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Exploiting damped techniques for nonlinear conjugate
gradient methods

Mehiddin Al-Baali · Andrea Caliciotti ·
Giovanni Fasano · Massimo Roma

Abstract In this paper we propose the use of damped techniques within
Nonlinear Conjugate Gradient (NCG) methods. Damped techniques were in-
troduced by Powell and recently reproposed by Al-Baali and till now, only
applied in the framework of quasi–Newton methods. We extend their use to
NCG methods in large scale unconstrained optimization, aiming at possibly
improving the efficiency and the robustness of the latter methods, especially
when solving difficult problems. We consider both unpreconditioned and Pre-
conditioned NCG (PNCG). In the latter case, we embed damped techniques
within a class of preconditioners based on quasi–Newton updates. Our pur-
pose is to possibly provide efficient preconditioners which approximate, in some
sense, the inverse of the Hessian matrix, while still preserving information pro-
vided by the secant equation or some of its modifications. The results of an
extensive numerical experience highlights that the proposed approach is quite
promising.
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1 Introduction

In this paper we consider the large scale unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn −→ R is a real valued function and the dimension n is large. It
is assumed that f is a twice continuously differentiable function and that for
a given x1 ∈ Rn the level set L1 = {x ∈ Rn : f(x) ≤ f(x1)} is compact.

Nowadays, the Nonlinear Conjugate Gradient (NCG) and the Limited
Memory quasi–Newton methods are usually considered effective iterative meth-
ods for large scale unconstrained optimization. In particular, L–BFGS is typ-
ically the method of choice due to its efficiency (see e.g. [27]). However, on
nonlinear “difficult” problems where the Hessian matrix is possibly highly ill–
conditioned, also quasi–Newton methods may be inefficient. This was already
known since 1986 when Powell in [29] analyzed the performance of the BFGS
and DFP algorithms in the case of a quadratic function of two variables (see
also [7]).

To overcome the latter drawback, in this paper we aim at introducing
in the framework of NCG methods a technique originated by Powell in [28],
and recently reproposed by Al-Baali in [2] for quasi–Newton methods: the so
called “damped technique”. To the best of our knowledge, the first damped
update was defined in [28]. In that paper, Powell deals with SQP Lagrangian
BFGS methods for nonlinearly constrained problems. He proposes a modifi-
cation of BFGS that, to some extent, offsets the lack of positive definiteness
in the Hessian of the Lagrangian at the solution. Indeed, due to the presence
of negative curvature directions of the Lagrangian function, using BFGS for
approximating the Hessian matrix with a positive definite matrix, may be seri-
ously inappropriate (see also [27] Section 18.3). Damped techniques have been
recently extended by Al-Baali also to the restricted Broyden class of quasi–
Newton methods for unconstrained optimization problems in [2]. The author
extends the global and superlinear convergence properties that the Broyden
family of methods fulfills for convex functions, to a novel class of methods,
namely the D–Broyden class (see also [4] [5] [6] [7] [8]).

We aim at extending the use of damped techniques to both NCG and
PNCG methods. To this purpose, the following possibilities can be considered:

- Modified methods. In this case a damped technique is only used to modify
the scalar (usually denoted by βk) which characterizes the different NCG
methods. The search direction is therefore modified, hence the necessity
to ensure the global convergence of the resulting novel NCG method, the
damped one.

- Preconditioned methods. They are obtained without modifying the original
expression of the scalar βk. Here, the damped techniques are only used
for constructing a preconditioner based on quasi–Newton updates. In this
case we do not obtain a novel NCG algorithm or focus on a particular
NCG method. On the contrary, we have a new methodology for defining
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preconditioning strategies, to be possibly used within any NCG method
for improving its performance.

- Modified preconditioned methods. In this case, a damped technique is used
both to modify the scalar βk and to construct a suitable preconditioner for
NCG schemes.

We deal with all the three items above, even if the main focus is actually on
the second one. Indeed, we believe that, since damped techniques were con-
ceived in the framework of quasi–Newton methods, we expect to inherit their
good features when building a preconditioner based on quasi–Newton updates.
To this aim, we introduce two different damping strategies, which seem to be
suited for our purposes. In particular, we focus on Polak–Ribière (PR) (re-
cently, Polak–Ribière–Polyak (PRP)) method, proving that under reasonable
assumptions, the damped and preconditioned version of this method (denoted
by D-PR-PNCG) to some extent retains the convergence properties of the
(undamped and unpreconditioned) PR method.

We propose to combine damped techniques with preconditioning strategies,
aiming at making the resulting D-PR-PNCG method able to efficiently tackle
also difficult problems. To this aim, in order to perform extensive numerical
results, we consider a novel class of preconditioners based on quasi–Newton
updates, which has been recently introduced in [12]. These preconditioners
are based on novel low-rank quasi-Newton symmetric updating formulae, re-
sulting as by-product of the NCG method at some previous steps. Hence,
the construction of this class of preconditioners is matrix–free and iteratively
defined. Their purpose is to approximate, in some sense, the inverse of the Hes-
sian matrix, while still retaining efficiency and preserving information provided
by the secant equation or some of its modifications. The rationale behind the
idea of adopting a damped strategy in defining preconditioners for NCG meth-
ods, relies on the fact that an approximation of the (inverse of the) Hessian
matrix by means of a positive definite matrix is required. Therefore, modi-
fying the quasi–Newton updates used for building a preconditioner for NCG
methods, in order to prevent the lack of positive definiteness of the Hessian
matrix, sounds meaningful. An extensive numerical experience confirmed this
fact, showing the possible fruitful use of the damped techniques in construct-
ing preconditioners for NCG, based on quasi–Newton updates. For the sake of
completeness, we also report results obtained by using the modified methods,
showing that these latter do not seem to produce noticeable improvement in
terms of efficiency and robustness.

The paper is organized as follows. In Section 2, we recall the PNCG meth-
ods and briefly describe the original damped techniques. Moreover, we report
the class of preconditioners we adopt. Section 3 describes the novel damped
strategies we propose and some adaptive criteria used. In Section 4 we study
the global convergence of one modified preconditioned method, the damped
Polak–Ribière method (D-PR-PNCG). In Section 5 the results of an exten-
sive numerical testing by using the class of preconditioners proposed in [12]
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are described. Finally, Section 6 includes some concluding remarks and some
guidelines for future works.

As regards the notations, given a sequence of points {xk}, xk ∈ Rn, we
denote by gk = g(xk) = ∇f(xk) and fk = f(xk), the gradient and the function
value at xk, respectively. Similarly, Mk = M(xk) indicates that the matrix Mk

depends on the iterate xk. Moreover, we use the following standard settings:

yk = gk+1 − gk, sk = xk+1 − xk. (1.2)

Finally, A � 0 indicates that the matrix A is positive definite, ‖x‖ denotes the
2-norm of the vector x ∈ Rn, and λm(A), λM (A) stand for the smallest and
the largest eigenvalue of A, respectively.

2 Preliminaries

In this section we report some basics which we will use in the sequel. In
particular, first we recall a general scheme of a PNCG algorithm. Afterwards,
we report the damped strategies introduced in literature in quasi–Newton
frameworks. Finally, we detail the preconditioning strategy we adopt.

2.1 The Preconditioned Nonlinear Conjugate Gradient (PNCG) algorithm

A PNCG algorithm can be outlined in the following standard scheme (see e.g.
[30]), where Mk � 0 denotes the preconditioner at the k–th iteration.

Preconditioned Nonlinear Conjugate Gradient algorithm

Step 1 : Set x1 ∈ Rn and M1 � 0. Set p1 = −M1g1 and k = 1.
If a stopping criterion is satisfied then stop.

Step 2 : Compute the steplength αk by using a linesearch procedure,
which ensures the strong Wolfe conditions, and compute

xk+1 = xk + αkpk.

Step 3 : If a stopping criterion is satisfied then stop,
else compute a scalar βk and a new search direction

pk+1 = −Mk+1gk+1 + βkpk, (2.3)

set k := k + 1 and go to Step 2.

By setting Mk = I for all k, the popular (unpreconditioned) NCG method
is trivially obtained. In practice, the explicit expression of Mk+1 that we adopt
in (2.3) is specified later on in (2.9). As is well known, several expressions for



Damped techniques in nonlinear conjugate gradient methods 5

the parameter βk have been proposed in literature. We recall the classical ones
(Fletcher–Reeves, Polak–Ribière, Hestenes–Stiefel)

βFR
k =

g>k+1Mk+1gk+1

g>kMkgk
, βPR

k =
y>kMk+1gk+1

g>kMkgk
, βHS

k =
y>kMk+1gk+1

y>k pk
, (2.4)

respectively, and among the many others, the recent proposal by Hager and
Zhang [23]

βHZ
k =

y>kMk+1gk+1

p>k yk
−Θk

y>kMk+1yk
p>k yk

p>k gk+1

p>k yk
,

where Θk is a suitable parameter.

2.2 Basics on damped techniques

Damped techniques were introduced in the framework of quasi–Newton meth-
ods and the rationale behind these techniques is the following. As is well known
(see e.g. [16], [27]), in dealing with the BFGS update, a crucial issue in order
to guarantee positive definiteness of the updated Hessian approximation is the
curvature condition

s>k yk > 0. (2.5)

If f is strongly convex on an open set containing L1, then (2.5) holds for any
two points xk and xk+1 belonging to L1 (see, e.g. [9]). In case of nonconvex
functions, the satisfaction of condition (2.5) must be ensured by means of
the linesearch procedure used for determining the stepsize αk. Indeed, the
satisfaction of (2.5) can be always obtained by a linesearch procedure if the
objective function is bounded below on L1. To this aim the Wolfe conditions (in
practice, strong Wolfe conditions) are usually adopted, which ensure condition
(2.5). However, if the linesearch is not fairly accurate, the value of s>k yk may
not be sufficiently positive. In addition, if only the backtracking linesearch
framework is employed, the curvature condition (2.5) may not hold.

A first possible strategy to cope with this issue is to reinitialize the model
Hessian to the identity matrix or skip the update whenever s>k yk ≤ 0 (see e.g.
Section 4.2.2 of [24]). However, this strategy is usually not recommended, due
to the loss of information on the curvature of the function. A more successful
strategy is the damped technique proposed by Powell in [28], in the context of
SQP Lagrangian BFGS method for constrained optimization, for which (2.5)
may not hold even when the Wolfe conditions are employed. To overcome
this difficulty, the author proposes to modify the difference of the gradients
vector yk in (1.2) before performing the update. Namely, on denoting by Bk
the available positive definite Hessian approximation at k-th iteration of the
method, the following modified (damped) vector is used:

ŷk = ϕkyk + (1− ϕk)Bksk, (2.6)
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where ϕk is chosen in (0, 1] such that s>k ŷk is “sufficiently positive”. Namely,
given σ ∈ (0, 1], the value of ϕk is set as follows:

ϕk =


σs>k Bksk

s>k Bksk − s>k yk
, if s>k yk < (1− σ)s>k Bksk,

1, otherwise,

(2.7)

(see also Section 18.3 in [27]). This choice ensures that s>k ŷk = (1−σ)s>k Bksk
which is sufficiently positive, since Bk is imposed to be positive definite at
each iteration. In [28] the value of σ = 0.8 is suggested as a “suitable size” to
be used in (2.7) (see also [27]); the value of σ = 0.9 is sometimes used, too
(see e.g. [2] [7]).

To the best of our knowledge, Powell’s damped technique was never applied
to unconstrained optimization problems until Al-Baali used it for improving
the performance of the standard BFGS and DFP methods (see [2] [4] [5] [6] [7]
[8]). In particular, the author extends the damped technique to the Broyden
family of quasi–Newton methods for unconstrained optimization. The choice
given in (2.7) is modified so that the damped vector ŷk replaces yk in the quasi-
Newton updating formulae whenever ρk is sufficiently close to zero or negative
(like in the Powell’s strategy). This choice enforces both global and superlinear
convergence properties of the novel class of methods proposed in [2], namely
the D–Broyden class. We note that (2.7) does not modify yk when ρk is larger
than 1. Therefore, Al-Baali also suggests using the modified damped vector
(2.6) when ρk is large enough by extending the above choice as follows:

ϕk =



σs>k Bksk
s>k Bksk − s>k yk

, if s>k yk < (1− σ)s>k Bksk,

σ̂s>k Bksk
s>k Bksk − s>k yk

, if s>k yk > (1 + σ̂)s>k Bksk,

1, otherwise,

(2.8)

where σ̂ ≥ 2. In this paper, we consider the value of σ̂ =∞ which reduces the
above choice to (2.7).

2.3 The class of preconditioners

The preconditioners we adopt belong to the class of preconditioners proposed
in [12]. They are based on low–rank (quasi–Newton) updates and they approx-
imate, in some sense, the inverse of the Hessian matrix. It has been shown that
their application leads to an improvement of the performance of an NCG algo-
rithm, both in terms of efficiency and robustness. For all the details we refer to
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[12] and here we just report the expression of the preconditioners along with
some comments. The preconditioners can be written as follows:

Mk+1 = τkCk + γkvkv
>
k + ωk

k∑
j=k−m

sjs
>
j

y>j sj
, (2.9)

with

Ck =
s>k yk
‖yk‖2

In, vk = sk − τk
s>k yk
‖yk‖2

yk − ωk
k∑

j=k−m

s>j yk

y>j sj
sj ,

γk =
1

(1− τk)s>k yk − ωk
k∑

j=k−m

(s>j yk)2

y>j sj

,

and where the following parameters are used in practice:

m = 4, ωk =

1

2
s>k yk

y>k Ckyk +

k∑
j=k−m

(s>j yk)2

s>j yj

, τk = ωk, γk =
2

s>k yk
. (2.10)

In (2.9) the term γkvkv
>
k represents a rank–1 matrix, while the rightmost term

is aimed at building an approximate inverse of the Hessian matrix on a spe-
cific subspace. The integer m can be viewed as a “limited memory” parameter,
similarly to the L–BFGS method. The matrix Ck, the vector vk and the pa-
rameters τk, γk and ωk are such that the preconditioners are positive definite,
and satisfy the secant equation at the current iterate, namely Mk+1yk = sk,
along with a modified secant equation at some previous iterates (see e.g. [10]
[11]). In [12], besides some theoretical properties, the results of an extensive
numerical experience is reported, showing that the use of such preconditioners
makes PNCG algorithms more efficient and robust than the unpreconditioned
ones, on most CUTEst [18] large scale problems.

These preconditioners are also inspired by some recent proposals in the
context of Newton–Krylov methods (see [14] [15]), along with some effective
preconditioning techniques from the literature of preconditioners for symmet-
ric linear systems, namely the Limited Memory Preconditioners [19].

3 Novel damped strategies

In this section we introduce two novel damped strategies, to be considered
within NCG methods, along with an adaptive criterion for deciding if it is
worth to replace the undamped vector with the damped one. In the sequel,
whenever we consider the preconditioned case, we refer to a positive defi-
nite preconditioner based on quasi–Newton updates, which will be denoted
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by Pk(yk, sk) to evidence the current pair (yk, sk) used for constructing the
quasi–Newton update.

Drawing inspiration from the Al-Baali–Powell proposals briefly described in
Section 2, now we aim at defining modifications of the vector yk which should
lead to obtain more efficient and/or robust NCG methods. Once a damped
vector ŷk is defined, it can be used: (i) in the definition of βk, replacing yk
with ŷk (modified method); (ii) in the definition of the preconditioner replacing
Pk(yk, sk) with Pk(ŷk, sk). In order to clearly evaluate the effect of the damped
techniques, we study the cases (i) and (ii) separately. Furthermore, we also
investigate in this paper the joint modification of both βk and Pk(yk, sk), by
means of the damped vector ŷk (modified preconditioned method). Note that
in the unpreconditioned case, a damped strategy obviously may affect the
definition of βk only when yk explicitly appears in the formula of βk.

Broadly speaking, in extending the definition of the damped vector ŷk
introduced in (2.6), our aim is to define a vector ŷk as a combination of the
original vector yk and an appropriate vector zk, namely

ŷk = ϕkyk + (1− ϕk)zk, (3.11)

such that s>k ŷk is sufficiently positive for suited values of ϕk ∈ (0, 1]. Of course,
a key point of this approach is an appropriate choice of zk, both in terms of
certain gained information and in terms of a good relative scaling of ŷk. Note
that the choice (3.11) is reduced to (2.6) if zk = Bksk, which cannot be
computed explicitly in the NCG context, being Bk unavailable.

In our first proposal, we set zk = ηksk, where ηk is a positive scalar, based
on approximating Bk by ηkI. It originates from the idea of using zk = Ak+1yk
in (3.11), where Ak+1 is a positive definitive approximation of the inverse
Hessian, satisfying the modified secant equation

Ak+1yk = ηksk.

Hence, by using the latter equation, we can define the damped formula

ŷ(1)

k = ϕkyk + (1− ϕk)ηksk, (3.12)

which does not require the explicit knowledge of the approximate inverse Ak+1

of the Hessian matrix. Since (3.12) follows from (2.6) with Bksk replaced by
ηksk, we use the same replacement in (2.7) to obtain the following formula

ϕk =


σηk‖sk‖2

ηk‖sk‖2 − s>k yk
if s>k yk < (1− σ)ηk‖sk‖2

1, otherwise,

(3.13)

where ηk ≥ 1.
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Then, in order to set ϕk 6= 1 only whenever s>k yk is sufficiently small, we
modify (3.13) as

ϕk =


σηk‖sk‖2

ηk‖sk‖2 − s>k yk
if s>k yk < (1− σ)‖sk‖2

1, otherwise.

(3.14)

Note that on some iterations, the former formula may modify yk, while the
latter one may not, because the condition in the former formula, i.e.

s>k yk < (1− σ)ηk‖sk‖2, (3.15)

can be satisfied for sufficiently large values of ηk. For certain choices of ηk,
our numerical experience (which we will describe in Section 5) was carried on
adopting (3.14), which showed favourable results avoiding the dependence on
the product (1 − σ)ηk. Nevertheless, the numerical impact of (3.15) deserves
further investigations.

We now give an alternative motivation for choice (3.12) which, in practice,
represents a combination of yk and sk with the scalar ηk. Moreover, we can
derive the novel adaptive criterion used in (3.14) starting from a geometric
interpretation of the curvature condition (2.5).

As already mentioned, (see e.g. [9]) if f is strongly convex, the curvature
condition (2.5) holds. Roughly speaking, f strongly convex means that its
curvature is positive and not too close to zero. Hence, motivated by the former
idea of Powell in [28], we intend to define a criterion based on the (local) strong
convexity of the function for deciding if a damped vector ŷk must be used in
place of yk.

It is well known that if f is strongly convex on a convex set S ⊆ Rn, then
there exists θ > 0 such that

[∇f(y)−∇f(x)]
>

(y − x) ≥ θ‖y − x‖2, (3.16)

for all x and y belonging to S. For θ = 0, we recover the basic inequality
characterizing the convexity, namely the curvature condition, provided by the
Wolfe line search procedure. For θ > 0, we obtain a strong lower bound in
(3.16). Hence, given θ > 0, if we adopt (3.16) as selection criterion, we actually
obtain the one used in (3.14) with θ = 1− σ. Therefore, the rationale behind
this criterion is the following: whenever s>k yk ≥ (1 − σ)‖sk‖2 > 0 and hence
the curvature is “sufficiently positive”, there is no need to modify the vector
yk; otherwise the damped vector ŷk is considered.

Now, we remark that we are interested in obtaining the vector ŷk such
that s>k ŷk is sufficiently positive, and that an improvement in the curvature
condition is obtained, namely

s>k ŷ
(1)

k ≥ s
>
k yk. (3.17)
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Recalling that we are considering in (3.14) the case s>k yk < (1 − σ)‖sk‖2, by
substituting the value of ϕk in (3.12), by simple computation we obtain

s>k ŷ
(1)

k = (1− σ)ηk‖sk‖2. (3.18)

Therefore s>k ŷ
(1)

k is sufficiently positive for suited values of the parameters σ
and ηk. Moreover, we can guarantee that ŷ(1)

k satisfies (3.17) by setting ηk > 1
whenever s>k yk > 0. On the other hand, if s>k yk is negative, (3.17) is trivially
satisfied by the choice ŷ(1)

k .

In our second proposal we set zk = −αkgk in (3.12) to obtain the damped
vector

ŷ(2)

k = ϕkyk − (1− ϕk)αkgk (3.19)

which arises from the following observation: if Bk � 0 is an approximation
of the Hessian and we consider as search direction −B−1k gk, it immediately
follows that sk = xk+1 − xk = −αkB−1k gk which implies

Bksk = −αkgk.
This allows us to consider the original damped vector (2.6), without computing
Bk explicitly, i.e. by replacing Bksk with −αkgk, as defined in (3.19). In this
case adapting the Powell’s rule in (2.7) (replacing Bksk with −αkgk), it follows
that

ϕk =


σαks

>
k gk

αks>k gk + s>k yk
, if s>k yk < −(1− σ)αks

>
k gk,

1, otherwise.

(3.20)

Substituting the value of ϕk from the first case (i.e. ϕk 6= 1) into (3.19), we
obtain

s>k ŷ
(2)

k = −αk(1− σ)s>k gk = −α2
k(1− σ)p>k gk > 0,

where the last inequality follows since pk is a descent direction at xk. More-
over, here we also have that the final steplength computed by the line search
procedure plays a keynote role.

Following guidelines adopted to obtain (3.14), formula (3.20) can be changed
to define

ϕk =


σηkαks

>
k gk

ηkαks>k gk + s>k yk
, if s>k yk < −(1− σ)αks

>
k gk,

1, otherwise,

(3.21)

where ηk ≥ 1. Furthermore, similar formulae with the three cases in (2.8) can
be also defined.

Finally, observe that in our first proposal the conditions (3.14)-(3.18) omit
the dependency on any considerations regarding the global convergence of the
final damped techniques. In this regard, a further study on the latter issue
(see also [1] [2] [8]) seems to be necessary, which will be the object of future
research.
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4 Convergence properties for preconditioned damped
Polak–Ribière (D-PR-PNCG) method

As already recalled, in paper [2] the author extends global convergence proper-
ties of the Broyden family of quasi–Newton methods to the damped version of
such methods. In a similar fashion, we aim at proving that some global conver-
gence properties of NCG methods still hold in the general case corresponding
to the damped and preconditioned version (modified PNCG method). Obvi-
ously, results for undamped and/or unmodified methods are straightforwardly
obtained as particular cases.

As first step of the convergence analysis, in this section our preliminary
focus is on the Polak–Ribière (PR) version of the NCG. In particular, here
we limit our analysis to consider only the first proposal in (3.12). Note that
in this regard, developing convergence properties with the choice ŷ(2)

k needs
additional analysis, which is part of our future work.

Using the damped vector ŷ(1)

k we therefore consider the damped precondi-
tioned PR method (namely D-PR-PNCG method):

β̂PR
k =

ŷ(1)>
k Mk+1gk+1

g
>
kMkgk

. (4.22)

The resulting D-PR-PNCG method actually is a novel modified NCG method.
Hence the necessity of ensuring its global convergence properties. To this aim,
in this section, we prove that, to some extent, the D-PR-PNCG method enjoys
the same properties as the standard (undamped and unpreconditioned) PR
method (see e.g. [22]). In particular, we have the following result. We also
need the following assumption to prove our final results.

Assumption 1

a) Given the vector x1 ∈ Rn and the function f ∈ C1(Rn), the level set
L1 = {x ∈ Rn : f(x) ≤ f1} is compact.

b) There exists an open ball Br := {x ∈ Rn : ‖x‖ < r} containing L1 where
f(x) is continuously differentiable and its gradient g(x) is Lipschitz con-
tinuous. In particular, there exists L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖ for all x, y ∈ Br.

c) There exist λ > 0 and Λ > 0 such that the preconditioner M(x), for any
x ∈ Br, is positive definite with eigenvalues satisfying

0 < λ ≤ λm (M(x)) ≤ λM (M(x)) < Λ.

Proposition 1 Let {xk} be an infinite sequence (with gk 6= 0) generated by
the D-PR-PNCG method, where the steplength αk > 0 is determined by a
linesearch procedure such that, for all k, the following conditions hold:

(i) xk ∈ L1 for all k;

(ii) lim
k→+∞

|g>k pk|
‖pk‖

= 0;
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(iii) lim
k→+∞

αk‖pk‖ = 0.

If Assumption 1 holds, then

lim inf
k→+∞

‖gk‖ = 0

and hence there exists at least a stationary limit point of {xk}.

Proof: First observe that by the Lipschitz continuity of g(x) and the com-
pactness of L1, there exists a number Γ > 0 such that

‖g(x)‖ ≤ Γ, for all x ∈ L1. (4.23)

Moreover, from (i) and the compactness of L1, the sequence {xk} admits limit
points in L1. Now, by contradiction, assume that there exist ε > 0 and k̄ such
that

‖gk‖ ≥ ε, for all k > k̄. (4.24)

By using (4.22)-(4.24) and (i), and recalling that we are considering D-PR-
PNCG, we get for any k ≥ k̄,

‖pk+1‖ = ‖ −Mk+1gk+1 + β̂PR
k pk‖

=

∥∥∥∥∥−Mk+1gk+1 +
[ϕkyk + (1− ϕk)ηksk]>Mk+1gk+1

g
>
kMkgk

pk

∥∥∥∥∥
≤ ‖Mk+1gk+1‖+

‖ϕkyk + (1− ϕk)ηksk‖‖Mk+1gk+1‖
‖gk‖‖Mkgk‖

‖pk‖

≤ ΓλM (Mk+1) + ΓλM (Mk+1)
‖ϕkyk + (1− ϕk)ηksk‖

ε2λm(Mk)
‖pk‖. (4.25)

From (4.25), recalling the Lipschitz continuity of g(x) on L1, we have

‖ϕkyk + (1− ϕk)ηksk‖ = ‖ϕk(gk+1 − gk) + (1− ϕk)ηk(xk+1 − xk)‖
≤ ϕkL‖xk+1 − xk‖+ (1− ϕk)ηk‖xk+1 − xk‖
= ‖αkpk‖(ϕkL+ (1− ϕk)ηk). (4.26)

Hence, by using (4.25) we obtain

‖pk+1‖ ≤ ΓλM (Mk+1) + ΓλM (Mk+1)

(
ϕkL+ (1− ϕk)ηk

ε2λm(Mk)

)
‖αkpk‖‖pk‖.

(4.27)
Now, by (iii), given q ∈ (0, 1), we can assume there exists k1 sufficiently large
such that

ΓλM (Mk+1)

(
ϕkL+ (1− ϕk)ηk

ε2λm(Mk)

)
‖αkpk‖ ≤ q < 1, for any k ≥ k1 > k̄.

(4.28)
Thus, by (4.27)-(4.28) we get

‖pk+1‖ ≤ ΓλM (Mk+1) + q‖pk‖, for any k ≥ k1,
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and by Lemma 1 in the Appendix

‖pk+1‖ ≤
ΓλM (Mk+1)

1− q
+

(
‖pk1‖ −

ΓλM (Mk+1)

1− q

)
q(k+1)−k1 , ∀k ≥ k1,

(4.29)
showing that ‖pk+1‖ is bounded as ‖pk1‖ is bounded. As a consequence, again
from (iii) we have

lim
k→+∞

αk‖pk‖2 = 0. (4.30)

Furthermore, the boundedness of ‖pk‖ and (ii) yield

lim
k→+∞

|g>k pk| = 0. (4.31)

Since Mk+1gk+1 = β̂PR
k pk − pk+1, by (4.27) it results

g>k+1Mk+1gk+1 = g>k+1β̂
PR
k pk − g>k+1pk+1 (4.32)

≤ ‖gk+1‖‖β̂PR
k pk‖+ |g>k+1pk+1|

≤ αkΓλM (Mk+1)‖gk+1‖‖pk‖2(ϕkL+ (1− ϕk)ηk)

ε2λm(Mk)

+ |g>k+1pk+1|.

By (4.30), (4.31) and the compactness of L1, taking limits in (4.32) as k →
+∞, we obtain

lim
k→+∞

g>k+1Mk+1gk+1 = 0.

Finally, by (c) of Assumption 1

lim
k→+∞

‖gk‖ = 0

and this contradicts assumption (4.24).

As is well known, in the last two decades, several papers have been devoted
to define inexact linesearch procedures ensuring (i)-(iii) of Proposition 1 or
other similar technical conditions. The latter procedures enable to guaran-
tee some global convergence properties for the PR method (see e.g. [21] and
the references reported therein). We only mention here, as an example, the
approach proposed in [20] where an Armijo–type linesearch method is given
with an acceptability criterion of the steplength based on a “parabolic bound”.
We are certainly aware of the fact that to guarantee the properties (ii)-(iii)
might not be easy, and requires some additional effort.

However, in the current paper we limit our numerical experience to consider
standard linesearch procedures based on the Wolfe conditions, so that we adopt
the well known implementation proposed in [26], which finds a steplength such
that the strong Wolfe conditions hold with the parameter values of 0.0001 and
0.1. Our choice is motivated by the fact that, in order to avoid a possible bias
for the conclusions in our study, we need to accurately discard nonstandard
elements in our scheme.
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5 Damped preconditioned NCG methods: a numerical experience

In this section we consider the use of the damped vectors defined in (3.12)-
(3.19), for constructing a preconditioner based on quasi–Newton updates. The-
refore, according to the taxonomy in Section 1, here we consider unmodified
PNCG methods, where the use of damped techniques only affects the precondi-
tioning strategies and not the value of βk. Our aim is to perform a numerical
assessment when adopting damped techniques within a PNCG method. On
the other hand, note that as regards the convergence (and the order of conver-
gence) of PNCG methods, an interesting theoretical result has been proved in
[3]. However, it considers the use of an exact linesearch and a strong assump-
tion on the preconditioner is required, namely the preconditioner is assumed to
be a “strongly consistent approximation” of the Hessian matrix at the solution.
Therefore this result risks to be seldom applied in practice.

The preconditioner we use is an approximate inverse preconditioner be-
longing to the class proposed in [12] and briefly recalled in Section 2.3. It is
based on quasi–Newton updates and thus constructed, at each iteration k of
the PNCG method, by adding the contribution of the current pair (yk, sk).
According to the “limited memory” strategy, it looks backwards by taking
into account the most recent m pairs. Since it is iteratively constructed, it is
quite simple to introduce an adaptive rule and to choose, at each iteration
k, if it convenient to replace yk with a damped vector ŷk. If so, the resulting
preconditioner Pk(ŷk, sk) is then used in place of Pk(yk, sk).

We embedded the latter strategy in the implementation of the PNCG de-
scribed in [12] (we refer to this paper for all the details). Note that this im-
plementation is based on the standard CG+ code (see [17]), where the precon-
ditioner reported in (2.9) with the parameters in (2.10) is included, and the
linesearch technique is the same as that of [26].

In particular, we focused on the unmodified preconditioned Polak–Ribière
method and performed an extensive numerical testing by considering all the
large scale problems available in the CUTEst collection [18], namely 112 prob-
lems whose dimension ranges from 1000 to 10000. The stopping criterion is
the standard one (see e.g. [25]) which is given by

‖gk‖ ≤ 10−5 max{1, ‖xk‖}.

In the sequel our numerical results are reported by using performance profiles
[13], both in terms of number of iterations and number of function and gradient
evaluations. For each comparison we report two profiles: a standard profile
and a detailed profile; the latter one differs from the standard one only with
respect to the scale of the abscissa axis, which is restricted to values closer to
1. Moreover, we also recall that in the linesearch procedure adopted by the
authors in [26], the number of function and gradient evaluations coincide.

We started by considering our first proposal, namely the use of the damped
vector ŷ(1)

k in (3.12) combined with the adaptive rule in (3.14). First of all, we
needed to tune the choice of the two parameters ηk in (3.12) and σ in (3.14). In
Figure 1 (profile) and Figure 2 (detailed profile) we report the results obtained
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for different choices of ηk ∈ {2, 3, 4, 5} and by setting σ = 0.8. Conversely, in
Figure 3 (profile) and Figure 4 (detailed profile) we report the results obtained
for different choices of σ ∈ {0.8, 0.6, 0.4, 0.2} and by setting ηk = 4. By ob-
serving the profiles, the values ηk = 4 and σ = 0.8 seem to be the best ones,
based on our experiments on the above mentioned set of test problems. These
latter have been used in the sequel of this section as default values of ηk and
σ.

Fig. 1 Comparison among different choices of ηk in (3.12), setting σ = 0.8 in (3.14). Profiles
with respect to # iterations (left) and # function and gradient evaluations (right).

Fig. 2 Comparison among different choices of ηk in (3.12), setting σ = 0.8 in (3.14).
Detailed profiles with respect to # iterations (left) and # function and gradient evaluations
(right).

Figures 5–6 report the results of the comparison between the unmodified
preconditioned PR method, whose preconditioner is damped according to the
formula (3.12), and the standard preconditioned PR method. These profiles
clearly evidence the fruitful use of the first damped strategy both in terms of
efficiency and in terms of robustness.
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Fig. 3 Comparison among different choices of σ in (3.14), setting ηk = 4 in (3.12). Profiles
with respect to # iterations (left) and # function and gradient evaluations (right).

Fig. 4 Comparison among different choices of σ in (3.14), setting ηk = 4 in (3.12). Detailed
profiles with respect to # iterations (left) and # function and gradient evaluations (right).

Fig. 5 Comparison between unmodified preconditioned PR damped according to (3.12) and
the standard preconditioned PR (undamped). Profiles with respect to # iterations (left) and
# function and gradient evaluations (right).
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Fig. 6 Comparison between unmodified preconditioned PR damped according to (3.12) and
the standard preconditioned PR (undamped). Detailed profiles with respect to # iterations
(left) and # function and gradient evaluations (right).

Then we turned to our second proposal, namely the use of the damped
vector ŷ(2)

k in (3.19) combined with the original rule in (2.7) for choosing ϕk
(with Bksk replaced by −αkgk) with σ = 0.8. In the Figures 7–8 the compari-
son between the unmodified preconditioned PR method, whose preconditioner
is damped according to formula (3.19), and the standard preconditioned PR
method is reported. Also in this case the adoption of the damped strategy for
computing the preconditioner is very useful.

Fig. 7 Comparison between unmodified preconditioned PR damped according to (3.19) and
the standard preconditioned PR (undamped). Profiles with respect to # iterations (left) and
# function and gradient evaluations (right).

Finally, we compared the two damped strategies proposed in this paper.
The results of this comparison are reported in Figures 9–10. By observing
these profiles, the adoption of the first damped strategy seems to be slightly
preferable.

It is also worth to highlight that from the detailed complete numerical
results we obtained (not all reported in this paper), as expected the damped
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Fig. 8 Comparison between unmodified preconditioned PR damped according to (3.19) and
the standard preconditioned PR (undamped). Detailed profiles with respect to # iterations
(left) and # function and gradient evaluations (right).

Fig. 9 Comparison between the adoption of the two damped strategies in (3.12) and in
(3.19). Profiles with respect to # iterations (left) and # function and gradient evaluations
(right).

Fig. 10 Comparison between the adoption of the two damped strategies in (3.12) and in
(3.19). Detailed profiles with respect to # iterations (left) and # function and gradient
evaluations (right).
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strategy occurs in few cases. In particular, when it takes place it enhances
either the robustness or the efficiency of the algorithm. In other words, in the
case of test problems without “pathologies”, correctly the damped strategy is
not invoked by the adaptive rule.

On the overall, the results of the numerical experiences reported indicate
that the use of a damped strategy can definitely improve the performance of
the PR algorithm, at least on the CUTEst problems considered.

So far, the damped strategy was experimented in constructing our quasi–
Newton based preconditioner, which is the main focus of this paper. Now, for
the sake of completeness, since the theoretical part in Section 4 encompasses
the possibility to embed the damped strategy both in the definition of the
scalar βk and in the preconditioner, we urge to perform numerical testing
also on the use of β̂PRk in (4.22). In this regard, note that the use of damped
strategy was conceived in the context of quasi–Newton updates, and it is not
expected to be successfully exploited in the definition of the scalar βk used in
a NCG/PNCG method. In the sequel we report results obtained by using the

damped vector β̂PRk confirming this claim. In particular, we first consider the
unpreconditioned cased and compare the behaviour of the unmodified NCG

method with the method which adopts β̂PRk , setting ŷk = ŷ
(1)
k with the default

values of σ = 0.8 and ηk = 4. Then, we perform the same comparing in the
preconditioned case. Figure 11 and Figure 12 report the performance profiles
in terms of number of iterations and number of function/gradient evaluations
corresponding to these comparisons. As it can be observed from these profiles,

Fig. 11 Comparison between the use β̂PR
k in (4.22) (setting ŷk = ŷ

(1)
k ) and βPR

k in (2.4),
in both preconditioned and unpreconditioned cases. Profiles with respect to # iterations
(left) and # function and gradient evaluations (right).

the use of the β̂PRk does not yield a noteworthy improvement neither in terms
of iterations or function evaluations. Nevertheless we also observe that the
D-PR-PNCG scheme which also uses β̂PRk reveals to outperform the standard
NCG method. Thus, on the overall, the adoption of the damped strategy within
PNCG methods seems to be definitely promising.
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Fig. 12 Comparison between the use β̂PR
k in (4.22) (setting ŷk = ŷ

(1)
k ) and βPR

k in (2.4),
in both preconditioned and unpreconditioned cases. Detailed profiles with respect to #
iterations (left) and # function and gradient evaluations (right).

6 Conclusions and future works

In this seminal paper we proposed the introduction of damped techniques
within the framework of the NCG methods. We drew our inspiration from the
damped quasi–Newton methods proposed by Al-Baali and Powell. In particu-
lar, by referring to the PR method, we investigated separately two possibilities:

– the use of a damped vector in the definition of the scalar βk, hence af-
fecting the definition of the search direction and producing a modified
NCG/PNCG method;

– the use of a damped vector in the unmodified preconditioned NCG method.

As regards the first one, we proved that some global convergence properties
still hold for the modified D-PR-PNCG method, while substantially preserving
numerical performance. As concerns the second one, we used the damped
strategy for constructing a preconditioner based on quasi–Newton updates to
be used in the PNCG method. The results obtained clearly highlighted the
potentialities of this approach.

Of course several other aspects of interest on damped PNCG were not
treated in this paper. They range from (but are not limited to) the use of
damped techniques to possibility enhance some global convergence properties
of the NCG methods, to their more sophisticated use in the construction of a
preconditioner (for instance, by introducing a dependence on the iteration k
of the parameter σ = σk and a dependence of σk and ηk on ‖gk‖ or the num-
ber of iterations). Considering self–scaling quasi-Newton methods, it might

be also useful to consider the choice of η̄k =
sTkBksk
sTk yk

=
−αks

T
k gk

sTk yk
and to use

ηk = max(η̄k, 2) in the numerical experiences. Moreover, the combined use of
damped strategies with other linesearch procedures (different from the stan-
dard Wolfe method) is surely of great interest, too. Finally, adopting the test
(3.15) in place of the one in (3.14) can be a possible alternative to explore, in
order to improve performance.
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Appendix

In this appendix, we report a technical result used in the proofs of Proposition 1 (see [22]).

Lemma 1 Let {ξk} be a sequence of nonnegative real numbers. Let Ω > 0 and q ∈ (0, 1)
and suppose that there exists k1 ≥ 1 such that

ξk ≤ Ω + qξk−1, for any k ≥ k1.

Then,

ξk ≤
Ω

1− q
+

(
ξk1
−

Ω

1− q

)
qk−k1 , for any k ≥ k1.

Proof: Starting from relation

ξk ≤ Ω + qξk−1, for any k ≥ k1,

considering k − k1 iterations we get:

ξk ≤ Ω

k−k1−1∑
i=0

qi

+ qk−k1ξk1
,

from which we obtain

ξk ≤ Ω
(1− qk−k1

1− q

)
+ qk−k1ξk1

=
Ω

1− q
+

(
ξk1
−

Ω

1− q

)
qk−k1 .
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