1 − β)(1�0)]. Because mix-
ture independence implies the reduction of compound lotteries, the latter expression is
equivalent to α+β

2 (1�1)⊕ (1 − α+β

2 )(1�0) and the result follows from A.4w.
Having proved the claims, consider p = (p1�p2) and q = (q1� q2). Similarly to the proof

of Lemma A.3, suppose p1 > q1 and q2 > p2. There are six possible cases. The first one
occurs when q1 + p2 ≥ 1 and the second when p1 + q2 ≤ 1. We prove only the first case.
The other four cases obtain when q1 + p2 < 1 and p1 + q2 > 1, from the combination
of the two subcases p1 + p2 ≶ 1 and the two subcases q1 + q2 ≶ 1. We prove only the
combination p1 +p2 < 1 and q1 + q2 > 1.

Given q1 + p2 ≥ 1, Claim 2 implies p ∨ q ∼ (1�p1 + q2 − 1), p ∧ q ∼ (1� q1 + p2 − 1),
p ∼ (1�p1 +p2 − 1), and q ∼ (1� q1 + q2 − 1). By Claim 4,

(1/2)(p ∨ q)⊕ (1/2)(p ∧ q) ∼
(

1�
p1 + q1 +p2 + q2 − 2

2

)
∼ (1/2)p ⊕ (1/2)q�

so A.5w holds.
Next, given p1 + p2 < 1 and q1 + q2 > 1, Claim 1 and A.3 imply p ∼ (p ∧ q) ∼ (0�0) ∼

(1�0). Claim 2 gives p∨q ∼ (1�p1 +q2 −1) and q ∼ (1� q1 +q2 −1). By Claim 4, (1/2)(p∨
q) ⊕ (1/2)(p ∧ q) ∼ (1� p1+q2−1

2 ) and (1/2)p ⊕ (1/2)q ∼ (1� q1+q2−1
2 ). Because p1 + q2 >

q1 + q2, applying Claim 3 yields (1/2)(p ∨ q)⊕ (1/2)(p ∧ q) � (1/2)p ⊕ (1/2)q. Q.E.D.

Theorem 6. The ranking  satisfies A.1–A.2–A.3–A.4w–A.8 if and only if it is represented by
the copula W (p�q)= max(p+ q− 1�0).

PROOF: Necessity is obvious. We prove sufficiency. Given Lemma A.4, Theorem 2 im-
plies that  is represented by a unique copula C(p1�p2). Because W (p1�p2) is the only



THE PROBABILITY TO REACH AN AGREEMENT 861

quasi-convex copula (see, for instance, Example 3.27 in Nelsen, 2006), it suffices to show
that A.8 implies C(αp+(1−α)q)≤ max{C(p)�C(q)} for any α in (0�1) and p, q in [0�1]2.

Assume without loss of generality q1 + q2 ≤ p1 + p2. Given p = (p1�p2), let p =
(p1+p2

2 � p1+p2
2 ) denote its symmetrization lying on the main diagonal. By A.8, p ∼ p im-

plies C(p) = C(p). Because C(p1�p2) is increasing on the main diagonal, we obtain

C
(
αp + (1 − α)q

) = C
(
αp + (1 − α)q

) ≤ C(p)= C(p)�

and thus C is quasi-convex. Q.E.D.

Proof of Theorem 7

For simplicity, we fix i and drop subscripts when there is no risk of confusion; for in-
stance, we write  instead of k(i) or M instead of Mi.

LEMMA A.5: Given p ∈ (0�1), Lpn →Lp in A∪L if and only if pn → p.

PROOF: (⇒) Let ε > 0 be such that (p − ε�p + ε) ⊂ [0�1]. By B.4, the set I = {a ∈
A ∪L : Lp+ε � a � Lp−ε} is open because it is an intersection of open sets and Lp ∈ I by
B.3. Thus Lpn → Lp implies that there exists N such that Lpn ∈ I for all n ≥ N ; that is,
Lp+ε � Lpn � Lp−ε. Therefore, B.3 implies p − ε < pn < p + ε for all n ≥ N , and thus
pn → p.

(⇐) It suffices to show that for any open neighborhood O of Lp, there is N such that
Lpn ∈ O for all n ≥ N . Let O be an open neighborhood of Lp; then O ∩ L is open in
L since O is open in the disjoint union topology. But pn → p implies Lpn → Lp in L,
because d(Lpn�Lp)= |pn −p| →n 0. Therefore, there exists N such that Lpn ∈O ∩L for
n ≥N , which implies Lpn ∈O. Q.E.D.

LEMMA A.6: For every a ∈ A, the set W L
a = {p ∈ [0�1] : Lp ≺ a} of strictly worse lotteries

and the set BL
a = {p ∈ [0�1] : Lp � a} of strictly better lotteries are open in the natural topology

over [0�1].

PROOF: Fix a ∈ A. Clearly, W L
a is open if and only if its complement W

L
a is closed.

Suppose by contradiction that W
L
a is not closed. Then there exists a sequence {pn} ⊂ W

L
a

such that pn → p with p /∈ W
L
a ; then p ∈ W L

a and thus Lp ≺ a. However, Lpn  a for all
n and, by Lemma A.5, Lpn → Lp on A∪L. Hence, the set Wa = {y ∈ A∪L : y  a} is not
closed in A∪L, contradicting B.4. The proof for BL

a is analogous. Q.E.D.

Theorem 7. Suppose that the preorder k(i) satisfies B.2–B.3–B.4. Then the benchmarking
procedure uniquely extends the assessment P̂k(i) on Li to a continuous assessment Pk(i) on
A ∪Li with Pk(i)(δ) = 0 and Pk(i)(Mi) = 1, that represents k(i). Moreover, the restriction of
Pk(i) to A is continuous and, if B.1 holds, also represents �i.

PROOF: We prove first that, for every a in A, there exists a value p such that a ∼ Lp.
Given a, the two open subsets W L

a and BL
a in [0�1] are disjoint; therefore, the set [0�1] \

[W L
a ∪ BL

a ] cannot be empty because otherwise the connected interval [0�1] would be
covered by the disjoint union of two open sets. We pick a value p from [0�1] \ [W L

a ∪BL
a ].

Since  is a total preorder, we have a∼Lp.
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Second, we show that such p is unique. Suppose [0�1] \ [W L
a ∪BL

a ] contains two values
p > q. By B.3, we would have a ∼ Lp � Lq ∼ a, contradicting the assumption that  is a
preorder.

Define the extension P on A ∪ L by P = P̂ on L and P(a) = p when a ∼ Lp on A.
We show that P represents  on A ∪L. Choose x � y from A ∪L: if P(y) ≥ P(x), then
B.3 would imply the contradiction y ∼ LP(y)  LP(x) ∼ x. (Some equivalences in the last
sentence hold as equalities if x or y are in L.)

Finally, we prove that P is continuous on A ∪L. It suffices to show that the sets Wα =
{x ∈ A ∪ L : P(x) < α} and Bα = {x ∈ A ∪ L : P(x) > α} are open for every α in [0�1].
Consider only Wα, because the argument for Bα is analogous. Clearly, W0 = ∅ is open. So
assume α in (0�1]. Then

Wα = {
x ∈ A∪L : P(x) < α

} = {
x ∈A∪L : P(x) < P(Lα)

} = {x ∈ A∪L : x≺Lα}
is an open set in A∪L by B.4. Q.E.D.

A.4. Consistency With the Ordinal Nash Solution

We consider a bargaining problem with ordinal preferences, assuming for simplicity
that there is an alternative a◦ �i δ for both i.

Let Lp(a) denote the elementary lottery pa⊕ (1 −p)δ between an alternative a in A
and the default outcome δ. Consider the set L(A|δ)= {pa⊕ (1 −p)δ : a ∈ A�p ∈ [0�1]}
of the elementary lotteries and note that L(A|δ) ⊆ L(A). Grant and Kajii (1995) as-
sumed that preferences are defined over L(A), but they observed that the ordinal Nash
outcome requires only that bargainers have preferences on L(A|δ). Our mild generaliza-
tion concerns this latter case.

We assume that each bargainer i has a preference relation �i over L(A|δ) such that:
R.1: a∼i L1(a) for any a;
R.2: qLp(Mi)⊕ (1 − q)δ ∼i Lpq(Mi) for any p, q;
R.3: the sets {p ∈ [0�1] : Lp(Mi)�i Lq(a)} and {p ∈ [0�1] : Lq(a)�i Lp(Mi)} are open

in the usual topology for any q and for any a.
The first property is standard and embeds A in L(A|δ). The other two restrict to L(A|δ)
the reduction of compounded lotteries and the continuity assumed by Grant and Kajii
(1995) for L(A).

The following key properties are mild relaxations of the DOM and WH assumptions in
Grant and Kajii (1995).

Dw—Stochastic dominance: For any a in A, if p> q, then Lp(a)�i Lq(a).

Hw—Homogeneity: If a∼i Lq(Mi), then Lp(a)∼i Lpq(Mi).

Our first lemma states the existence of a function Pi on L(A|δ) that represents i’s
preferences. After noting that R.3 assumes the content of Lemma A.6, R.1 implies B.2
and Dw implies B.3, its proof is analogous to the proof of Theorem 7.

LEMMA A.7: A preference relation �i satisfies R.1, R.3, and Dw if and only if there is a
function Pi that represents �i on L(A|δ) such that Pi(δ) = 0, Pi(Mi) = 1, and Pi is linear
w.r.t. ⊕ over Li.

The next lemma is the equivalent of Lemma 1 in Grant and Kajii (1995, p. 1243).
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LEMMA A.8: Under Hw, the function Pi is linear w.r.t. ⊕ over L(A|δ); that is, it has a DL
representation.

PROOF: For a in A and p in [0�1], we show that Pi(Lp(a))= pPi(a)+ (1 −p)Pi(δ) =
pPi(a). By the linearity of Pi over Li, a ∼i LPi(a)(Mi). By Hw, Lp(a) ∼i LpPi(a)(Mi).
Write P for Pi(Lp(a)) and consider the lottery PMi ⊕ (1 − P)δ in Li. By the linearity
of Pi over Li, Pi[PMi ⊕ (1 − P)δ] = P . Because Pi(·) represents �i on L(A|δ), this im-
plies LP(Mi)∼i Lp(a). Then transitivity implies LP(Mi)∼i LpPi(a)(Mi). Finally, Dw yields
Pi(Lp(a))= pPi(a). Q.E.D.

We are ready to prove the consistency between the Nash copula and the ordinal Nash
solution. This result mirrors Lemma 2 in Grant and Kajii (1995, p. 1243).

PROPOSITION A.9: Under Dw and Hw, an alternative a∗ is an ordinal Nash solution if and
only if it maximizes the Nash copula P1(a) · P2(a).

PROOF: Sufficiency. Let a∗ ∈ arg maxa∈A P1(a)P2(a); that is, P1(a
∗)P2(a

∗)≥ P1(a)P2(a)
for any a in A. In particular, note that P1(a

∗)P2(a
∗)≥ P1(a

◦)P2(a
◦) > P1(δ)P2(δ)= 0. Let

p be in (0�1] and a in A. Suppose Lp(a) �1 a
∗. Because P1 represents �1 by Lemma A.7

and has a DL representation on L(A|δ) by Lemma A.8, we have pP1(a) > P1(a
∗) > 0

and thus P1(a) > 0. Hence,

pP1(a)P2

(
a∗)>P1

(
a∗)P2

(
a∗) ≥ P1(a)P2(a)

implies pP2(a
∗) > P2(a), and thus Lp(a

∗)�2 a.
Necessity. Suppose that a∗ is an ordinal Nash solution but does not maximize the Nash

copula. Then there exists some a in A such that P1(a)P2(a) > P1(a
∗)P2(a

∗) > 0. We can
find p in (0�1) such that P2(a)

P2(a
∗) > p > P1(a

∗)
P1(a)

. Then pP1(a) > P1(a
∗) and P2(a) > pP2(a

∗)
imply Lp(a) �1 a

∗ and a �2 Lp(a
∗), contradicting the assumption that a∗ is an ordinal

Nash solution. Q.E.D.

A.5. The Nash Product With n ≥ 2 Bargainers

Consider a ranking  over all n-tuples of acceptance probabilities in [0�1]n. Let (p�p−i)
denote the n-tuple (p1� � � � �pi−1�p�pi+1� � � � �pn) with pi = p. We state the analogs of
the axioms for the case with two bargainers discussed in Section 3. Then we prove an
extension of Theorem 1 to n bargainers.

A.1—Regularity:  is a complete preorder, continuous and mixture independent.

A.2—Non-triviality: (1� � � � �1)� (0� � � � �0).

A.3—Disagreement indifference: For any i, j and any p−i, q−j , (0�p−i)∼ (0� q−j).

A.4—Consistency: For any i and any p ∈ [0�1], p(1�p−i)⊕ (1 −p)(0�p−i)∼ (p�p−i).

THEOREM 10: The ranking  on [0�1]n satisfies A.1-2-3-4 if and only if it is represented
by the product copula C(p1� � � � �pn)= p1 · · · · ·pn.
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PROOF: Necessity is obvious. We prove sufficiency. By A.1 and the Mixture Space
Theorem, there exists a unique (up to increasing affine transformations) function V :
[0�1]n → R that represents  and is linear with respect to mixtures. By A.2, V (1� � � � �1)−
V (0� � � � �0) > 0. Apply the appropriate increasing affine transformation and consider the
(unique) function C : [0�1]n → [0�1] defined by

C(p1� � � � �pn) = V (p1� � � � �pn)− V (0� � � � �0)
V (1� � � � �1)− V (0� � � � �0)

�

By A.3, we have C(0�p−i) = C(0� q−j) = C(0� � � � �0) = 0 for any i, j: we say that C is
grounded. Moreover, C(1� � � � �1)= 1.

Given a vector (p1� � � � �pn) ∈ [0�1]n, we have p1(1�p−1)⊕ (1 −p1)(0�p−1)∼ (p1�p−1)
by A.4. Moreover, C(p1� � � � �pn) = p1C(1�p−1) + (1 − p1)C(0�p−1) = p1C(1�p−1) be-
cause C is linear and grounded. Apply A.4 again to the second component of the n-tuple
(1�p−1)= (1�p2� � � � �pn)= (1�p2�p−12) and obtain p2(1�1�p−12)⊕(1−p2)(1�0�p−12)∼
(1�p2�p−12); this yields C(1�p2�p−12)= p2C(1�1�p−12)+(1−p2)C(1�0�p−12)= p2C(1�
1�p−12) because C is linear and grounded. Thus, C(p1� � � � �pn) = p1C(1�p−1) = p1p2 ×
C(1�1�p−12). Iteration leads to C(p1� � � � �pn) = p1 · · · · · pn · C(1� � � � �1) = p1 · · · · ·
pn. Q.E.D.
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