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1 Introduction

The wide variation in crime rates over time and across regions has triggered a vast literature

in criminology, sociology, and economics, with the aim to explain the determinants of

crime. Since the seminal works of Becker (1968) and Ehrlich (1973), several studies have

investigated how inequality, labor market conditions and deterrence activities may a↵ect

crime rates in the US. Examples of this literature are: Marvell and Moody (1994), Levitt

(1996), Doyle et al. (1999), Becsi (1999), Kelly (2000), Raphael and Winter-Ebmer (2001),

Gould et al. (2002), Levitt (2002), Vieraitis et al. (2007), Choe (2008), Lin (2009), Johnson

and Raphael (2012), Chintrakarn and Herzer (2012), and Neal (2015).

In general, empirical results point to deterrence as a valid instrument to reduce crime.

In particular, higher incarceration rates are associated with lower crime rates (Marvell and

Moody, 1994; Levitt, 1996; Becsi, 1999; Doyle et al., 1999; Raphael and Winter-Ebmer,

2001; Vieraitis et al., 2007),1 and more intense police activities are accompanied by a

reduction in crime (Kelly, 2000; Levitt, 2002; Evans and Owens, 2007; Lin, 2009).2 Only a

few exceptions find a positive relationship between police and crime (see e.g. Becsi, 1999;

Doyle et al., 1999).

As for the impact of unemployment rate and income inequality on crime, there is

a general consensus that higher unemployment rates (Levitt, 1996; Doyle et al., 1999;

Raphael and Winter-Ebmer, 2001; Gould et al., 2002) and income inequality (Kelly, 2000;

Choe, 2008; Neal, 2015) increase crime.

The majority of above studies uses static panel regressions, with linear time trend

(Raphael and Winter-Ebmer, 2001; Gould et al., 2002) and time fixed e↵ects (Vieraitis

et al., 2007; Evans and Owens, 2007; Johnson and Raphael, 2012) to take trends and

cross-section dependence in the data into account. However, while the trend deterministic

component ignores the long-run movement of data, the specific time fixed e↵ects are likely

to produce misleading inference unless the pair-wise cross-correlations are identical (see

Blomquist and Westerlund, 2014).

Chintrakarn and Herzer (2012) use panel cointegration techniques to deal with trending

behaviour in crime rates when estimating the long-run relationship between crime and

inequality in the US. Their empirical results show that the top 10% income share and

the Gini coe�cient have a negative impact on crime rates. These results may reflect the

fact that the estimator used in the analysis is derived under the unrealistic assumption of

cross-section independence. In fact, Neal (2015) shows that, once cross-section dependence

is taken into account, a positive relationship between crime and inequality is found.

This paper aims to estimate the long run relationship between di↵erent types of crime,

1Spelman (2006) concludes that a 10% increase in imprisonment rates produces on average a 2-4%
decrease in crime rates.

2Nagin (2013) summarizes that “studies of police presence consistently find that putting more police
o�cers on the street has a substantial deterrent e↵ect on serious crime.”
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unemployment, inequality and deterrence activity in the US at state-level over the period

1978-2013 using techniques based on a common factor structure. To get a feeling for the

presence of common factors among the two main type of crimes (property and violent

crime) in the US, in Figure 1 we report the estimated first principal component of the

growth rate of crime of the states grouped in the same region (Northeast, South, West,

Midwest) along with the aggregate crime growth pattern.3 It clearly emerges that the rates

of crime across states tend to move together with the US aggregate crime growth rate. This

suggests that the states under investigations are largely interconnected. Therefore, in this

context, the use of an econometric methodology that accounts for cross-section dependence

seems to be appropriate.

In our empirical analysis, we proceed in three steps. We first test for unit root in the

data using the PANIC approach by Bai and Ng (2004), and then we check for cointegration

using the Durbin-Hausman type panel co-integration by Westerlund (2008). Lastly, we

estimate the crime equation, which we derive from the theoretical approach by Edmark

(2005) and Wu and Wu (2012), using the continuously-updated (CUP) estimator developed

by Bai and Kao (2006), that controls for serial correlation and endogeneity. We use several

measures of crime rates (property, violent, robbery, burglary, larceny and auto theft),

inequality (top 10% and top 5% of income earners, and Gini index), and two measures of

crime prevention (prison admissions per crime and state expenditure in police defense).

This paper contributes to the empirical literature on crime in the US in some re-

spects. First, to the best of our knowledge, this is the first paper to estimate the long-run

relationship between crime, unemployment, inequality, and deterrence in the US using

non-stationary panels. This represents a further step in the analysis for crime in the US,

since previous studies have only focused on crime and inequality (see Chintrakarn and

Herzer, 2012; Neal, 2015). Second, this paper uses factor models to deal with cross-section

dependence (see Blomquist and Westerlund, 2014; Birkel, 2014). Third, we use a recently

developed estimator for nonstationary panels that control for endogeneity and serial cor-

relation. Lastly, we o↵er a sensitivity analysis for crime using di↵erent measures of crime,

deterrence and inequality.

Our empirical analysis delivers four main results. First, our crime model well fits

the long run relationship between di↵erent type of crimes, inequality, unemployment and

deterrence measures, as strong evidence of co-integration is found. Second, the elasticities

of crimes with respect to inequality and unemployment are generally positive, whereas

those of deterrence measures display a negative sign. Third, all types of crime appear to

be more sensitive to inequality measures that consider the share of total income within a

larger population (i.e. top 10% instead of 5%). This result suggests that rich people, but

not top income earners, are more likely to be targeted by criminal activities (see Allen,

1996; Demombynes and Özler, 2005). Fourth, police activities play a major role in reducing

3The regional categorization follows the US Bureau classification.
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Figure 1: Estimated first principal component of the crime growth rates of various US
states entering in the same regions (Northeast, South, West, Midwest) and aggregate
crime growth pattern.
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property crime than prison admissions, while the e↵ect of the two measures of deterrence

on violent crime is similar in magnitude (see also Devine et al., 1988; Levitt, 1996; Spelman,

2005).

The paper is organised as follows. Section 2 presents the theoretical model of crime that

represents the basis of our empirical analysis. Section 3 describes the data and econometric

methodology used. Section 4 discusses the empirical results. Section 5 draws conclusions.

2 Theoretical model

Our crime model is inspired by the principles in Becker (1968) and follows the formula-

tion in Freeman (1999), Edmark (2005), and Wu and Wu (2012).4 The model describes

the choice of the individuals between work and crime, as their source of income during

one period. This means that work and crime are regarded as substitutes and cannot be

combined. Accordingly, we indicate with W the wage from honest work, whereas Wb is

the income from illegal activities. Like Edmark (2005), the presence of a idiosyncratic

psychological cost (c) of committing a crime is also considered. This cost, that can be

positive or negative, is assumed to be independent and continuously distributed over the

population. The rational choice of crime satisfies the following condition:

E (Wb)� c > E (W ) . (1)

According to (1), an individual will commit a crime if the expected return from crime,

minus the psychological cost, is higher than the expected return from honest work. For-

mally, the expected return from crime is as follows:

E (Wb) = (1� p)Wb + p (Wb � S) , (2)

where p represents the probability of being caught for an individual engaged in criminal

activities and S is the cost of punishment.5 The latter comprises fines, time spend in

jail, low standard of living in prisons, reduction in reputation, and restrictions on future

employments, among others.

The expected income from honest work is defined as follows:

E (W ) = (1� u)W + uA, (3)

where u indicates the unemployment rate, defined as the probability of being unemployed,

and A is the unemployment benefit. Substituting Eq.s (3) and (2) into condition (1), one

yields the following inequality:

4The model presented here is a static model as in Edmark (2005) and is su�cient to represent the
argumentations of the empirical framework.

5For simplicity, but without loss of generality, we assume that, when a criminal is caught, he is promptly
incarcerated. This implies that the probabilities of being caught and incarcerated coincide.
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c < [(1� p)Wb + p (Wb � S)]� [(1� u)W + uA] . (4)

The above formula states that an individual chooses to commit a crime instead of

working honestly if the psychological cost of committing a crime (i.e. c) is lower than the

quantity on the right-hand side. Moreover, it helps to elicit the e↵ect of the parameters of

the model on the supply of crime at more aggregate level (see Edmark, 2005). In fact, the

higher is the right-hand side of (4), the higher is the probability for individuals to commit

crimes, with an impact on the aggregate supply of crime.

The following three hypothesis are used to further specify the right-hand side of (4):

Hypothesis 1 (Edmark, 2005): Assume that W > A and u < 1 (both realistic assump-

tions). This implies that the right-hand side of Eq. (4) is increasing in u, because the

quantity [(1� u)W + uA] goes down as u rises.

Hypothesis 2 (Freeman, 1999): Assume that individuals who are likely to commit crimes

are low skilled workers. W is likely to be far lower than the average wage of population.

Hypothesis 3 (Freeman, 1999): Assume that Wb depends proportionally to the income of

the higher paid (H): Wb = vH, with v < 1, and the cost of punishment (S) is proportional

on the legal earnings of the criminal: S = qW , with q < 1.

As a result, the right-hand side of Eq. (4) can be written as:

[(1� p) vH + p (vH � qW )]� [(1� u)W + uA] . (5)

Relation (5) is increasing in earning inequality, which is defined as Wsp = H�W . This

implies that the greater the income inequality, the greater the incentive to commit crimes.

Relation (5) increases even when income of low and high paid workers rises of the same

percentage.6

In a nutshell, condition (5) is an increasing function in u and Wsp, and a decreasing

function in c, p and A. The above key variables allows us to introduce the supply function

of crime (Cs):

Cs

✓
+

Wsp,
�
p,

�
A,

+
u,

�
c

◆
. (6)

6A numerical example may clarify this point. Suppose that u=0.08, W=2 and A=1.5. For simplicity
assume that p = q = v = 0.5. The condition for having a positive value of (5) is that H

W > 1
v [pq + (1 �

u) + u A
W ]. In this case, it su�ces that H

W > 2.46. Since W = 2 ) H > 4.92. Fixing H = 6, we have that
the condition (5) is equal to 0.54. Now, let assume that both H and W rise by 10%, then H �W will rise
(i.e. from 4 to 4.4). The net e↵ect on (5) is positive: the quantity now is equal to 0.6.
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In order to derive the e↵ects that variables in (6) have on crime in a general equilibrium

setting, we also need to consider the demand function, which comes from potentially black

market buyers searching for illicit products (a typical example is the demand for illicit

drugs). Higher income levels are generally associated with a larger demand for crime

(Edmark, 2005). This e↵ect works in the opposite direction compared to that related to

the supply function. The aggregate demand of crime (Cd) can be then written as:

Cd

✓
+
W

◆
. (7)

Relation (7) has implications for the e↵ects of income on crime. For a given H, a rise

in W (and therefore a decrease in income inequality) produces a positive e↵ect on demand,

but a negative one on supply. Again, an ambiguous final e↵ect on crime is observed through

an increase in unemployment. In fact, higher levels of unemployment may negatively a↵ect

aggregate income and, if the impact on W is higher than that of H,7 then there will be

an increase in the supply and decrease in the demand. Putting together relations (6) and

(7), we have the following:

C⇤
✓

?
Wsp,

�
p,

�
A,

?
u,

�
c

◆
, (8)

where (C⇤) represents the quantity of crime that equates demand and supply. The question

mark above income inequality and unemployment rate indicates that it is not possible to

define a priori the sign of these variables.

Violent crimes (aggregate violent and robbery crimes) are also considered in this work,

even though our theoretical rationale is not strictly related to these kind of crimes. This

is because, as argued by Grogger (2006), theoretical frameworks of property crime can be

used to explain economically motivated o↵ences that are committed through the use of

violence. Further, Kelly (2000) and Edmark (2005) argue that unemployment and income

inequality may a↵ect violent crimes.8

3 Data and econometric specification

Our primary goal is to estimate a crime model that reflects as much as possible the the-

oretical framework described in Section 2. More specifically, we estimate the following

log-log model using annual data over the period 1978-2013 (see Becsi, 1999; Edmark, 2005;

Vieraitis et al., 2007; Choe, 2008; Lin, 2009):9

7It is plausible to assume that an unemployment shock (for example due to a technology innovation)
will have a big impact on low skilled workers (see e.g. Brynjolfsson and McAfee, 2014).

8In the strain theory of Merton (1938), it is stressed that individuals in low scale of social structure
tend to feel disadvantaged and alienated and, in response to that, they are more inclined to commit violent
crime.

9The main advantage of this the model is that the related estimates of the parameters represent the
elasticity of the explanatory variables respect to crime rate.
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ln

✓
O

N

◆

it

= ↵i + �1lnWsp,it + �2lnuit + �3lnpit + "it, (9)

where O
N

is the crime rate, that is the number of crimes (O) in each US state divided per

100,000 population (N), Wsp,it is income inequality, uit is the unemployment rate, and pit

indicates the risk of getting caught.10 We use six categories of crimes, namely property,

robbery, burglary, larceny theft, auto theft, and violent. Income inequality is measured as

share of personal income received by the richest 10% state population (see Frank, 2009;

Chintrakarn and Herzer, 2012). The probability of being caught is not directly observable,

and is usually captured by deterrence measures (see also Witt et al., 1998; Edmark, 2005;

Wu and Wu, 2012). In this paper, we use prison admissions per crime (prison) and

state expenditure in police defence in percentage of the total state spending (police).11

In addition, for a robustness check, we also estimate Eq. (9) using two additional income

inequality measures: top 5% and Gini index (see also Bourguignon et al., 2003; Chintrakarn

and Herzer, 2012). For details on data source, see Data Appendix.

Our analysis uses techniques based on a common factor structure. We proceed in three

steps. Notably, we first test for unit root in all the variables of interest using the PANIC

approach by Bai and Ng (2004), and then test for cointegration using the approach by

Westerlund (2008). Lastly, we estimate the parameters in eq. (9) using the CUP estimator

proposed by Bai and Kao (2006).

The Bai and Ng (2004) approach tests for the presence of a unit root in the common

factors and idiosyncratic components separately. Bai and Ng (2004) consider the following

factor model:

Yit = ci + �
0

iFt + eit, (10)

where ci is a polynomial trend function, Ft is an r ⇥ 1 vector of common factors, �i is the

corresponding vector of factor loadings, and eit denotes the idiosyncratic error.12 Model

(10) can be expressed in first di↵erence as follows:

xit = �
0

ift + zit, (11)

where xit = �Xit, ft = �Ft and zit = �eit. Bai and Ng (2004) apply the principal

component analysis to x to obtain r estimated factors ft, the corresponding factor loadings

�
0
i, and the estimated residuals ẑit = xit � �̂

0
if̂t. For t = 2, ..., T , Bai and Ng (2004) define:

10The average of unemployment benefits (A) and the psychological cost of crime (c) are not included in
specification (9) due to the lack of data (see also Edmark, 2005).

11Both measures of deterrence may su↵er from simultaneity bias in crime equations. Here, we address
this issue by using the CUP estimator that accounts for endogeneity. In addition, prison admission may
su↵er from ratio bias (see Fisher and Nagin, 1978) especially when crime equations are estimated in first
di↵erence. In general, there is very little evidence of ratio bias for the US data (see Levitt, 1998).

12See Bai and Ng (2004) for the model with constant and trend.
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êit =
tX

s=2

zit, i = 1, ..., N,

F̂t =
tX

s=2

f̂s, an r ⇥ 1 factor.

The process Yit in (10) may be nonstationary if one or more of the common factors are

nonstationary, and/or the idiosyncratic error is nonstationary. To test for the unit root in

the common factor components, Bai and Ng (2004) distinguish two di↵erent cases depend-

ing on the number of common factors selected in the data. The procedure is straightforward

when one common factor is extracted from the data (the ADF unit root test is applied to

the estimated factor), while it is more complex when more than one factor is selected.13

To test the stationarity of the idiosyncratic component, Bai and Ng (2004) propose to

pool the individual ADF t-statistics estimated components êit:

�eit = �i,0êi,t�1 +
pX

j=1

�i,j�êi,t�j + µi,t. (12)

Let ADF c
ê (i) be the ADF t-statistic for the i-th country. The asymptotic distribution

of the ADF c
ê (i) coincides with the Dickey-Fuller distribution for the case of no constant.

However, these individual time series tests have the same low power as those based on the

initial series. Bai and Ng (2004) proposed pooled tests based on Fisher’s type statistics

defined as in Choi (2001) and Maddala and Wu (1999). Let P c
ê (i) be the p-value of the

ADF c
ê (i), then

Zc
ê =

�2
PN

i=1 logP
c
ê (i)� 2Np

4N
�! N(0, 1) (13)

After testing for unit root in the data, the analysis proceeds to check for cointegration

among the variables in equation (9). To this end, we consider the Durbin-Hausman panel

cointegration test proposed by Westerlund (2008). Consider the following model

yit = ↵i + �xit + zit, (14)

xit = xit�1 + wit. (15)

The error term zit is defined by the following equations

zit = �
0

iFt + eit, (16)

Fjt = ⇢iFjt�1 + µit, (17)

eit = �ieit�1 + �it, (18)

13For details, see Bai and Ng (2004).
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where Ft is a k-dimensional vector of common factors Fjt with j = 1, ..., k and �i is a vector

of factor loadings. In equation (17), it is assumed that ⇢j < 1 for all j, so as to ensure

that Ft is stationary. Therefore, the relationship in (14) is cointegrated if ⇢i < 1 and it

is spurious if ⇢i = 1. In order to construct the test, Westerlund (2008) uses the approach

developed by Bai and Ng (2004).14 A test of the null hypothesis of no cointegration can

be constructed as a unit root test of the recumulated sum of the defactored and first

di↵erentiated residuals. By taking firsts di↵erence of (16), we have:

�zit = �
0

i�Ft + eit.

Since �zit is unknown, the method of the principal components is applied to its OLS

estimate, which are:

�ẑit = �yit � �̂i�xit,

where �̂i is obtaining by regressing �yit on �xit. Let �, �F and �ẑ be K⇥N , (T �1)⇥N

matrices of stacked observations on �i, �Ft and �ẑit, respectively. The principal compo-

nents estimator �F̂ of �F can be gained by computing
p
T � 1 times the eigenvectors

corresponding to the K largest eigenvalues of the (T � 1) ⇥ (T � 1) matrix �ẑ�ẑ
0
, and

the matrix of the factor loadings is given by �̂ = �F̂ 0�ẑ/T � 1. Once �̂i and �F̂t are

obtained, the defactored and first di↵erentiated residuals are given by

�êit = �ẑit � �̂
0

i�Ft, (19)

that, recumulated, becomes:

êit =
tX

j=2

�eij. (20)

Westerlund (2008) shows that êit is a consistent estimates of eit, and this ensures that

a cointegration test can be implemented using (18) with êit in place of eit. Therefore, the

null hypothesis of no cointegration is equivalent to testing whether �i = 1 in the following

regressions:

êit = �iêit�1 + error. (21)

Westerlund (2008) develops two panel cointegration tests that are derived by applying

the Durbin-Hausman principle to (21). As for the first test, called panel test, the null and

the alternative hypothesis can be formulated as H0 : �i = 1 for all i = 1, ..., n against

Hp
1 : �i = �i and � < 1 for all i, the alternative hypothesis for the second test, named

group mean test, is Hp
1 : �i < 1 for at least some i. In this paper, we apply the panel test

as under the alternative hypothesis a common cointegrating relationship is shared by all

14As for the assumptions in the data generating process (17)-(18), see Westerlund (2008).
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the units, and the long-run relationship (see equation 9) can be then estimated using the

CUP estimator. The Durbin-Hausman panel test statistics is as follows:

DHp = Ŝn(�̃� ŷ)2
nX

i=1

TX

t=2

ê2it�1,

where Ŝn = !̂2
n/(�̂

2
n)

2 indicates the variance ratio, with !̂i = 1
T�1

PMi

j=Mi

✓
1 � j

Mi+1

◆

PT
t=j+1 �̂it�̂it�j being the consistent estimate of !2

i , the long variance of �it, which are

the residuals from the OLS regression in (21), and Mi is a bandwidth parameter that

determines how many autocovariances of �it.

Once evidence of a cointegrating relationship is found, the parameters in equation (9)

are estimated by using the FM-CUP estimator proposed by Bai and Kao (2006):

�̂CUP =

 nX

i=1

✓ TX

i=1

ŷ+i,t
�
�̂CUP

�
(xi,t � x̃i)

0 � T
�
�̂0

i

�
�̂CUP

�
�̂+

F "i

�
�̂CUP

�
+ �̂+

µ"i

�
�̂CUP

��◆�

 nX

i=1

TX

t=1

(xi,t � x̄i)(xi,t � x̄i)
0
��1

,

(22)

where ŷ+i,t = yi,t �
✓
�̂

0
i⌦̂F "i + ⌦̂µ"i

◆
⌦̂�1

"i �xi,t indicates the transformation of the original

dependent variable in order to correct for endogeneity, and �̂
0
i the estimated factor load-

ings.15 The CUP-FM is constructed by estimating parameters, long-run covariances matrix

(⌦) and factor loadings recursively. Thus �̂FM, ⌦̂ and ⇤̂i are estimated repeatedly, until

convergence is reached.

4 Empirical Results

In order to detect cross-correlations in the data, we compute the pair-wise cross-county

correlation coe�cients of each variable along with the cross-sectional dependence (CD) test

by Pesaran et al. (2008). The related results, reported in Table 1, show strong evidence of

cross-correlation for all the examined variables.

In applying the Bai and Ng procedure to test for unit root described in previous sec-

tion, we consider the common factors and the idiosyncratic components separately. As a

preliminary step, the BIC 3 criterion developed by Bai and Ng (2002) is applied in order to

select the number of common factors. The related results point to one common factor for

each of the examined variables. The unit root results in Table 2 show that all the variables

of interest are nonstationary processes.

15As for the use of the CUP estimator, see also Costantini and Gutierrez (2013).
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Table 1: CD test results, 1978-2013.
Levels First di↵erence

Variables ˆ̄⇢ CD p� value ˆ̄⇢ CD p� value
Property 0.710 149.11 0.000 0.402 83.25 0.000
Robbery 0.351 73.75 0.000 0.258 53.48 0.000
Burglary 0.823 172.75 0.000 0.350 72.57 0.000
Auto theft 0.517 108.65 0.000 0.309 64.07 0.000
Larceny theft 0.625 131.17 0.000 0.381 78.94 0.000
Violent 0.313 65.76 0.000 0.283 58.64 0.000
Unemployment 0.676 141.89 0.000 0.697 144.24 0.000
Top10 0.871 182.82 0.000 0.445 92.23 0.000
Top5 0.913 191.81 0.000 0.598 123.86 0.000
Gini 0.886 186.03 0.000 0.553 114.56 0.000
Police 0.340 71.42 0.000 0.477 98.74 0.000
Prison (property) 0.949 199.37 0.000 0.277 57.35 0.000
Prison (robbery) 0.851 178.63 0.000 0.226 46.78 0.000
Prison (burglary) 0.957 200.94 0.000 0.327 67.65 0.000
Prison (auto theft) 0.845 177.42 0.000 0.221 45.79 0.000
Prison (larceny theft) 0.944 198.21 0.000 0.244 50.62 0.000
Prison (Violent) 0.865 181.74 0.000 0.226 46.74 0.000

Notes: Variables are expressed in log. Prison deterrence measure is expressed as inmates prison ad-
mission per crime (indicated in parenthesis). The average cross-correlation coe�cient ˆ̄⇢ = (2/N(N �
1))

PN�1
i=1

P
j = i+ 1N ⇢̂ij is the average of the country-by-country cross-correlation coe�cients ⇢̂ij . CD

indicates the Pesaran et al. (2008) test that is defined as
p
2T/N(N � 1)⇢̂ij .

12



Table 2: Panel unit root test results, 1978-2013.
Variables BNADF c

F̂
BNZc

ê

Property 1.512
(1.000)

�0.593
(0.553)

Robbery 0.074
(0.960)

1.163
(0.245)

Burglary �0.340
(0.907)

0.305
(0.761)

Auto theft �0.021
(0.950)

�0.016
(0.987)

Larceny theft 1.039
(0.995)

�0.593
(0.553)

Violent �1.345
(0.597)

�1.867
(0.062)

Unemployment �1.585
(0.480)

3.664
(0.000)

Top10 �1.752
(0.398)

3.538
(0.000)

Top5 �2.157
(0.225)

6.441
(0.000)

Gini �2.088
(0.250)

4.176
(0.000)

Police �1.846
(0.353)

1.725
(0.084)

Prison (property) �1.975
(0.295)

0.187
(0.852)

Prison (robbery) �1.618
(0.463)

2.022
(0.043)

Prison (burglary) �1.994
(0.288)

0.340
(0.955)

Prison (auto theft) 0.721
(0.990)

1.331
(0.183)

Prison (larceny theft) �1.815
(0.368)

0.002
(0.998)

Prison (Violent) �0.847
(0.792)

2.641
(0.008)

Notes: Variables are expressed in log. Prison deterrence measure is expressed as inmates prison admission
per crime (indicated in parenthesis). The number of common factors (r) selected using the BIC 3 criterion
is equal to 1. The maximum number of factors is set to 4. BNADF c

F̂
and BNP c

ê
denote the unit root

tests by Bai and Ng (2004) on common factors and idiosyncratic components, respectively. The ADF test
regression includes a constant. p-values are in parenthesis.

After checking for non-stationarity in the data, we test for panel cointegration among

the variables in Eq. (9). More specifically, Table 3 reports the panel cointegration results

when top 10% inequality measure is used, while Table 4 illustrates the results in case of

top 5% and Gini inequality measures. Findings in Table 3 show that our model well fits

the long-run relationship between the di↵erent types of crime, top 10% and deterrence

measures, on the ground that strong evidence of cointegration is found. This result is also

confirmed when top 5% and Gini measures are considered for a robustness check; only

in one case there is no evidence of cointegration (i.e. top 5%, unemployment and prison

admissions).

In Tables 5-7, the estimation results are reported. They are generally in line with

the theoretical arguments provided in Section 2 and previous studies (see Section 1). In
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Table 3: Panel cointegration results, 1978-2013. Measure of inequality: Top 10%.
Equation 9

(top10, unem., police)
Equation 9

(top10, unem., prison)

Dependent variables DHp test
(p�value)

DHp test
(p�value)

Property 4.700⇤⇤⇤
(0.000)

6.306⇤⇤⇤
(0.000)

Robbery 3.638⇤⇤⇤
(0.000)

1.502⇤
(0.067)

Burglary 2.238⇤⇤
(0.013)

5.203⇤⇤⇤
(0.000)

Auto theft 2.210⇤⇤
(0.014)

1.653⇤⇤
(0.049)

Larceny theft 4.859⇤⇤⇤
(0.000)

7.506⇤⇤⇤
(0.000)

Violent 7.055⇤⇤⇤
(0.000)

2.003⇤⇤
(0.023)

Notes: Variables are expressed in log (see Eq. (9)). Prison deterrence measure is expressed as inmates
prison admission per crime. ⇤,⇤⇤, and ⇤⇤⇤ indicate significance at 10%, 5%, and 1% level. p-values are
reported in parenthesis.

particular, the supply e↵ects of crime seem to prevail on demand e↵ects, since crime

elasticities with respect to inequality measures and unemployment are mostly positive.

Similar results are found in Levitt (1996), Becsi (1999), Raphael and Winter-Ebmer (2001),

and Neal (2015). It should be noted that, on average, the estimated elasticities of both

property and violent crime with respect to unemployment are close in magnitude to those

found in Levitt (1996), whereas the elasticity with respect to prison is within the range

suggested by Spelman (2006). In addition, while the e↵ect of police on property crimes

turn to be similar to that in Lin (2009), it di↵ers slightly from that in Lin (2009) in case

of violent crimes.

Table 4: Panel cointegration results, 1978-2013. Measure of inequality: Top 5% and Gini.
Equation 9

(top5, unem., police)
Equation 9

(top5, unem., prison)
Equation 9

(Gini, unem., police)
Equation 9

(Gini, unem., prison)

Dependent variables DHp test
(p�value)

DHp test
(p�value)

DHp test
(p�value)

DHp test
(p�value)

Property 3.421⇤⇤⇤
(0.000)

6.714⇤⇤⇤
(0.000)

5.566⇤⇤⇤
(0.000)

5.473⇤⇤⇤
(0.000)

Robbery 3.473⇤⇤⇤
(0.000)

1.472⇤
(0.070)

4.229⇤⇤⇤
(0.000)

1.709⇤⇤
(0.044)

Burglary 2.612⇤⇤⇤
(0.004)

4.473⇤⇤⇤
(0.000)

6.010⇤⇤⇤
(0.000)

6.980⇤⇤⇤
(0.000)

Auto theft 2.073⇤⇤
(0.019)

�0.157
(0.438)

4.017⇤⇤⇤
(0.000)

1.321⇤
(0.093)

Larceny theft 3.442⇤⇤⇤
(0.000)

7.813⇤⇤⇤
(0.000)

5.323⇤⇤⇤
(0.000)

10.124⇤⇤⇤
(0.000)

Violent 4.193⇤⇤⇤
(0.001)

3.012⇤⇤⇤
(0.001)

4.719⇤⇤⇤
(0.000)

3.455⇤⇤⇤
(0.000)

Notes: Variables are expressed in log (see Eq. (9)). Prison deterrence measure is expressed as inmates
prison admission per crime ⇤,⇤⇤, and ⇤⇤⇤ indicate significance at 10%, 5%, and 1% level. p-values are
reported in parenthesis.
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As regards the e↵ect of income inequality on crime, it is evident from Tables 5-7 that,

on average, the elasticities of property crime with respect to all inequality measures are

larger than those of violent crimes. This pattern is also highlighted in Levitt (1996)

and Raphael and Winter-Ebmer (2001). This is because property crimes are primarily

committed for economic reasons. It is also important to note that the elasticities for

di↵erent type of crimes with respect to both top 10% and Gini index measures are larger

than those related to top 5%. These results are in line with arguments developed in Allen

(1996) and Demombynes and Özler (2005). In particular, Allen (1996) states that “in

response to crime fears arising from inequality, upper-income crime targets have undertaken

self-protective measures that may have o↵set criminal opportunities created by income

inequality.” Therefore, this is not true for lower income earners.

The findings concerning deterrence measures show that property crime is generally more

sensitive to police than prison, while this di↵erence disappears in case of violent crimes.

This may be due to the fact that the threat of incarceration, captured by prison, is rather

weak for property crimes, since in general the latter does not involve tough sanctions. This

argument may also be used to explain di↵erences among auto theft and the aggregate level

of property crime in terms of sensitivity to police (see Tables 5-7). In fact, auto theft

involves both criminal and illegal activities of stealing and selling cars, which are generally

sanctioned as violent crimes (see Rosenmerkel et al., 2009; Longman, 2006).

With regard to the impact that labour market conditions have on the two main forms

of crimes, the results show that property crimes are on average more sensitive to unem-

ployment than violent crimes (see also Levitt, 1996; Donohue and Levitt, 2001; Raphael

and Winter-Ebmer, 2001).16

Our analysis highlights that income inequality plays a crucial role in a↵ecting all types

of crimes. Therefore, reducing this condition should be a target in order to combat crime.

Inequality not only poses moral questions, but also impact on the economic growth trough

an increase in crime. In fact, higher crime rates are likely to reduce the return to legal

activities, and may provide further incentives for individuals to seek illegal income, with an

adverse e↵ect on investments and human capital accumulation (see Josten, 2003). There-

fore, redistributive policies that tend to sustain personal income of more disadvantaged

individuals may be recommend to this end, especially when unemployment is high, with a

particular beneficial impact on property crime.

Turning to the role of deterrence on crime, police enforcement activities seem to exert

a di↵erent e↵ect on the two main types of crimes: a rise by 1% of police causes on average

a reduction in property and violent crime by 0.98% and 0.25%, respectively. This implies

that, in those states where violent crimes are significantly high, a rise in police forces may

not produce the expected result in terms of o↵enses reduction. In addition, any reinforce-

16It should be noted that auto theft crime regression shows no cointegration for top 5%, unemployment
and prison, while it is instead statistically significant with top 10%, unemployment and Gini measures
(see Table 4.).
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ment of imprisonment policy may be not particularly convenient for a state government.

This is because the e↵ect of prison on property crime is much weaker than that of police

(the average estimated elasticity of property crime with respect to prison is rather small

and equal to 0.14%) and the e↵ect on violent crime is only slightly larger than that of police

(the average estimated elasticity of violent crime with respect to prison is 0.37%). As a

result, pursuing tough imprisonment policies may not lead to significant gains in terms of

reduction in crime, and states may face unsustainable costs with no benefit for the society

(see Henrichson and Delaney, 2012; Kearney et al., 2014).17

Table 5: Estimation results of Equation (9), 1978-2013. Measure of inequality: Top 10%.
Variables property burglary auto theft larceny theft violent robbery

Top10 2.985⇤⇤⇤
(0.244)

1.428⇤⇤⇤
(0.210)

1.711⇤⇤⇤
(0.213)

3.032⇤⇤⇤
(0.232)

2.655⇤⇤⇤
(0.194)

1.269⇤⇤⇤
(0.160)

Unemployment 0.618⇤⇤⇤
(0.048)

0.721⇤⇤⇤
(0.041)

�0.038
(0.042)

0.550⇤⇤⇤
(0.046)

0.271⇤⇤⇤
(0.038)

0.217⇤⇤⇤
(0.032)

Police �1.039⇤⇤⇤
(0.136)

�0.864⇤⇤⇤
(0.117)

�0.621⇤⇤⇤
(0.116)

�1.030⇤⇤⇤
(0.129)

�0.324⇤⇤⇤
(0.109)

�0.680⇤⇤⇤
(0.092)

Variables property burglary auto theft larceny theft violent robbery

Top10 3.547⇤⇤⇤
(0.261)

1.711⇤⇤⇤
(0.225)

4.375⇤⇤⇤
(0.211)

3.919⇤⇤⇤
(0.246)

3.977⇤⇤⇤
(0.195)

2.943⇤⇤⇤
(0.162)

Unemployment 0.697⇤⇤⇤
(0.048)

0.797⇤⇤⇤
(0.042)

0.114⇤⇤⇤
(0.040)

0.626⇤⇤⇤
(0.045)

0.281⇤⇤⇤
(0.037)

0.201⇤⇤⇤
(0.031)

Prison �0.104⇤
(0.064)

�0.031
(0.049)

�0.545⇤⇤⇤
(0.041)

�0.181⇤⇤⇤
(0.062)

�0.335⇤⇤⇤
(0.047)

�0.361⇤⇤⇤
(0.033)

Notes: Variables are expressed in log (see Eq. (9)). Prison deterrence measure is expressed as inmates
prison admission per crime. Standard errors are in parenthesis. ⇤,⇤⇤ ,⇤⇤⇤ indicate significance at 10%, 5%
and 1% level.

17A reinforcement of imprisonment policies may also produce a rise in wage inequality with an increasing
impact on crime (Western et al., 2001; Western and Pettit, 2002). Individuals that are released from prison
may su↵er from low earnings and irregular employment. This may cause deterioration in job skills, and
undermine potential connection with job opportunities. All this may produce an increase in crime (see
Hagan, 1993).
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Table 6: Estimation results of Equation (9), 1978-2013. Measure of inequality: Top 5%.
Variables property burglary auto theft larceny theft violent robbery

Top5 2.132⇤⇤⇤
(0.183)

0.974⇤⇤⇤
(0.156)

1.203⇤⇤⇤
(0.158)

2.183⇤⇤⇤
(0.174)

1.918⇤⇤⇤
(0.145)

0.912⇤⇤⇤
(0.121)

Unemployment 0.753⇤⇤⇤
(0.050)

0.778⇤⇤⇤
(0.043)

0.040
(0.044)

0.692⇤⇤⇤
(0.048)

0.395⇤⇤⇤
(0.040)

0.282⇤⇤⇤
(0.034)

Police �1.111⇤⇤⇤
(0.134)

�0.904⇤⇤⇤
(0.115)

�0.649⇤⇤⇤
(0.115)

�1.098⇤⇤⇤
(0.128)

�0.381⇤⇤⇤
(0.108)

�0.702⇤⇤⇤
(0.091)

Variables property burglary auto theft larceny theft violent robbery

Top5 2.258⇤⇤⇤
(0.196)

0.819⇤⇤⇤
(0.171)

- 2.613⇤⇤⇤
(0.185)

2.856⇤⇤⇤
(0.146)

2.113⇤⇤⇤
(0.123)

Unemployment 0.849⇤⇤⇤
(0.051)

0.874⇤⇤⇤
(0.045)

- 0.798⇤⇤⇤
(0.048)

0.446⇤⇤⇤
(0.039)

0.342⇤⇤⇤
(0.033)

Prison �0.030
(0.064)

0.050
(0.050)

- �0.122⇤⇤⇤
(0.063)

�0.321⇤⇤⇤
(0.047)

�0.352⇤⇤⇤
(0.033)

Notes: Variables are expressed in log (see Eq. (9)). Prison deterrence measure is expressed as inmates
prison admission per crime. Standard errors are in parenthesis. ⇤,⇤⇤ ,⇤⇤⇤ indicate significance at 10%,
5% and 1% level. The auto theft crime regression is not estimated when prison is considered, since
cointegration test results are not statically significant (see Table 4).

Table 7: Estimation results of Equation (9), 1978-2013. Measure of inequality: Gini.
Variables property burglary auto theft larceny theft violent robbery

Gini 4.726⇤⇤⇤
(0.324)

2.611⇤⇤⇤
(0.288)

2.777⇤⇤⇤
(0.280)

4.788⇤⇤⇤
(0.306)

4.003⇤⇤⇤
(0.249)

2.115⇤⇤⇤
(0.215)

Unemployment 0.646⇤⇤⇤
(0.049)

0.760⇤⇤⇤
(0.043)

�0.013
(0.041)

0.572⇤⇤⇤
(0.048)

0.302⇤⇤⇤
(0.037)

0.230⇤⇤⇤
(0.032)

Police �0.765⇤⇤⇤
(0.144)

�0.681⇤⇤⇤
(0.129)

�0.430⇤⇤⇤
(0.122)

�0.777⇤⇤⇤
(0.136)

�0.050
(0.112)

�0.506⇤⇤⇤
(0.096)

Variables property burglary auto theft larceny theft violent robbery

Gini 6.571⇤⇤⇤
(0.340)

4.586⇤⇤⇤
(0.291)

6.694⇤⇤⇤
(0.266)

6.730⇤⇤⇤
(0.323)

6.467⇤⇤⇤
(0.259)

5.003⇤⇤⇤
(0.211)

Unemployment 0.639⇤⇤⇤
(0.048)

0.699⇤⇤⇤
(0.043)

0.108⇤⇤⇤
(0.038)

0.571⇤⇤⇤
(0.045)

0.256⇤⇤⇤
(0.036)

0.157⇤⇤⇤
(0.029)

Prison �0.281⇤⇤⇤
(0.063)

�0.247⇤⇤⇤
(0.049)

�0.607⇤⇤⇤
(0.040)

�0.321⇤⇤⇤
(0.065)

�0.467⇤⇤⇤
(0.049)

�0.468⇤⇤⇤
(0.033)

Notes: Variables are expressed in log (see Eq. (9)). Prison deterrence measure is expressed as inmates
prison admission per crime. Standard errors are in parenthesis; ⇤,⇤⇤ ,⇤⇤⇤ indicate significance at 10%, 5%
and 1% level.
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5 Conclusions

This paper aims to estimate the long run relationship between crime, unemployment,

inequality and deterrence in the US at state-level over the period 1978-2013 using non-

stationary panels based on a common factor structure. We consider several measures of

crime and deterrence and use a recently developed CUP estimator developed by Bai and

Kao (2006) that controls for serial correlation and endogenity.

Our empirical analysis o↵ers four main results. First, our crime model well fits the long

run relationship between di↵erent type of crimes, inequality, unemployment and deter-

rence measures. Second, the impact of inequality and unemployment on crime is positive,

whereas that of deterrence is negative. Third, crimes appear to be more sensitive to share

of total income within a larger population. Fourth, the two measures of deterrence exert a

similar e↵ect on violent crimes, while police activities are more e↵ective to combat property

crimes.

Our empirical results induce some reflections on the e↵ectiveness of measures to combat

crime. First, policies aiming to sustain personal income of more disadvantaged people

may help to weaken crime. Second, police enforcement activities may not produce a

relevant reduction in violent crimes. Lastly, a reinforcement of imprisonment policy may

be unsustainable in terms of social costs.
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A Data appendix

Data on crimes and prison admissions are taken from the Bureau of Justice Statistics,

whereas data on police defense expenditures are from http://www.usgovernmentspending.

com/. Data for unemployment rate are taken from US Bureau of Labour Statistics. Income

inequality data are from Frank (2009) available at http://www.shsu.edu/
~

eco_mwf/.
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