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ABSTRACT: In this paper, we present a comparison of the forecasting perfomance
of selected static and dynamic factor models on two large monthly data panels. The
first dataset contains EU variables, whereas the other contains US variables. These
data panels are split into two parts: the first subsample (the calibration sample) is
used to select the most performing specification for each class of models in a in-
sample environment and the second subsample (the proper sample) is used to compare
the performances of the selected models in an out-of-sample environment. In the
calibration sample, genetic algorithms are employed to achieve an efficient exploration
of the parameter space. We find that dynamic factor models are globally the most
performing methods on both data panels.
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1 Introduction

In this paper, a comparative analysis of the forecasting performance of three
Large-Dimensional Dynamic Factor Models is presented. As a key feature,
Dynamic Factor Models represent each variable in a dataset as the sum of
two orthogonal terms: a common component χt , driven by a reduced (as com-
pared to the number of series in the dataset) number of common factors, and
an idiosyncratic component ξt , which represents measurement errors or local
features. Among the different versions of the Dynamic Factor Models we se-
lected:

(i) SW model. This time-domain method was introduced in Stock & Watson,
(2002a), Stock & Watson, (2002b). The factors are estimated by com-
puting static principal components of the variables in the dataset. Let yit
be the variable of the dataset to be forecasted at time t, its h-step-ahead
prediction equation (also called Diffusion Forecast Index) is obtained by
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regressing yit+h on the factors and on yit itself. Lags of the factors and of
yit may be added.

(ii) FHLR model. This frequency-domain method was proposed in Forni et al.
, (2000), Forni et al. , (2005) and requires the computation of two steps.
In a first step, the common component χt , the idiosyncratic component
ξt and their covariances are estimated using a frequency-domain method
introduced in Forni et al. , (2000) named Dynamic Principal Component.
In the second step, the factors are estimated by computing Generalized
Principal Components.

(iii) FHLZ model. This frequency-domain method was proposed in Forni et al.
, (2015), Forni et al. , (2016b). Here, the underlying assumption in (i)
and (ii) that the common components span a finite-dimensional space as
n tends to infinity is relaxed.

There exists some literature comparing the forecasting performances of
SW and FHLR, but universal consensus still does not seem to have been reached.
Theoretically, time-domain methods consider only relations among the vari-
ables at the same time, whereas frequency-domain methods exploit leaded and
lagged relations among the variables. However time-domain methods require
less parameters to be calibrated. Hence they are more robust to misspecifi-
cation than frequency-domain methods. Instead, a systematic comparison of
the forecasting performances of SW, FHLR and FHLZ can be found only in
Forni et al. , (2016a), Della Marra, (2017). Forni et al. , (2016a) conducted a
forecasting exercise on a US macroeconomic dataset, taking an autoregressive
process of order 4 as a benchmark. They showed that FHLZ oupterforms SW,
FHLR and the benchmark both for Industrial Production and Inflation during
the Great Moderation. In the Great Recession, the forecasting performances
of the Industrial Production change dramatically: all factor models are outper-
formed by the benchmark. SW and FHLR outperform FHLZ. Hence, Forni
et al. concluded that, due to its more dynamical structure, FHLZ tends to be
the best performing method in ”stationary periods”, but it loses ground during
regime changes. Also, they showed that FHLZ tends to be outperforming on
nominal variables and FHLR on real variables. Della Marra, (2017) conducted
a forecasting exercise on an EU macroeconomic dataset. The global settings
of his exercise are basically the same as in Forni et al. , (2016a), but also the
length of the rolling window is suboptimally selected during the calibration
process. He found that, on the proper sample, FHLZ is the most performing
for the Inflation. However, mixed evidencies appear over the proper sample
for the Industrial Production.

In this paper, the EU dataset is the same employed in Della Marra, (2017).



This dataset is split into two subsamples. To guarantee balancedness, time
series with missing data are discarded. The former, from February 1986 to
December 2000, is used to calibrate the models, i.e. to produce in-sample
forecasts of the variables of the EU dataset for several specifications of SW,
FHLR and FHLZ. Then, for each class of models, we select the specification
which shows the minimum mean square forecast error (MSFE). These mod-
els are then run and compared in the remaining sample, from January 2001
to November 2015. Instead, the US dataset employed in our exercise is ac-
curately described in McCracken & Ng, (2016). This dataset is split into two
subsamples. The former, from February 1959 to December 1984, is used to
calibrate the models. Then, for each class of models, we select the specifi-
cation which shows the minimum mean square forecast error (MSFE). These
models are then run and compared in the remaining sample, from January 1985
to October 2016.

The paper is structured as follows. In Section 2, the calibration process
of the models is described. In Section 3, results are discussed and Section 4
concludes.

2 Description of the two datasets and of the calibration process

Both dataset contain real variables (import/export price indexes, employment,
Industrial Production) and nominal variables (money aggregates, consumer
price indexes, wages), asset prices (stock prices and exchange rates) and sur-
veys. To achieve stationarity, several series are deseasonalized and trans-
formed. No treatment for outliers is applied. In addition to SW, FHLR, FHLZ,
the forecasts of an autoregressive process (AR) are computed. The order p
of the AR process is determined in the calibration process. As in Stock &
Watson, (2002b), D’Agostino & Giannone, (2012), to assess the forecasting
performances, the variables which are taken into account are the level of the
logarithm of the Industrial Production (IP) and the yearly change of the loga-
rithm of the Consumer Price Index (CPI). Forecasts are computed h-months
ahead, with h ∈ {1,3,6,12,24}. For each methods, we employ a rolling-
window scheme [t− l, t], whose size l is determined in the calibration sample.
To assess the forecasting performance of each model, the mean-square forecast
error (MSFE) is employed as a metric.

Since each method is characterized by several parameters, an exhaustive
exploration of the parameter space would be computationally infeasbile. Hence,
we employ genetic algorithms to explore more efficiently the parameter space
in the calibration sample of each dataset. At each epoque, the population of



the genetic algorithm is a subset of the strings containing all the possibile con-
figurations of the parameters. We set the fitness as the inverse for its MSFE.
For each method, we iterate the genetic algorithm ten times on the calibration
sample of the two datasets. The fitness of each individual is stored in a data
structure. Eventually, for each method we select as the most performing con-
figuration the one endowed with the greatest fitness. The convergence of each
iteration of the genetic algorithms is graphically shown by plotting the boxplot
of the results. These plots are not reported here.

3 Results

The forecasting performance of the three dynamic factor models over the IP
and CPI are compared on the proper sample of each dataset. As in Forni et al.
, (2016a) and in Della Marra, (2017), to assess the forecasting performance of
each couple of methods locally, each time series of the dataset is smoothed by a
centered moving average of length m= 61 (with coefficients equal to 1/m) and
then the Fluctuation test (Giacomini & Rossi, (2010)) is run, at 5% significance
level. The results for the IP at horizon h = 12 are reported in figure1.

As to the EU dataset, all methods outperform AR significatively from the
crisis on (which, according to CEPR, starts in April 2008). Globally, FHLR
and FHLZ outperforms SW from the crisis on. As to the IP, FHLR tends to
outperform FHLZ from the crisis on. Instead, as to the CPI, FHLZ tends to
outperform FHLR from the crisis on, but evidencies are less significative. As
in Forni et al. , (2016a) and in Della Marra, (2017), this exercise has been
extended to the other variables in the dataset. The results achieved are omit-
ted here, but it can be seen that FHLR tends globally to outperform the other
methods on the real variables and that FHLZ tends globally to outperform the
other methods on the nominal variables. On the US dataset, all methods tend,
instead, to lose ground against AR significatively during the Great Recession.
FHLR tends globally to outperform the other methods on the real variables
and that FHLZ tends globally to outperform the other methods on the nominal
variables.

4 Conclusions

In this paper, we have shown that FHLR tends globally to outperform the other
methods on the real variables and that FHLZ tends globally to outperform
the other methods on the nominal variables. As to EU dataset, Della Marra,
(2017) found similar results for the CPI, but mixed evidencies appeared for
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Figure 1: Fluctuation test for the IP.

the IP. As to the US dataset, Forni et al. , (2016a) found similar but less
significative results. Hence, we have empirically shown that the calibration
process plays a crucial role in these applications, since a more efficient explo-
ration of the paramter space allowed us to empirically prove the superiority of
frequence-domain dynamic factor models against time-domain factor models
in a macroeconomic forecasting setting.
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