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A B S T R A C T

Considering several real case studies, moisture distribution due to rising damp in Venetian brick masonries is
discussed and empirical models are developed. Moisture content and soluble salt data of 25 historical buildings
in Venice are analysed. Data are scrutinized using statistical methods, obtaining contour plots and estimating the
validity of linear and non-linear models. The models confirm that masonries are usually soaked with water till
120–150 cm over sea level, while the evaporation zone ranges in height from 200 cm to 350 cm. In the per-
pendicular section, moisture distribution depends on several contingent factors such as, among them, the
proximity and the exposition of the external façades to the water action.

1. Introduction

Fresh or sea water rising damp in historical buildings is a well-
known problem. Soaked masonries often show serious conservation
issues. The phenomenon and the resulting decay have been extensively
studied [1–4], as well as possible remediation methods [5,6], both from
the theoretical point of view [7–11], and on several real case studies all
over the world [2,12–17].

To determine quantitatively the rising damp phenomena in build-
ings and the severity of the related decays, several methods - based on
samples collected drilling the masonry - have often been used: gravi-
metric determination of percentage moisture content (MC%) [18];
evaluation of soluble salts via ion chromatography; determination of
hygroscopic moisture content (HMC%) [3,19]. Such invasive sampling,
even if is still employed with successful results, is quite impacting. For
this reason, it should be limited to the most in the case of ancient and
historical masonries. Next to these methods, non-destructive moisture
analyses are also frequently used: IR thermography, resistive methods,
dielectric methods, microwave instruments [4,14,20,21]. Despite their
sustainability, the non-destructive techniques present some dis-
advantages such as: the semi-quantitative qualitative nature of the re-
sults; the relative representativeness of the obtained data (often related
only to the surface); the need of calibration with data coming from
destructive sampling; and the necessity of an adequate data processing
[22–24].

In literature, most of the researches focus on single case studies or
on mock up masonries. The analysis of the rising damp phenomena in
large zones, such as an entire town in a maritime location, is still

limited [25]. A large perspective on rising damp in ancient masonries is
crucial for the development of local strategic plans and maintenance
policies to ensure the preservation of the built heritage in historical
coastal/riverine cities.

Venice is the emblematic case of a historical maritime city affected
by rising damp [26]. A large percentage of historical Venetian buildings
lives in constant contact with lagoon and canals water. This cause-
specific and well-known degradation patterns. Quantitative data re-
garding moisture content in selected Venetian buildings were collected
over time, but an overall assessment of the rising damp phenomena and
their consequences at a city level is still missing. Rising damp issues in
Venice are quite problematic and difficult to synthetize: water affects
different structures, heritage building constructed in different times,
various building material, several construction methods, and above all
masonries are soaked in very large extensions [27,28].

In this paper, we propose empirical models describing the rising
damp process in Venice. Our data are based on literature and grey lit-
erature data on quantitative moisture content (MC%) and soluble salt
contents (SS%).

The study considers 65 masonries built with full fired bricks and
hydraulic lime based mortar joints. Buildings distributions cover the
whole city centre. The paper considers data related to a timeframe of 30
years of restoration and research, presenting moistures distribution
profiles. An empirical model for the estimation of the general extent of
rising damp is proposed. Data mining methodologies are applied with
the aim of:

i) highlighting the presence of common trends for the moisture
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distribution in Venice.
ii) understanding the rising damp key factors among the data col-

lected.
iii) proposing a model to understand moisture patterns in Venetian

buildings.

The results might be extended for similar analysis in other historical
coastal cities.

1.1. Rising damp and Venetian buildings: a literature review

Rising damp phenomena in porous materials have been diffusely
studied and described from the point of views of the physics laws, as for
example the rise of water within single capillary tubes (Jurin Law), or
in more complicated structures [1,7,12,29]. In masonries, the max-
imum height reached by rising damp and the necessary time to reach
the steady state vary according to several factors, such as mortar joint
types, the presence of renders, the surrounding environment. According
to L'Anson et al., 1986 [7] the maximum height of the moisture front -
given by the balance point between the water coming from rising damp
and the water evaporated from the wall - is reached in different span of
times accordingly the relative humidity (RH). The balance point in
rendered walls is at 1.3m and it is reached in around 8 years with a
80% relative humidity (RH), and in 18 years with a 90% RH environ-
ment.

The exceptional flooding in November 1966, with tidal water sub-
merging the 80–90% of the city, raised the interest on rising damp
phenomena in Venice. Since then, the Superintendence of Venice, the
UNESCO committees, the municipality of Venice, Ca’ Foscari
University, IUAV University, CORILA (Consortium for coordination of
research activities concerning the Venice lagoon system) and several
private committees have always had an active role in assessing rising
damp and in looking for reliable remediation methods [30–38]. Nu-
merous papers, dossiers, and even well-documented University dis-
sertations have been mainly focused on the relation between moisture
and soluble salts contents. According to Italian recommendations
(Normal 40/93) [18], usually - in these works - the moisture content
was gravimetrically determined on samples collected by drilling the
masonries at different heights and depths. Limited complete reports
discuss also data by considering the building history and its position on
the city fabric (ie.g. geographical orientation of the masonry, distance
from the canals etc.). Only in few cases, also, the composition of bricks
and mortar joints and their porosity were evaluated. The results of these
studies highlight the severe condition of the Venetian structures. A
moisture content of over 5% has been reported at heights of 2–3m from
the floor level (in brick walls with an average porosity around 20%).
Numbers report that the moisture front in Venice reaches in average the
height of 1.5–3m [28,34,39].

Available literature focuses commonly on a single Venetian
building, however a first attempt to draw a general empirical model for
the rising damp in Venice was discussed in Biscontin et al. [39] (Fig. 1).
This work considered and discussed together the moisture and soluble
salt data distributions from two representative historical structures: the
Bucintoro northern wall in the Arsenal and the Narthex wall in the Saint
Mark's Basilica. In the model proposed by Biscontin (Fig. 1) [39] (re-
called in 20012 by Hall and Hoff [1]), moisture tends to decrease ac-
cording to the height and three different moisture areas have been
identified. At low height, there is a completely saturated area, followed
by an evaporation area characterized by a rapid decrease of moisture
(intermediate area), and, finally, at higher heights, an area in balance
with the environmental humidity. The evaporation area is commonly as-
sociated with the maximum soluble salts contents.

Further researches focus on the moisture, relating it to the wall
depth of the masonry. It has pointed out a profile that shows a diagonal
rising damp curve [1]: a higher MC% is registered in the internal part
and a lower MC% on the external. These evidences were found since

evaporation occurs on the surfaces. Theoretically, salts with different
solubility tend to precipitate at different heights according to their so-
lubility. However, in real cases, the salts' precipitation process is
strongly influenced by the salts' mixture and by the environmental
conditions. The expected theoretical ion distribution is only partially
observed (e.g. nitrates are often observed at higher heights in com-
parison to chlorides or sulphates) [40].

In relation to the rising damp phenomena, the aggressive environ-
mental conditions of the Venetian lagoon have been exacerbated by the
subsidence of the city and by the eustatism of the sea level [41]. Sub-
sidence and eustatism worsen in the middle of the 21st century. and
nowadays they contribute to the recurring high tide episodes (“acqua
alta”) and the consequent flooding of larger areas of the city. In relation
to these changes, the development of general models - based on several
case studies in Venice – is mandatory for future comparisons with
changing scenarios. The aim is expanding the current knowledge on the
fragility of the historical buildings and promoting a sustainable con-
servation policy.

2. Experimental part

2.1. Data collection

In this research, 25 case studies have been collected and analysed.
The main characteristics of the buildings detected in each case study are
summarised in Table 1, and their location in Venice is presented in
Fig. 2. The buildings were selected accordingly the available informa-
tion on rising damp. Available quantitative data of moisture and salt
contents were collected from reports, thesis, papers, and books
[32,39,40,42–54]. Only masonries where the rising damp has already
reached a balance point, and only masonries manufactured with full
bricks and traditional hydraulic lime based mortar joints (without ce-
ment), were considered. Buildings, in which methods against rising
damp were applied, have been discharged from this study.

In all the selected cases a consistent procedure, based on the re-
commendation Normal 40/93 [18], was followed for the determination
of the moisture content. Gravimetric determination of moisture was
carried out on powders samples obtained drilling the masonry on a
vertical line at different height and depth. The moisture content per-
centage is given by (eq. (1)).

= − ∗MC% ((Wi Wd)/Wd) 100 (1)

where Wi= initial weight (g); Wd=dried weight (g).
The possible procedure discrepancies are related to the height and

depth of the sampling, which is strictly dictated by the specific on-site
situations, consequently the researchers had to make specific choices
case by case.

The soluble salt contents data were reported only in few studies.
Their determination has been done according to different procedures,
either by conductivity measurements on the collected powders [55], or
by Ion Chromatography of few (chlorides and sodium) or more ion
species (chlorides, sulphates, nitrates, sodium, calcium, magnesium).
The relative low availability of consistent data obliges us to consider
soluble salt distribution only in relation to the single case studies.

In some literature studies the location (e.g. over a canal, internal
wall, etc.), the orientation of the wall (e.g. northern, southern, etc.),
and the exposition to the atmospheric agents were indicated as dis-
criminating factors. In this paper, two major locations (L in Table .1)
are considered in relation to the proximity of adjacent the water body:
1= nearby canals (masonries overlooking canals); 2= far from canals
(lack of a direct contact with canal water, few meters away from the
embankments).

In the literature sources, the sampling height was referred usually to
the walking pavement level. To correctly compare data regarding dif-
ferent buildings, in our study the samplings' height has been referred to
the height above sea level using the standard local reference of Punta
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della Dogana (ZMPS), according to the altimetry maps of the Ramses
System [41].

When available, information regarding the wall, such as materials,
structure, exposure, age, and porosity were reported and considered.

2.2. Investigation of data structure

Using Origin 8.5 software, the moisture and salt content data re-
ferred to above sea level ZMPS have been elaborated to obtain contour
graphs of the moisture and salt distributions for each masonry [56]. The
software employs moisture and/or salt content data, height and depth
data as inputs for the elaboration of Triangulation, Linear Interpolation,
Drawing of Contour Lines, Connecting and Smoothing procedures. The
set of experimental points available for each masonry is usually small
(from 3 to 12 entries), therefore a total point increase factor of 15 and a
smoothing parameter of 2 has been sufficient to obtain the contour
graphs of each site. This allowed an immediate comparison of many
sites on a consistent height scale.

A further elaboration has been developed assuming data as a whole,
meaning that the collected moisture contents could be considered as
measurements not related to a specific site. With this assumption, the
dataset was therefore composed of 493 observations (e.g. MC% mea-
surements, 182 of which are referred to masonries nearby water and the
remaining 311 are related to masonries far from water). This simplifi-
cation has been used following the hypothesis that data collected, in
similar masonries and in similar environment, might present analogous
trend allowing a reliable estimation of statistical models. To create
contour graphs with Origin 8.5, a high total point increase factor (700)
for the triangulation and a small smoothing parameter (0.01) were
chosen to observe the differences and the contribution given by the
original data. Two distinct elaborations were obtained by splitting the
data which refer to masonries nearby or far from canals (Table 1,
column L).

Subsequently, to evaluate the pattern of data among moisture
content in relation to the characteristics of the masonries, we have
estimates several linear and non-linear models. These statistical models

Fig. 1. Empirical model of rising damp phenom-
enon in Venetian masonries according to
Biscontin et al., 1988 [39]. A) Graph reporting
the trends of the distribution of moisture content
(rising damp) and soluble salt content; B) scheme
depicting a section of a masonry affected by
rising of salt solutions.

Table 1
Characteristics of the case studies: L= location within the city (referred to the point of Fig. 2); P= position (1= nearby water; 2= far from water); Nr.= number of analysed masonries;
H= building altitude above sea level, according to the Ramses altimetry on the ZMPS, expressed in cm [41]; S= soluble salt %; MC%=moisture content %; Notes= other relevant
information when available.

Building L MC% S% P Nr H Notes

Santa Marta, Dorsoduro 2137 [43] 1 x x 2 2 180 Masonry of the old building, 1883
Santa Marta, Dorsoduro 2137 [43] 1 x x 2 1 170 Recent masonry (1st half of 20th century)
Santa Marta, Dorsoduro 2196, ex Cotton mill [43] 2 x x 2 1 170 Built in 1883, covered by cement render till 55 cm
Ca' Foscari Palace, Dorsoduro 3246 [44] 3 x x 1 3 130 Internal masonry in well heated offices
Venice Arsenal, north masonry of Bucintoro [39] 4 x x 2 1 170 Internal wall, scarce aeration, no heating
Venice Arsenal, corderie [45] 4 x 2 5 170 Sampling 11/10/1997 20–22 °C; 60–70%HR
Venice arsenal, Tesa 105 [45] 4 x 1 5 170 Only surface samples (0–5 cm depth)
Ex slaughterhouse of San Giobbe [45] 5 x 2 3 130 Built in 1986
Ca' Venier in Castello [43] 6 x x 2, 1 2 120
Santa Croce 191 [45] 7 x 1 1 150
Tolentini IUAV [45] 8 x 1 1 150
Curch of S. Antonin [46] 9 x x 1 1 80 Sampling 3-5-2007, after a restoration intervention
Gussoni Grimani della Vida Palace [47] 10 x x 2, 1 4 110 Sampling 13/12/2001
Ex Royal Palace, Saint Mark's SquareVenezia [48], 11 x x 1, 2 2 150
Church of San Zan Degolà [49] 12 x x 2 4 145 Sampling 26-7-1985 and 24-3-1986
Artigianelli complex [50] 13 x x 2 2 130 Massari staircase, external wall
Eremite's Monastery [51] 14 x 1 5 110
Church of S. Elena in Castello [32] 15 x 2 4 150 Only superficial samples (0–5 cm depth)
Church of S. Stefano [32] 16 x 2 6 130
Palace in Dorsoduro 1113 [32] 17 x 1 1 140
Church of S. Sebastiano [32] 18 x 1 4 140
Saint Mark’S Basilica, external wall [43] 19 x x 1 1 70, Façade brick walls
Saint Mark’S Basilica, internal wall [43] 19 x x 2 1 184 Façade brick walls covered by marble panels
Saint Mark’S Basilica, Narthex [52] 19 x 1 3 70 Façade brick walls
Saint Mark’S Basilica, crypt [53] 19 x 1 4 −18
Basilica S. Maria Assunta in Torcello [54] – x x 2 1
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are elaborated with the aim of deriving the relations among the value of
a continuous target variable Y (or dependent variable) based on the
values of several predictor variables Xi, i= 1, …, k (or independent
variables). In this work, the moisture content of the masonries is con-
sidered as the response variable of the models, whereas predictor
variables are the height, the depth and the proximity to the canal. Due
data scarcity, this procedure was not applied for the assessment of so-
luble salt distribution: over 45% of the available literature, in fact,
omitted salt content, and/or existing salt content data were measured
with inconsistent procedures.

Because of the complexity and the peculiarity of the case study,
linear models are usually poor in fitting general trends. Thus, more
flexible models are required to achieve a better fitting of the data
structure. In this work, we focus on the class of regression tree non-
linear models. Tree-based methods (as regression trees) are, in fact,
simple to construct and useful for the interpretation and the prediction
of data, as it was proven in many studies [57–61].

Trees are built of leaves and branches: leaves represent specific
subset of variable values and branches are the segments of the tree that
connect the leave nodes. To estimate the model, leaves are created by
recursively splitting the data on the predictor variables. In this way, two
child nodes have smaller variability around their average value than the
parent node, minimizing the predicting error of the terminal nodes.
Terminal nodes of the trees refer to regions of values of the target
variable.

As it is computationally infeasible to consider every possible parti-
tion of the variable values, greedy approaches are usually used to
construct the model. We focus on the approach proposed by Breiman
et al. (1984) and Hastie et al. (2001) [57,59] which is nowadays the
commonly used method for regression trees estimation.

The estimation of the regression tree was performed using the R
statistical software and the “r part” package with standard para-
meterization [62].

In the regression tree built for the moisture content, each branch
connects nodes reporting the mean moisture content and the number of

observation in that range. Splitting is estimated based on the optimal
partitioning of the predictor variables, e.g. depth, height and location
observed for the masonries, till to the final leaves, when further parti-
tioning adds not significant information.

3. Results and discussion

3.1. Typical moisture distribution in Venetian masonries

The contour graphs of moisture content distribution for each ma-
sonry indicate the presence of three common trends that we consider
influencing the rising damp.

The first type of trend is well represented in three test cases: Ca’
Foscari masonries, Santa Marta ex-Cotton Mill, and Sant’Antonin
Church. The moisture distribution in the other masonries can be ex-
emplified by these ones.

The first trend shows a rising damp distribution where moisture
decreases with increasing height and decreasing depth, and soluble
salts are concentrated in the evaporation zone. This situation is typical
of ancient Venetian palaces and buildings located nearby canals, in
which the phenomenon is almost stable.

Ca’ Foscari Palace [42] represents a typical Venetian Gothic palace
with basement made by Istria stone, full brick masonries rendered with
cocciopesto (traditional Italian render with feeble hydraulic properties,
obtained by mixing finely crushed bricks or tiles with water and lime)
and marmorino (typical Venetian plaster obtained adding powdered
marble to a lime base) [43,44]. Both for indoor and outdoor applica-
tion, cocciopesto have been widely used in Venice as a storage layer for
salts thanks to its pore structure, breathability, and its fair salt and
moisture resistance. While coccopesto is mainly used as base for the
application of other plasters, marmorino is mainly a decorative plaster
used for imitating marble slabs. Marmorino is characterized by a re-
duced porosity, high water vapor permeability and reduced formation
of salt efflorescences. The application and use of cocciopesto and mar-
morino slightly affects the moisture and salts distribution within the

Fig. 2. Location of the investigated buildings within the city of Venice.
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masonry in comparison to unrendered walls (less than cement systems
with lower permeability) [44].

Two walls are in direct contact with the Canal Grande. Samples of
three internal walls were collected in 1982 [43] and in 2001 [44]. Fig. 3
highlights that in Ca’ Foscari the moisture content MC% decreases at
increasing heights, in particular over +200 cm on ZMPS. In the first
wall, a slight increase of MC% at +300 cm might be due to the hy-
groscopic retention of water, as it corresponds also to a higher value of
salt content. High salt contents can be found around +230 cm to
+250 cm, where the evaporation zone and the crystallization level take
place. The distribution follows the empirical trends proposed by G.
Biscontin (1988) [39], with slight variations due to salt accumulation,
partially due to the render presence or to local cracks.

This trend is the same in Saint Mark's Basilica, the Tolentini ex-
Monastery (IUAV), the Eremite's Monastery, Ca’ Venier, the external
masonries of Gussoni della Vida Palace and of the ex-Royal Palace.

The second trend is found studying the masonries of the Santa Marta
ex-Cotton Mill, the S. Giobbe ex-Slaughterhouse (UNIVE), the Arsenal
Corderie, the internal masonries of Gussoni Palace. The ex-Cotton Mill
is a large factory of the 19th century. It is located in one of the highest
parts of the city (+170 cm), with the east facade built with red full
bricks and non rendered masonries facing the canal. The samples col-
lected in the ex-Cotton Mill [43] show lower moisture content values
coupled with lower salt contents in the internal wall (Fig. 4A). At the
same time, a decreasing in moisture content with increasing heights and
a decreasing of MC% on the surfaces was detected on a masonry nearby
a canal (Fig. 4B). The evaporation zone, where moisture rapidly de-
creases and higher salt contents were measured, ranged from +250 cm
to +300 cm. By comparing the ex-Cotton Mill distributions with the
ones collected in Ca’Foscari, it is possible to notice that, at similar
heights, slightly lower moisture contents are present in the ex-Cotton
Mill. On the contrary, the salt contents are higher in Ca’ Foscari,
probably due to the building's age and the consequent “storage effect”.

The last trend is represented by the moisture distribution of the
Sant’Antonin Martire Church [45,46].

Traditional foundation date of the church is around the early 7th
century. The church was rebuilt starting from 1668, it was restored in
1968 with partial replacement of damaged bricks with new ones (“cuci-
scuci” intervention), 1993, 2001–2003 [46]. Before 1993, the mason-
ries, made of local bricks with a thickness ranging from 30 to 50 cm,

were seriously affected by rising damp till 2.00 m above the ground
level and the floors were damaged by flooding during high tides (height
on ZMPS +80 cm). The moisture content of Sant’Antonin Church is low
and remains quite constant at increasing heights, while it raises quickly
at increasing depths (Fig. 5): this is probably due to a high evaporation
rate and drying of the external parts. The soluble salts are mainly de-
posited in the +180 cm - +230 cm range and in the external parts,
where evaporation occurs. This last trend was found also in Gussoni
Palace, Tesa 105 and Bucintoro Wing of the Arsenal, Artigianelli
Complex, S. Zan Degolà church.

Commonly, Venice moisture values seem to depend more on the
heights and on the distances from canals than on the masonry ages,
which mainly influences the salt contents. In turn, a higher salt content
might cause hygroscopic moisture phenomena and enhance the
moisture content also at higher heights.

The comparison between internal and external masonries is symp-
tomatic of what happens nearby or few meters far from canals (since
3–4m): moisture content is high in masonries facing straight to canals,
but it decreases in internal buildings.

The increase of moisture contents with increasing depth is not al-
ways clearly visible, and it is strongly influenced by the masonry
structure, by the presence of hygroscopic salt deposits, non-documented
cuci-scuci interventions of the lower parts of the masonry, and by sur-
rounding environmental conditions. Cuci-scuci is a restoration inter-
vention and takes place with the removal of damaged stone or brick
elements with new dry ones, with possible modification of the moisture
and salts distribution within the wall.

3.2. Towards a unified model for moisture and salt distribution in Venice

The observations of the moisture distribution are typically related to
specific cases. More general trends might be individuated analyzing the
case studies as a whole. Some simplifications and basic assumptions are
necessary: i) the use of a consistent height measurement value (ZMPS
reference); ii) the independence of observations, e.g. each value is
considered as an independent observation not directed referred to the
specific masonry; iii) the distinction of values referred to masonries
nearby and far from canals.

The third assumption derives from the observation that the distance
from the canals can drastically influence the moisture distribution. A

Fig. 3. A) moisture and B) soluble salt distribu-
tions on three examined walls in Ca’ Foscari
Palace, the sampled points are indicated with
black dots.
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statistical t-test, to verify the hypothesis that the mean value of the
MC% of masonries nearby canals is greater than the one of the ma-
sonries far from canals, has been conducted. The result proved that the
distance from water was statistically significant on the moisture content
amount with a p-value equal to 0.004529.

Once the rising damp balance point is reached, other differences,
such as masonry ages, palace locations, and restoration interventions,
did not seriously affect the distributions.

To empirically highlight some informative patterns in the data, the
MC% values related to masonries located nearby water and far from

water have been plotted versus heights and depths value to obtain two
general distributions. The graphs of Fig. 6 show the position of each
sampling point within masonries nearby (Fig. 6A) and far from water
(Fig. 6B). For the ex-Royal Palace, Gussoni Palace and Saint Mark's
Basilica data regarding masonries in contact and far from water were
both available. The contour plot representations of the MC% distribu-
tions nearby and far from water are presented in Fig. 7A and B.

Numerous data from different sites can be observed between
+100 cm and +400 cm in height and 0–20 cm in depth. Heights lower
than +110 cm and depths higher than 25 cm were observed exclusively
for the Crypt in Saint Mark's Basilica and the Gussoni Grimani della
Vida Palace.

The obtained distributions are not homogeneous. Higher moisture
contents were observed around +120 cm–250 cm in the nearby water
distribution (Fig. 7A), even if high moisture contents were detected also
at higher heights (e.g. the Palace in Dorsoduro 1113 and in the Saint
Mark's Basilica). The MC% is high, with values over 13% also in the
same range of far from canals distribution (Fig. 7B), however, it rapidly
decreases at increasing heights.

To better evaluate these trends, we have estimated several linear
and non-linear models including multivariate linear regressions (with
interactions) and polynomial regressions (with different degrees of the
polynomial). The response variable MC% have been modeled in func-
tion of the predictor variables H (height in cm), D (depth in cm), and L
(distance from water). Different models have been compared. In this
paper, we present the main results for a significant subset of the ob-
tained models. F-tests have been calculated to detect the model with the
highest support ratio for the observed data. This draws the following
model:

= + + + ∗MC% α β D β H β D H(L nearby)1 2 3 (2)

When the model is compared to the one including the main effects
only (e.g. the effects of D, H, L without considering their interactions),
it has F-value equals to F1,488 = 28.316 (p-value≈0). While, when it is
compared to the complete model with all the interaction terms (e.g. by
considering D*H, D*L, H*L, D*H*L terms) it shows an F-value equals to
F3,485= 1.816 (p-value= .14). Estimated coefficients for the selected
parameters, their relative standard errors, and p-values are reported in
Table 2. Tests of significance indicate that all the parameters of the
model are strongly significant (p-values close to 0). Explaining the

Fig. 4. A) moisture and B) soluble salt distribu-
tions on two walls of the Ex Cotton Mill in Santa
Marta.

Fig. 5. A) moisture and B) soluble salt distributions on two walls of the Church of S.
Antonino Martire.

L. Falchi et al. Building and Environment 131 (2018) 117–127

122



response of the model, the estimated value of β3 indicates that the lo-
cation can be considered as a significant variable, nevertheless, its
contribution is small. This result supports our previous achievements.

The Adjusted-R2 statistic value for the model in eq. (2) is 0.2459,
and the residual standard error is 6.682. This indicates the poor
goodness of fit of the model, considering the non-homogeneous data, as
previously empirically observed. Residual diagnostics were used to in-
vestigate the model assumptions and the model fit. The Q–Q plot in the
left panel of Fig. 8 (Fig. 8A) represents the residuals of the selected
model computed with all the observations. This indicates: the presence
of outliers in the left tail of the distribution, the departure from the
assumptions, and the goodness of fit. The plot of the residuals against
the fitted values (Fig. 8B) shows a pattern: the relationship may be non-
linear and the model will need to be modified accordingly. Several
transformations of the data have been tested, without improving the
results.

Despite the weak goodness of fit, the model shows a general trend in
line with what is observed for single masonries. Fig. 9A and B displays
the calculated 3D curve of the model and the calculated contour plot,
showing that lower MC% is found at higher heights. MC% decreases
with depth for lower heights (up to around +250 cm) and increases
with depth at higher heights (above 250–300 cm). This highlights dif-
ferent behaviors “over” and “under” the evaporation zone. Under the
evaporation zone, the water wets the masonry coming both from the
under-laying soil, from side canals and by direct contact with the sur-
face during high tides flooding. Over the evaporation zone, water rises

from underneath bricks within the wall and evaporates on the surfaces.

3.3. Regression tree model

The high significance of the estimated parameter values combined
with the lack of fitting suggested that the previous class of models was
quite adequate to derive global patterns. To overcome these problems,
we derived non-parametric non-liner models in the class of regression
trees.

We have estimated a regression tree model with the aim of deriving
global patterns of relations among MC% and the characteristics of the
observed masonries. Classical linear and non-linear regressions were
not adequate to consider the available data. The achieved model is
reported in Fig. 10.

The estimated variable importance in deriving the regression tree
for each predictor variable was: H= 72%, D=23% and L=5%. This

Fig. 6. Sample point position in masonries located nearby water (A) and far from water (B).

Fig. 7. Moisture content MC% distribution of masonries located nearby water (A) and far from water (B). Below+100 cm, there is a high contribution of MC% measured within the Crypt
in Saint Mark's Basilica, which is surrounded by an underground canal and maintained dry with pumps.

Table 2
Estimated, standard errors, t-values and p-values for the parameters included in the
model.

Coefficients Estimate Std. error t-value p-value

α 24.35 1.37 17.760 < 2e-16
β1 −0.40 0.09 −4.138 4.13e-05
β2 0.05 0.005 −10.898 < 2e-16
β3 0.002 0.0004 5.410 9.87e-08
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implies that the estimated tree was constructed considering only
H=height and D=depth values.

At the tree's root, the mean value of MC% - calculated on the 493
observation-is equal to 11.

The height value of 248 cm represents the first threshold in the data
splitting: below this value, the mean of MC% is 15%, whereas for higher
values of height the mean value of MC% is 8%, corresponding to the
evaporation zone. Over this height (left branches of the tree) the par-
tition depends mainly on the depth values, with higher moisture con-
tents for depths over 19 cm.

Under 248 cm, splitting branches are still due to the height para-
meter (e.g. node at 168 cm) and only in a second step to the depth
values. Higher moisture contents are observed under 145 cm and on the
external parts (depth values smaller than 9 cm). Moisture contents
around 13% can be found between 168 cm and 248 cm in heights.

The estimated regression tree has the main advantage to allow the
visualization of data and to highlight which parameter, height or depth,

can significantly affect the MC% values. This tree highlights that the
height is the most important parameter, while the depth has a second
role and it is, probably, more influenced by other factors, such as age of
the buildings materials, exposure, ventilation, location of the water
bodies (exactly underneath or on the side of the basement), etc.

Consequently, the tree could be used as an assessing map that gives
expected MC% values in the Venetian masonries at a certain depth and
height.

4. Discussion

The presence of brick masonries built with similar construction
techniques, the presence of permanent water bodies with a given sea
level, and the fact that the masonries have been exposed to rising damp
of salt water for long times, make Venice as a unique case study with
regards to rising damp.

In particular, the diffuse use of traditional full bricks with

Fig. 8. Residual diagnostics of the estimated model.

Fig. 9. 3D perspective plot (A) and contour plot (B) of the estimated model.
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comparable porosity [40,44,52], of lime based mortars, and of renders
permeable to water assure that the considered Venetian masonries have
a similar behavior to rising damp. The presence of render layers in-
fluences the moisture distribution in comparison to non-rendered brick
walls. However, when permeable breathable lime renders are used, the
equilibrium between capillary water absorption and moisture eva-
poration is established at similar heights.

The presence of permeable systems, in contact with a stable water
body (the lagoon) for long times (the considered buildings date back to
the 19th century, at least), implies that a steady state is reached.

The development of several different models based on MC% in re-
lation to heights, depth and to single masonry or multiple masonries,
arise the following considerations:

• The distributions are influenced by known factors, e.g. specific
structure and decay, that should be evaluated case-by-case. In the
case of Saint Mark's Basilica, the data collected within the crypt and
in an internal wall, covered by non-permeable marble panels,
showed moisture distributions different from the other walls
[52,53]. In the case of the crypt, the use of ZMPS as common alti-
metry level allows to use the data in the models' development. The
crypt's data draw the typical behavior of a completely soaked ma-
sonries located under the water level and provide additional in-
formation to the model. The data of the masonry covered by marble
panels (soaked with water till 4 m) were discharged, since they
constitute a non-homogenous system in comparison with the other
masonries. For the same reason, data collected from masonries re-
stored with methods against rising damp need to be considered se-
parately.

• The distributions are influenced by different unpredictable or non-
documented factors, such as the specific masonry structure and
decay phenomena (e.g. non-documented maintenance intervention
with partial replacement of bricks), by the presence of salt deposits,

by specific location (e.g. ventilation and exposure to atmospheric
agents). These lead to a non-homogeneous distribution of the data
when considered as a whole. Collecting a high number of experi-
mental observation, from different masonries and location, could
help in reducing the contribution due to specific cases when de-
veloping general models.

• The data considered as independent observations of the same system
were used to develop linear models. However the results highlight
that MC% data do not follow a linear model, even considering in-
teraction effects. On the data collected from multiple building assets
the physical laws and models reported in literature, which regards
small samples, single masonries or single buildings studied under
controlled conditions [1,4,7,9,10], do not apply straightforward.
The data show complex structure, that need to be investigated with
a non-linear approach such as the regression tree.

The results confirm the inverse relationship between MC% and
height. Masonries are soaked with water till 150–200 cm over ZMPS, an
evaporation zone range from 200 cm to 300 cm over ZMPS, in this area
salts deposits are often present, lower MC% values are observed above.

The relationship between depth and MC% is different below and
above the evaporation zone, with higher MC% on the surfaces of the
lowest parts of the masonries and lower MC% on the surfaces of the
highest parts. Thus, the results are not linked to the position of the
building within the city but are related to its altitude and with its lo-
cation considering the distance to the nearby water.

Up to now, the literature considered the lower part of the buildings
uniformly soaked with lagoon water, that can be considered as a stable
water body. The different trend of MC% in depth - above and under the
evaporation zone - suggests that buildings having water bodies directly
on their sides or basements are more affected by rising damp. Water –-
from side canals and during high tides flooding - penetrates the surface
and spread within the masonry, then rising damp take place within the

Fig. 10. Regression Tree of moisture content data in Venice. The graph indicates the MC% average calculate for each node. H=height; D=depth; n=nr of observation; percentage of
the observation on the total observations; right direction= no; left direction= yes.
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wall. This occurs mainly for buildings located nearby canals and for the
lowest parts of the city. In buildings located far from water, the soil is
more uniformly wet, and suction occurs mainly on the vertical axis.
Above the ground level, evaporation phenomena occur on the surfaces
counteracting the suction of water due to rising damp.

5. Conclusions

The comparison of moisture contents of different Venetian buildings
has been used for highlighting common trends in masonries affected by
rising damp. The analysis and the development of several different
models, based on MC%, collected from existing literature and covering
a period of 25 years, led to the following results:

• The distributions are influenced by unpredictable and non-docu-
mented factors such as the specific masonry structure and decay
phenomena.

• An inverse relationship between MC% and height was found, with
wet masonries till 150–200 cm over ZMPS, an evaporation zone
from 200 cm to 300 cm over ZMPS, lower MC% values above.

• Considering in-depth MC% distribution, higher MC% was observed
on the surfaces, while lower MC% values were observed below and
above the evaporation zone, respectively.

• The results are related to the buildings altitude on the lagoon level
and to the buildings distance from water.

The opportunity to enlarge the data set, with further data possibly
from the same buildings, would increase the knowledge regarding
rising damp in Venice. The proposed models are the starting point for a
tool that can check the effectiveness of future structural intervention
against rising damp. The model could be useful to assess the validity of
safeguarding measures, such as the maintenance embankments, the
raising-up of the external pavements, the use of pumps, the water-
proofing foundation's’ insulation and the other flood control measures.
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