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Abstract This paper is devoted to show duality in the estimation of Markov Switch-
ing (MS) GARCH processes. It is well-known that MS GARCH models suffer of
path dependence which makes the estimation step unfeasible with usual Maximum
Likelihood procedure. However, by rewriting the model in a suitable state space
representation, we are able to give a unique framework to reconcile the estimation
obtained by filtering procedure with that coming from some auxiliary models pro-
posed in the literature. Estimation on short-term interest rates shows the feasibility
of the proposed approach.

1 Introduction

Time varying volatility is one of the main property of many financial time series.
Moreover, describing and, where possible, forecasting volatility is a key aspect in
financial economics and econometrics. A popular class of models which describe
time-varying volatility are Generalized Autoregressive Conditional Heteroschedas-
ticity (GARCH) models. GARCH models ([8], [22], [21]) describe the variance as
a linear function of the squares of past observations, so that one type of shock alone
drives both the series itself and its volatility. One potential source of misspecification
derives from the fact that structural forms of conditional means and variances are
relatively inflexible and held fixed throughout the sample period. In this sense, they
are called single-regime models since a single structure for the conditional mean and
variance is assumed.
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To allow more flexibility, the assumption of a single regime could be relaxed in
favour of a regime-switching model. The coefficients of this model are different in
each regime to account for the possibility that the economic mechanism generating
the financial series undergoes a finite number of changes over the sample period.
These coefficients are unknown and must be estimated, and, although the regimes
are never observed, probabilistic statements can be made about the relative likeli-
hood of their occurrence, conditional on an information set. A well-known prob-
lem to face when dealing with the estimation of Markov Switching (MS) GARCH
models is the path dependence. [9] and [16] have argued that MS GARCH models
are essentially intractable and impossible to estimate since the conditional variance
depends on the entire path history of the data. That is, the distribution at time t, con-
ditional on the current state and on available information, is directly dependent on
the current state but also indirectly dependent on all past states due to the path de-
pendence inherent in MS GARCH models. This is because the conditional variance
at time t depends upon the conditional variance at time t− 1, which depends upon
the regime at time t − 1 and on the conditional variance at time t − 2, and so on.
Hence, the conditional variance at time t depends on the entire sequence of regimes
up to time t.

Some methods are proposed in the literature to overcome the problem of path
dependence present in MS GARCH. The trick is mainly found in adopting differ-
ent specifications of the original MS GARCH model. Some authors propose Quasi
Maximum Likelihood (QML) procedures of a model which allows similar effects of
the original one. Models which elude in this way the path dependence problem are
proposed by [14], [10] and [18], among others, and are known as collapsing proce-
dures. [14] proposes a model in which path dependence is removed by aggregating
the conditional variances from the regimes at each step. This aggregated conditional
variance (conditional on available information, but aggregated over the regimes) is
then all that is required to compute the conditional variance at the next step. The
same starting idea is used in [10], with a slightly different approach. The author
extends the information set including also current information on the considered se-
ries. Furthermore, [18] puts further this idea. Particularly, when integrating out the
unobserved regimes, all the available information is used, whereas [14] uses only
part of it. Another method to deal with MS GARCH models has been proposed by
[15] for which the variance is disaggregated in independent processes; this is a sim-
ple generalization of the GARCH process to a multi-regime setting. Furthermore,
Bayesian approaches based on Markov Chain Monte Carlo Gibbs technique for es-
timating MS GARCH can be found in [3], [4], [17] or [5]. Other works based on
both Monte Carlo methods combined with expectation-maximization algorithm and
importance sampling to evaluate Maximum Likelihood (ML) estimators are con-
ducted by [1], [6], and [7]. Finally, a recent paper by [2] proposes estimation of MS
GARCH models with a deterministic particle filter.

The contribution of our paper is to give a unique framework to reconcile MS
GARCH estimation obtained by the above auxiliary models from one side, and a
filtering algorithm from the other. This relationship provides the missing link to
justify the validity of approximations in estimating MS GARCH models. The use
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of filtering is a flexible approach and it allows the estimation of a broad class of
models that can be put in a switching state space form. However, to make the filter
operable, at each iteration we need to collapse M2 posteriors (where M is the num-
ber of switching regimes) in M of it, employing an approximation as suggested by
[19]. Then, QML estimation of the model recovers the unknown parameters. Our
algorithm is readily programmable and with a very limited computational cost. An
empirical application shows the feasibility of this approach.

The paper is structured as follows. Section 2 introduces the MS GARCH model
of interest and reviews the main auxiliary models proposed in the literature to over-
pass the path dependence problem. In Section 3 we present a filtering algorithm
for MS GARCH models which serves to prove our duality results. In Section 4 we
compare estimation of the parameters using different approximations in the pro-
posed filters for financial data. Section 5 concludes. Finally, derivations of some
formulae are given in the Appendix.

2 Markov Switching GARCH and its auxiliary models

Let εt be the observed univariate time series variable (as for instance, returns on
a financial asset) centered on its mean. The univariate MS GARCH(1,1) model is
defined as {

εt = σt(Ψt−1,st)ut

σ2
t (Ψt−1,st) = ωst +αst ε

2
t−1 +βst σ

2
t−1(Ψt−2,st−1)

(1)

where ut ∼ IID(0,1), ωst > 0, αst ,βst ≥ 0. The state st is a discrete, unobserved vari-
able following a first order Markov chain with M regimes and (time invariant) transi-
tion probabilities πi j = p(st = j|st−1 = i), where ∑

M
j=1 πi j = 1, for every i= 1, . . . ,M.

We assume that (st) is independent of (ut). For necessary and sufficient stationar-
ity conditions related with MS GARCH(p,q) models, we refer to [12], Theorems 1
and 2. Consistency of maximum likelihood estimates, L2 structure and inference for
univariate MS GARCH models have been investigated by [11], [12] and [3]. Here
the common approach to eliminate path dependence is to replace the lagged condi-
tional variance derived from the original MS GARCH model with a proxy. Various
authors have proposed different auxiliary models which differ only by the content
of the information used to define such a proxy. In general, different auxiliary models
can be obtained by approximating the conditional variance of process in (1) with

σ
2
t (Ψt−1,st) = ωst +αst

(SP)
ε

2
t−1 +βst

(SP)
σ

2
t−1. (2)

In the literature there are different specifications (in short, SP) of (SP)ε2
t−1 and

(SP)σ2
t−1 which in turn define different approximations of the original process. These

collapsing procedures are illustrated below. First, we introduce some concepts and
notations: p(st = j|Ψt−1) = p j,t|t−1 are prediction probabilities; p(st = j|Ψt) = p j,t|t
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are filtered probabilities and from these we can compute augmented filtered proba-
bilities as

p(st−1 = i|st = j,Ψt−1) =
πi j pi,t−1|t−1

p j,t|t−1
= pi,t−1|t,t−1.

Here Ψt denotes the information set of observations available up to time t−1. Note
that the filtering algorithm computes pt|t−1,t = p(st |st−1,Ψt) in terms of pt|t−1,t−1
and the conditional density of εt which depends on the current regime st and all past
regimes, i.e, f (εt |s1, . . . ,st ,Ψt−1). Computation details are shown in Appendix A1.

2a. Gray’s Model. The first attempt to eliminate the path dependence is proposed
by [14]. He approximates the original model by replacing the lagged conditional
variance σ2

t−1 with a proxy (G)σ2
t−1 as follows:

(G)
σ

2
t−1 = E[σ2

t−1(Ψt−2,st−1)|Ψt−2]

=
M

∑
i=1

σ
2
t−1(Ψt−2,st−1 = i) p(st−1 = i|Ψt−2) =

M

∑
i=1

(G)
σ

2
i,t−1|t−2 pi,t−1|t−2

(3)
where, according to the model, (G)σ2

t−1|t−2 turns out to be a function of Ψt−2 and
st−1 = i. Note that the model originally proposed by Gray is not centered as in our
case, but this can always be assumed without loss of generality.

2b. Dueker’s Model. In the previous approximation, the information coming from
εt−1 is not used. [10] proposes to change the conditioning scheme including εt−1
while assuming that σ2

t−1 is a function of Ψt−2 and st−2. Hence

(D)
σ

2
t−1 = E[σ2

t−1(Ψt−2,st−2)|Ψt−1]

=
M

∑
k=1

σ
2
t−1(Ψt−2,st−2 = k) p(st−2 = k|Ψt−1) =

M

∑
k=1

(D)
σ

2
k,t−1|t−2 pk,t−2|t−1

(4)
so that (D)σ2

t−1|t−2 is a function of Ψt−2 and st−2 = k, and pk,t−2|t−1 is one-period
ahead smoothed probability which, shifting one period, can be computed as

pi,t−1|t = p(st−1 = i|Ψt) = pi,t−1|t−1

M

∑
j=1

πi j p j,t|t
p j,t|t−1

.

2c. Simplified Klaassen’s Model. The approximation proposed by [18] is similar to
that from [10] but it assumes that σ2

t−1 is a function of Ψt−2 and st−1. So it results
computationally simpler. In fact, we have

(SK)
σ

2
t−1 = E[σ2

t−1(Ψt−2,st−1)|Ψt−1]

=
M

∑
i=1

σ
2
t−1(Ψt−2,st−1 = i) p(st−1 = i|Ψt−1) =

M

∑
i=1

(SK)
σ

2
i,t−1|t−2 pi,t−1|t−1.

(5)
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Then from the considered model, (SK)σ2
t−1|t−2 results to be a function of Ψt−2 and

st−1 = i.

2d. Klaassen’s Model. Finally, [18] generalizes the previous auxiliary model includ-
ing in the conditioning set the information also coming from the current regime st .
So σ2

t−1 turns out to be approximated as

(K)
σ

2
t−1 = E[σ2

t−1(Ψt−2,st−1)|Ψt−1,st = j]

=
M

∑
i=1

σ
2
t−1(Ψt−2,st−1 = i) p(st−1 = i|st = j,Ψt−1) =

M

∑
i=1

(K)
σ

2
i,t−1|t−2 pi,t−1|t,t−1

(6)
where pi,t−1|t,t−1 is the augmented filtered probability as defined above. Conse-
quently, here (K)σ2

t−1|t−2 becomes a function of Ψt−2 and st−1 = i.

3 Filtering and Duality

In order to develop a theory of linear filtering for MS GARCH models, we need to
link the model with some state space representations. Here we propose a state space
representation and write the associated filter. Consider the model as in (1). For every
st = j and st−1 = i, let us define ε2

t = σ2
j,t + vt , where σ2

j,t = σ2
t (Ψt−1,st = j) and

vt = σ2
j,t(u

2
t −1). Then (vt) is zero mean serially uncorrelated. However, (vt) is not

independent over time since it does not have a constant variance in time (i.e., it is
not a homoskedastic process). Now we have

ε
2
t = σ

2
j,t + vt = ω j +α jε

2
t−1 +β jσ

2
i,t−1 + vt = ω j +α jε

2
t−1 +β j(ε

2
t−1− vt−1)+ vt

where ω j, α j and β j are the elements obtained by replacing st by j in ωst , αst and
βst , respectively. So we can write a new representation of model (1) as

(1−δ jL)ε2
t = ω j +(1−β jL)vt (7)

where δ j = α j +β j for j = 1, . . . ,M. Now, setting Bt = (ε2
t vt)

′
, we get

ε
2
t = ω j +(δ j −β j)

(
ε2

t−1
vt−1

)
+ vt = ω j +(δ j −β j)Bt−1 + vt

for every j = 1, . . . ,M. In order to simplify notations, let us define

yt = ε
2
t , H = (1 0), Fst =

(
δst −βst

0 0

)
, G =

(
1
1

)
, µst =

(
ωst

0

)
.

Then, for every st , we obtain the following switching state space representation:
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yt = HBt

Bt = µst +Fst Bt−1 +Gvt
(8)

Representation (8) is similar but different to the switching dynamic model of [19]
and [20]. The state vector Bt is called the state (of the system) at time t; in line with
[13], p.576, it can be partially unobservable as it is in this case. In fact, it includes
the squared observed returns. Then, conditional on st−1 = i and st = j, we obtain
the following filter:

Prediction
B(i, j)

t|t−1 = µ j +FjBi
t−1|t−1

P(i, j)
t|t−1 = FjPi

t−1|t−1F
′
j +GG

′
σ

2
v j

η
(i, j)
t|t−1 = yt − y(i, j)t|t−1 = yt −HB(i, j)

t−1|t−1

f (i, j)t|t−1 = HP(i, j)
t−1|t−1H

′

Updating
B(i, j)

t|t = B(i, j)
t|t−1 +K(i, j)

t η
(i, j)
t|t−1

P(i, j)
t|t = P(i, j)

t|t−1−K(i, j)
t HP(i, j)

t|t−1

where σ2
v j = var(vt |Ψt−1,st = j) and K(i, j)

t = P(i, j)
t|t−1H

′
[ f (i, j)t|t−1]

−1 is the Kalman gain

Initial Conditions

B j
0|0 = (I2−Fj)

−1
µ j =

(
(1−δ j)

−1ω j
0

)

vec(P j
0|0) = σ

2
v j(I4−Fj⊗Fj)

−1 vec(GG
′
) = σ

2
v j


(1−δ 2

j )
−1(1−2δ jβ j +β 2

j )

1
1
1


p(s0 = i) = πi(steady-state probability).

Explicit derivation of the above filtering procedure is detailed in Appendix A2. Here
Yt−1 = {yt−1, . . . ,y1} is the information set up to time t−1, Bi

t|t−1 =E(Bt |Yt−1,st−1 =

i) is an inference on Bt based on Yt−1 given st−1 = i; B(i, j)
t|t−1 = E(Bt |Yt−1,st =

j,st−1 = i) is an inference on Bt based on Yt−1, given st = j and st−1 = i; Pi
t−1|t−1 is

the mean squared error matrix of Bi
t−1|t−1 conditional on st−1 = i; P(i, j)

t|t−1 is the mean

squared error matrix of B(i, j)
t|t−1 conditional on st = j and st−1 = i; η

(i, j)
t|t−1 is the con-

ditional forecast error of yt based on information up to time t−1, given st = j and
st−1 = i; and f (i, j)t|t−1 is the conditional variance of forecast error η

(i, j)
t|t−1. Each iteration

of the Kalman Filter produces an M-fold increase in the number of cases to con-
sider. It is necessary to introduce some approximations to make the filter operable.
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The key is to collapse the (M×M) posteriors B(i, j)
t|t and P(i, j)

t|t into M posteriors B j
t|t

and P j
t|t . Hence, we mimic the approximation proposed by [20] and [19] applied to

this state space representation (see Appendix A3) . Let B j
t|t be the expectation based

not only on Yt but also conditional on the random variable st taking on the value j.
Then the approximation results to be

B j
t|t =

M

∑
i=1

pi,t−1|t,t B(i, j)
t|t . (9)

To justify the use of this approximation, note that the Kalman filter would give the
conditional expectation if, conditional on Ψt−1 and on st = j, st−1 = i, the distri-
bution of Bt is normal. However, the distribution of Bt , conditional on Ψt−1, st = j
and st−1 = i, is a mixture of normal for t > 2. Hence, Kim proposes an approxima-
tion in which the exponential Gaussian mixture is collapsed down to M Gaussians
at each step. This is a natural proxy for such a process. Having such a convenient
switching state space form associated to the initial MS GARCH, gives us the possi-
bility to reconcile in a unique framework the estimation through linear filter or via
auxiliary models. Duality exists when we modify the approximation described in
(9) with different conditioning sets. The existence of this relationship between the
approximated filter and collapsing procedures gives a theoretical ground in using
the latter approaches. In fact, these approximated models of the MS GARCH were
historically given based only on intuitive arguments. Now, from the measurement
equation in (8) and using (9), we have

y j
t|t−1 = E(yt |st = j,Yt−1) = HE(Bt |st = j,Yt−1)

= H
M

∑
i=1

pi,t−1|t,t−1 B(i, j)
t|t−1 =

M

∑
i=1

pi,t−1|t,t−1 y(i, j)t|t−1

and
y j

t−1|t−1 = E(yt−1|st = j,Yt−1) = E(σ2
t−1|Yt−1,st = j)

= σ
2
j,t−1|t−1 =

M

∑
i=1

pi,t−1|t,t−1 σ
2
i j,t−1|t−2.

In particular, if the conditional variance is not a function of st = j , we get

yt−1|t−1 = E(ε2
t−1|Yt−1) = E(σ2

t−1|Yt−1)

= σ
2
t−1|t−1 =

M

∑
i=1

pi,t−1|t,t−1 σ
2
i,t−1|t−2

(10)

which coincides with (K)σ2
t−1 in Formula (6). Here (K)σ2

t−1 is only a function of
st−1 = i. Thus the approximation of the filter is dual to the one used as auxiliary
model in [18]. This also means that if we change the conditioning scheme in (10),
we obtain other auxiliary models. In fact, if we assume probabilities to be only
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function of st−1 = i and if still σ2
t−1 is a function of st−1 , we have the simplified

Klaassen model. This gives the expression in (5), in fact:

(SK)
σ

2
t−1 =

M

∑
i=1

(SK)
σ

2
i,t−1|t−2 pi,t−1|t−1 .

Moreover, if we assume instead that σ2
t−1 is a function of st−2 = k and also consid-

ering prediction probabilities of st−2 = k, we get the auxiliary model proposed by
[10]:

(D)
σ

2
t−1 =

M

∑
i=1

(D)
σ

2
k,t−1|t−2 pk,t−2|t−1

which is Equation (4). Finally, if we consider the conditioning set up to Yt−2 rather
than Yt−1, we obtain

(G)
σ

2
t−1 =

M

∑
i=1

(G)
σ

2
i,t−1|t−2 pi,t−1|t−2

which is Equation (3) and corresponds to Gray’s model. Hence, if we slightly change
the conditioning set, we can obtain different specifications of the auxiliary models,
moving from the state space form in (8). The usefulness of linking the filter to the
four approximations is not only theoretical but also practical, providing a relatively
easy method to conduct estimation. In particular, we have showed a direct connec-
tion between the filter and Klaassen collapsing procedure. However, an exercise to
empirically prove the accuracy of the approximations can be found in [23], where
it has been empirically estabilished that Klaassen model is the most effective one in
generating consistent estimates for the path-dependent MS GARCH models.

4 An application on US Treasury Bill rates

We consider one-month US Treasury bill rates obtained from FRED for the pe-
riod January 1970 trought April 1994 as in [14]. Figure 1 plots the data in level
and in first difference. It is immediate the dramatic increase in interest rates that
occurred during the Fed experiment and the OPEC oil crisis, which leads us to con-
sider a 2-regime model. Then we fit a 2-state MS GARCH model as in (1) with
both changes in regimes in the intercept term and in the persistence parameters of
the volatility process. The values of the estimation are reported in Table 1 where
estimated values along with robust standard errors are reported. In particular, the
model estimated by filtering mimic with Kim and Nelson’s (KN) approximation is
labelled with Approximation 1 and it is dual to Klaassen (K). Note that Approx-
imation 2 reproduces the auxiliary model of Gray (G) and values are in fact very
close (see [14], Table 3, p.44). Finally, Approximation 3 and 4 are respectively dual
to Dueker (D) and the simplified Klaassen (SK) models. The high-volatility regime
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is characterized by more sentivity to recent shocks (α̂2 > α̂1) and less persistence
(β̂2 < β̂1) than the low-volatility regime. Within each regime, the GARCH processes
are stationary (α̂i + β̂i < 1) and the parameter estimates suggest that the regimes are
very persistent, so the source of volatility persistence will be important. In general,
the four approximations are not very dissimilar to the others and the filtering algo-
rithm has a very limited computational cost. Figure 2 plots smoothed probabilities
Pr(st = 1|ΨT ) which are of interest to determine if and when the regime switch-
ing occurs. The plot of smoothed probabilities manages to identify crises periods
that affected market indices. In particular, we could recognize three periods of high-
variance. The first (1973-1975) corresponds to the OPEC oil crisis. The second is
shorter and corresponds to the Fed experiment (1979-1983). The third is a short
period around 1987, after the stock market crash.

1970 1975 1980 1985 1990 1995
2

4

6

8

10

12

14

16

18

date 1970 1975 1980 1985 1990 1995
−5

−4

−3

−2

−1

0

1

2

3

Fig. 1 The left panel contains a time series plot of one-month US Treasury bill rates (in annualized
percentage term). The sample period is from January 1970 to April 1994; a total of 1,267 observa-
tions. First differences of the series are shown in the right panel. The data are obtained from FRED
database.

Approximations p̂ q̂ β̂1 β̂2 α̂1 α̂2 ω̂1 ω̂2
Approximation 1 0.8467 0.9982 0.4113 0.0085 0.0184 0.4967 0.023 0.068
(KN=K) (0.1402) (0.0334) (0.0407) (0.0927) (0.0338) (0.0331) (0.2626) (0.0908)
Approximation 2 0.8018 0.9157 0.391 0.0062 0.0203 0.4801 0.045 0.0713
(=G) (0.1146) (0.0157) (0.1624) (0.2609) (0.0640) (0.1089) (0.3591) (0.2853)
Approximation 3 0.8467 0.9983 0.4112 0.0086 0.0184 0.4967 0.023 0.068
(=D) (0.1406) (0.0336) (0.0420) (0.0923) (0.0342) (0.0337) (0.2651) (0.0799)
Approximation 4 0.8119 0.9160 0.397 0.0064 0.0212 0.4831 0.039 0.0692
(=SK) (0.1140) (0.0157) (0.1629) (0.2618) (0.0642) (0.1092) (0.3603 ) (0.2867)

Table 1 Estimation of the parameters for 2-state MS GARCH model as in (1). Robust standard
errors in parenthesis. p̂ and q̂ are the elements on the main diagonal of the transition probability
matrix. The observables are one-month US Treasury bill rates (in annualized percentage term).
The sample period is from January 1970 to April 1994; a total of 1,267 observations. The data are
obtained from FRED database.
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Fig. 2 The panel shows MS GARCH smoothed probabilities of being in the high-volatility regime.
Parameter estimates are based on a dataset of one-month Treasury Bill rates, reported in annual-
ized percentage terms. The sample period is from January 1970 to April 1994; a total of 1,267
observations. The data are obtained from FRED database.

5 Conclusions

We deal with estimation of Markov Switching GARCH models. It is well-known
that these models suffer of path-dependence, i.e., dependence of the entire path his-
tory of the data which makes Maximum Likelihood procedures unfeasible to apply.
Therefore, we introduce filtering procedures based on approximated algorithms for
switching state space representations. We show duality results in the estimation by
approximated filtering method and auxiliary models proposed in the literature. Our
filtering algorithm is readily programmable and with a very limited computational
cost. An application on financial data shows the feasibility of the proposed approach.
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Appendix
A1. We show that pt|t−1,t = p(st |st−1,Ψt) can be espressed in terms of pt|t−1,t−1 and
the conditional density of εt which depends on the current regime st and the past
regimes, i.e, f (εt |s1, . . . ,st ,Ψt−1). In fact,

pt|t−1,t = p(st |st−1,Ψt) = p(st |s1, . . . ,st−1,Ψt) = p(st |s1, . . . ,st−1,εt ,Ψt−1)

=
f (εt |s1, . . . ,st ,Ψt−1)p(st |s1, . . . ,st−1,Ψt−1)

f (εt |s1, . . . ,st−1,Ψt−1)

=
f (εt |s1, . . . ,st ,Ψt−1)p(st |st−1,Ψt−1)

f (εt |s1, . . . ,st−1,Ψt−1)
=

f (εt |s1, . . . ,st ,Ψt−1)pt|t−1,t−1

f (εt |s1, . . . ,st−1,Ψt−1)

where f (εt |s1, . . . ,st−1,Ψt−1) = ∑
M
st=1 f (εt |s1, . . . ,st ,Ψt−1)p(st |st−1,Ψt−1)

= ∑
M
st=1 f (εt |s1, . . . ,st ,Ψt−1) pt|t−1,t−1.

A2. We present explicit derivation of the filter for MS GARCH as given in Section
3. The prediction step is obtained as follows

B(i, j)
t|t−1 = E(Bt |Ψt−1,st = j,st−1 = i) = E(µst +Fst Bt−1 +Gvt |Ψt−1,st = j,st−1 = i)

= µ j +FjE(Bt−1|Ψt−1,st = j,st−1 = i) = µ j +FjBi
t−1|t−1.
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In particular, we have Bt −B(i, j)
t|t−1|st= j = Fj(Bt−1−Bi

t−1|t−1)+Gvt . Then

P(i, j)
t|t−1 = E[(Bt −B(i, j)

t|t−1)(Bt −B(i, j)
t|t−1)

′ |Ψt−1,st = j,st−1 = i]

= E[(Fj(Bt−1−Bi
t−1|t−1)+Gvt)(Fj(Bt−1−Bi

t−1|t−1)+Gvt)
′ |Ψt−1,st = j,st−1 = i]

= FjE[(Bt−1−Bi
t−1|t−1)(Bt−1−Bi

t−1|t−1)
′ |Ψt−1,st−1 = i]F

′
j +GE(v2

t |st = j)G
′

= FjPi
t−1|t−1F

′
j +GG

′
σ

2
v j

and

η
(i, j)
t|t−1 = yt − y(i, j)t|t−1 = yt −E(yt |Ψt−1,st = j,st−1 = i) = yt −E(HBt |Ψt−1,st = j,st−1 = i)

= yt −HE(Bt |Ψt−1,st = j,st−1 = i) = yt −HB(i, j)
t|t−1.

Hence, η
(i, j)
t|t−1|Ψt−1,st= j,st−1=i = H(Bt −B(i, j)

t|t−1)+ vt and

f (i, j)t|t−1 = E[(η(i, j)
t|t−1)

2|Ψt−1,st = j,st−1 = i)]

= E[(H(Bt −B(i, j)
t|t−1))(H(Bt −B(i, j)

t|t−1))
′ |Ψt−1,st = j,st−1 = i]

= HE[(Bt −B(i, j)
t|t−1)(Bt −B(i, j)

t|t−1)
′ |Ψt−1,st = j,st−1 = i]H

′
= HP(i, j)

t|t−1H
′
.

Furthermore, the updating step is derived as follows. Define Z1 = Bt and Z2 =

η
(i, j)
t|t−1 = yt−y(i, j)t|t−1. Then µ1 =E[Z1|Ψt−1,st = j,st−1 = i] =B(i, j)

t|t−1, µ2 =E[Z2|Ψt−1,st =

j,st−1 = i] = 0, Σ11 = P(i, j)
t|t−1 and Σ22 = f (i, j)t|t−1. We have

Σ12 = cov(Z1,Z2) = E[(Bt −B(i, j)
t|t−1)η

(i, j)
t|t−1|Ψt−1,st = j,st−1 = i]

= E[(Bt −B(i, j)
t|t−1)(Bt −B(i, j)

t|t−1)
′
H
′ |Ψt−1,st = j,st−1 = i] = P(i, j)

t|t−1H
′
= Σ

′
21.

Thus Z1|Z2,Ψt−1,st= j,st−1=i is given by µ1|2 = µ1 +Σ12Σ
−1
22 (Z2− µ2), that is, B(i, j)

t|t =

B(i, j)
t|t−1 +P(i, j)

t|t−1H
′
[ f (i, j)t|t−1]

−1η
(i, j)
t|t−1. Further, we have Σ11|2 = Σ11−Σ12Σ

−1
22 Σ21, hence

P(i, j)
t|t = P(i, j)

t|t−1−K(i, j)
t HP(i, j)

t|t−1, where K(i, j)
t = P(i, j)

t|t−1H
′
[ f (i, j)t|t−1]

−1 is the Kalman gain.

A3. Here we derive the approximation on the line of [20] applied to model in (8),
which is Equation (9):

B j
t|t =

∑
M
i=1 B(i, j)

t|t p(st−1 = i,st = j|Yt)

p(st = j|Yt)
=

M

∑
i=1

p(st−1 = i,st = j|Yt)

p(st = j|Yt)
B(i, j)

t|t

=
M

∑
i=1

p(st−1 = i|st = j,Yt) B(i, j)
t|t =

M

∑
i=1

pi,t−1|t,t B(i, j)
t|t .


