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Abstract

Meshless methods are nowadays emerging, alternative or subsidiary
techniques to classical Finite Element (FE) and Finite Difference (FD)
methods, for the numerical solution of Partial Differential Equations
(PDE). Among the huge number of proposed meshless methods, the
Meshless Petrov–Galerkin (MLPG) class of methods is one of the most
promising. Recently, the Direct MLPG (DMLPG) methods were added
to the MLPG class. MLPG is a Generalized FE method, while DMLPG
is a Generalized FD method. Notwithstanding elegant theoretical anal-
ysis of meshless methods have been performed, effective, practical ap-
plications rely upon numerical experiments. That is why our paper is
focused on performing neat numerical experiments on simple test prob-
lems. Adaptive methods are the most efficient for solving many prob-
lems, and MLPG techniques are well apt for adaptivity. The adaptive
methods for MLPG techniques that one can find in the literature are
based upon intricate norm estimations. This paper aims at proposing a
simple yet effective technique for coarsening a discretization cloud, by
deleting only “useless” nodes, hence allowing for reducing the computa-
tional cost without loosing accuracy. We analyze the effectiveness and
efficiency of MLPG and DMLPG methods when coupled with our coars-
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ening procedure. We point out some differences in the performances of
these two methods.
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Keywords: Meshless methods, MLPG, DMLPG, Coarsening, Poisson
problem

1 Introduction

Meshless methods are nowadays an emerging alternative to classical Finite
Element (FE) and Finite Difference (FD) methods, for the numerical solution
of Partial Differential Equations (PDE).

Among the huge number of proposed meshless methods, the Meshless Local
Petrov–Galerkin (MLPG) class of methods, introduced by Atluri et. al [2], is
one of the most promising. An extensive review of recent MLPG applications
can be found in [19].

MLPG methods are truly meshless methods, i.e. they do not require any
hidden mesh for performing auxiliary tasks, e.g. performing numerical inte-
grations, like EFG methods [9]. As such, these methods are credited to be
the best choice for developing adaptive approaches, relying upon changing the
number of discretization nodes. Actually, FE and FD methods require re-
meshing, which is a time consuming and difficult to manage task [4]. MLPG
methods do not require any mesh, just a cloud of nodes, hence in principle
adding and/or deleting nodes is an easy task to perform.

A number of adaptive methods for MLPG techniques were proposed in
the literature. See [6] for an updated list of adaptive methods. They are
based upon intricate norm estimations. This paper aims at proposing a simple
yet effective technique for coarsening a discretization cloud by deleting nodes
without loosing accuracy.

Recently, the Direct MLPG (DMLPG) methods have been introduced in
[16].

Though DMLPG can be viewed as a byproduct of MLPG, the former be-
ing obtained by applying Generalized Moving Least Squares (GMLS) in place
of Moving Least Squares (MLS), the latter is deeply different form the for-
mer. While MLPG is a Generalized FE method, DMLPG is a Generalized
FD method. Actually, MLPG aims at approximating the PDE solution, while
DMLPG approximates linear functionals, e.g. the derivatives involved in the
PDE problem.

Such a deep difference entails different behaviours when solving a PDE.
In this paper we compare some characteristics of DMLPG vs MLPG, and we
show the advantages and disadvantages of one method over the other.
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While elegant theoretical analysis of meshless methods have been performed
[18], effective, practical applications of meshless methods rely upon numerical
experiments. They are necessary in order to identify those many ingredients
(trial and test functions) which profoundly affect the efficiency and accuracy
of these methods. That is why our present paper is focused on performing
neat numerical experiments on simple test problems.

In our previous papers [13, 14], we proposed and analyzed a technique for
refining a coarse discretization cloud.

In this paper, we devise a dual procedure allowing to reduce the number
of nodes in a fine cloud, by deleting only “useless” nodes, hence allowing for
reducing the computational cost without loosing accuracy.

This paper is organized as follows: Section 2 briefly recalls basic facts about
the MLPG and DMLPG methods. Section 3 describes our coarsening proce-
dure, and attached error estimation. Section 4 introduces our test problems.
Section 5 analyzes our numerical results. Section 6 points out noteworthy
results and draws our conclusions.

2 MLPG and DMLPG techniques

Let us consider the linear Poisson equation on the domain Ω

−∇2u(x) = f(x), (1)

where f is a given source function, x being any point in Ω. Dirichlet and
Neumann boundary conditions are imposed on the domain boundary ∂Ω

u = ū on Γu,
∂u

∂n
≡ q = q̄ on Γq (2)

where ū and q̄ are the prescribed potential and normal flux, respectively, on
the Dirichlet boundary Γu, and on the Neumann boundary Γq, being ∂Ω =
Γ = Γu ∪Γq, Γu ∩Γq = ∅. The outward normal direction to Γ is denoted by n.

Let us assume that the residual of eq. (1) is multiplied by a suitable test
function τ . The divergence theorem is applied, thus obtaining the weak for-
mulation for (1)∫

Ω

∇u · ∇τdΩ−
∫

Γ

(∇u · n) τdΓ =

∫
Ω

f τ dΩ, ∀τ ∈ S, (3)

for any τ in a suitable functional space S.
In order to compute an approximation ũ =

∑
i ũiξi of the solution, a finite

set of trial functions ξi is chosen. A plethora of MLPG methods have been
proposed [1, 5], each of which can be identified by an appropriate choice of
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trial and test functions. For each method, many settings have been proposed
(see e.g. [19]). Our implementation follows that one in [15].

In order to approximate the solution of our weak formulation, a set of N
discretization nodes must be identified.

The set of trial functions, ξi, and test functions τi must be given, each of
which is “centered” on node xi. A set of Local Weak Forms (LWF) is obtained
by writing eq. (3) for each test function∫

Ωi

∇ũ · ∇τidΩ−
∫

Γ
(u)
i

(∇ũ · n) τidΓ =

∫
Ωi

f τi dΩ +

∫
Γ
(q)
i

(∇ũ · n) τidΓ, (4)

where Γ
(u)
i = ∂Ωi ∩ ∂Γu is the intersection of our local integration domain

boundary with the Dirichlet boundary. Similarly, Γ
(q)
i = ∂Ωi∩∂Γq is the inter-

section of our local integration domain boundary with the Neumann boundary.
Integrals on Γi = ∂Ωi\(Γ(u)

i ∪Γ
(q)
i ), the portion of ∂Ωi lying inside Γ, contribute

nothing, since τi = 0 is imposed on ∂Ωi. The boundary conditions are managed
using suitable techniques [10].

Our trial functions are the MLS shape functions obtained by suitable ex-
ponential RBF. The support of each trial function ξi, is a disc centered at xi,
whose radius, called “trial radius” in the sequel, is ri. Our test functions τi are
tensor products of splines. The support of each test function τi, is a square
centered at xi, whose half side length is the “test radius” ρi.

One crucial step in devising effective trial and test functions is identifying
a pair (ri, ρi) for each discretization node. These values depend upon the
distance of that node from a number of its neighbours (see [13] for the details).

The Direct MLPG (DMLPG) technique is obtained by applying the Gener-
alized Moving Least Squares (GMLS) method [8, 17] to the weak problem (4).
The linear functionals in our weak formulation (4) are directly approximated
by using a polynomial space. All the details of our implementation of the
DMLPG technique for diffusion problems are given in [11].

3 Discretizations
Let us consider a cloud C which discretizes a domain Ω by enrolling N nodes
x1, . . . , xN .

The following measures are worth considering: The fill distance hC,Ω, and
the separation distance, qC , defined by [3]

hC,Ω = sup
x∈Ω

min
1≤i≤N

‖x− xi‖, qC =
1

2
min
k 6=i
‖xk − xi‖, 1 ≤ k, i ≤ N. (5)

The accuracy of a given numerical method for solving a differential problem
on Ω is like to essentially depend on hC,Ω and qC .
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In order to perform a neat analysis, let us assume that our domain is the
[0, 1]2 square.

Let us start with a discretization cloud which is the uniform grid on [0, 1]2

identified by intersecting the sides of the square and those three x–parallel and
three y–parallel lines that divide the x- and y-side evenly into nx = ny = 65
parts. Let us call this uniform discretization U0, the “level” ` = 0 uniform
discretization. The interval spacing is h0 = 1/65, N = 65 × 65 = 4225 nodes
are identified.

3.1 Coarsening strategy

Let us introduce our coarsening strategy, which relies upon deleting nodes from
a given, fine cloud C0, hence producing a coarsened C1 cloud, then the process
can be iterated.

The first discretization cloud is set to C0 = U0, the N = 4225 node uniform
grid. We call it the level ` = 0 cloud.

The approximate solution ũ is computed by using this cloud.
To obtain a coarser discretization we consider the Total Variation (TV) of

the solution u

‖u‖TV = ‖∇u‖1 =

∫ ∫
Ωi

(|ux|+ |uy|) dΩ,

where ux and uy are the partial derivatives of the solution.
The advantages of this “variation measure” are clearly explained in [20]:

The variational methods which use the TV norm “allow for discontinuities but
disfavor oscillations”.

To approximate the TV on node xi by taking our numerical solution ũ into
account, we define a “Local” Total Variation (LTV)

‖ũ‖TV,i ' (|ũx(xi)|+ |ũy(xi)|) |Ωi|,

|Ωi| being the area of the i-th integration sub-domain in our weak formula-
tion (4).

Concerning the partial derivatives ũx(xi), ũy(xi), when the DMLPGmethod
is exploited, they are directly approximated by using the the GMLS approach.

When using the MLPG approach, the partial derivatives are estimated by
differentiating the MLS solution [12].

Note that using DMLPG enables the derivatives to be approximated di-
rectly via the GMLS approach, while by exploiting MLPG the approximation
is more involved. It relies upon estimating the derivatives of the approximated
solution, hence of the MLS trial functions. From this point of view, DMLPG
is superior to MLPG.
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Let us assume that a coarse uniform “critical” cloud discretizing the do-
main is identified, whose nodes are called “critical nodes”. Any node in the
critical cloud is neither processed nor deleted, in order to avoid remaining
with a riddled cloud, which does not properly discretize the domain. Usually,
a uniform, sufficiently coarse discretization is used as the critical cloud, which
is independent of the discretization level.

Let
µ = max

i=1,...,N
‖ũ‖TV,i.

Let us assume that a threshold parameter 0 < γ < 1 is given. For each node
xi in the input cloud, which is not a critical node, the node is deleted if

‖ũ‖TV,i < γµ,

i.e. the LTV being “low”, the solution does not undergo large variations around
xi, hence it can be deleted without loosing accuracy.

Once all the nodes in a given discretization C` have been processed, we say
that a new “discretization cloud level” C`+1 is ready.

A fresh approximated solution is computed by using the new cloud, and
the approximation error is estimated.

The coarsening process is iterated, unless

• No more than a given, “small” number `max of discretization levels have
been computed.

• The iterations are stopped when no node is deleted, i.e. the input cloud
remains unchanged.

3.2 Error estimation

Concerning error estimations on our coarsened grids, let us assume that we
start with the most refined cloud C0 counting N0 nodes.

Our coarsening procedure deletes nodes form C0, hence producing less fine
clouds C`, ` = 1, 2, ..., counting n0 > n1 > n2 > ... nodes.

Let ũ(`) be the approximate solution computed via the nodes in C`. Let us
assume that we estimate the (relative) error on the `-th cloud, by

e
(`)
` = max

x∈C`

∣∣u(x)− ũ(`)(x)
∣∣

|u(x)|
. (6)

Such an error estimation does not allow for a safe comparison between
different clouds, since it takes into account only the nodes in the `-th cloud.
For appropriately comparing the errors on fine and coarse clouds, we must
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consider the “reconstruction” error with respect to a “reference” grid, which we
assume to be the finest grid C0. Our error measure on the `-th cloud is

e` = max
x∈C0

∣∣u(x)− ũ(`)(x)
∣∣

|u(x)|
. (7)

Recall that the MLPG technique aims at computing a set of coefficients
ũ

(MLPG,`)
i , also called “fictitious” node values, each one assigned to node xi ∈
C`. The ensuing approximate solution is

ũ(MLPG,`)(x) =

n∑̀
i=1

ũ
(MLPG,`)
i ξ

(MLPG,`)
i (x), (8)

where ξ(MLPG,`)
i is the i–th MLPG trial function.

Computing (7) requires the evaluation of ũ(MLPG,`)(x) on all the nodes in
C0, which is a super-set of C` (when ` > 0).

Hence, when dealing with MLPG, like in FE methods, we can evaluate via
eq. (8) the approximate solution on each node xi ∈ C0, by using the same trial
functions exploited for computing ũ(MLPG,`) via the cloud C`.

On the other hand, like FD methods, when the discretization C` is ex-
ploited, the DMLPG technique merely computes approximate solution values
on the nodes in C`. Indeed, our DMLPG technique requires computing ef-
fective MLS shape functions, w(DMLPG,`)

i , i = 1, . . . , N`. One could argue
that by setting ξ(DMLPG,`)

i := w
(DMLPG,`)
i , formula (8) should provide a sound

reconstruction for the DMLPG, too, i.e. for any point in Ω. By numerical
experiments we found that this is not true. In order to obtain an accurate re-
construction, we had to double the radius of the support for w(DMLPG,`)

i , hence
obtaining effective ξ(DMLPG,`)

i trial functions for DMLPG. This fact underlines
another noteworthy problem of DMLPG: the “reconstruction” of the solution
on arbitrary points in Ω is an open question (see page 3 in [16]).

4 Test problems
To check our adaptive strategy, we assign the forcing function f and compute
the boundary conditions in eq. (1), so that its “test” solution is a function u
undergoing large variations on a small portion of the domain.

First, we consider the classical Gaussian function, centered on a given point
P0 = (x0, y0), i.e.

u(x, y) = exp(−c
(
(x− x0)2 + (y − y0)2)

)
. (9)

The parameter c is a large positive value that generates a high “hump” around
P0. In the sequel, we set c = 200 unless stated otherwise.
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Figure 1: Contour regions for the solution of the test problem P (GC).

Let us assume that we numerically solve the Poisson problem (1) in Ω =
[0, 1]2, having set the Dirichlet boundary conditions such that its solution is
the function (9). The setting P0 = (1/2, 1/2), the centroid of our domain,
corresponds to the 2D problem called P (GC) in the sequel, where “GC” stands
for “Gaussian–centroid”.

This function displays a “bump” on the center of the domain. Figure 1
shows some contour levels of the surface.

Any coarsening procedure is likely to be effective when a large number of
discretization nodes are left near the point P0, where a large variation in u
occurs. On the other hand, “far” away from P0 the u values are small, and u
does not display large variations, so the nodes can be safely deleted.

As a further test problem we consider, after [7]

u(x, y) = tan−1(1000x2 y2 − 1). (10)

This function displays a “hill” rising from the bottom left of [0, 1]2. Figure 2
shows some contour levels of the surface. In this case, an effective coarsening
procedure is likely to leave the nodes around the bottom and left sides of the
domain, yet the nodes can be deleted elsewhere.

Let us assume that we numerically solve the Poisson problem (1) in Ω =
[0, 1]2, having set the Dirichlet boundary conditions such that its solution is
the function (10).
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Figure 2: Contour regions for the solution of the test problem P (T ).

The ensuing differential problem is labeled test problem P (T ), where “T”
stands for the “arcTan–based” solution.

5 Numerical results

In the sequel, we analyze our numerical results.
The trial and test radiuses in the MLPG and DMLPG methods were set

to their respective optimal values, identified by numerical experiments.
Our coarsening procedure is repeated until at most `max = 7 coarsening

steps have been performed. Moreover, we elect as the “critical cloud”, the
17× 17 uniform grid on [0, 1]2, counting “only” N = 172 = 289 nodes.

5.1 Gaussian–based test solution

Concerning the test problem P (GC), Table 1 reports our coarsening results.
The first column shows the log10 value of the threshold coarsening parameter
γ. The following columns show the cloud level number `, the corresponding
fill–distance hC`,Ω, the number of cloud nodes N`, the error el raised in the ap-
proximation. The last–but–one column reports the ratio N`/N0 of the number
of coarsened nodes to that in the initial, finest cloud. The last column shows
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MLPG
log10(γ) ` hC`,Ω N` e` N`/N0 e`/e0

any 0 1.10E-02 4225 6.77E-04 1.00 1.00
-2 1 4.42E-02 677 8.16E-03 0.16 12.05
-3 1 4.42E-02 805 5.14E-03 0.19 7.59
-4 1 4.42E-02 961 3.24E-03 0.23 4.79
-4 2 4.42E-02 933 3.05E-03 0.22 4.51
-5 1 4.42E-02 1225 2.42E-03 0.29 3.57

DMLPG
log10(γ) ` hC`,Ω N` e` N`/N0 e`/e0

any 0 1.10E-02 4225 1.26E-02 1.00 1.00
-2 1 4.42E-02 661 3.17E-02 0.16 2.52
-2 2 4.42E-02 654 3.45E-02 0.15 2.74
-2 3 4.42E-02 651 6.13E-02 0.15 4.87
-3 1 4.42E-02 793 4.10E-01 0.19 32.54
-3 2 4.42E-02 792 4.42E-01 0.19 35.08
-3 3 4.42E-02 790 4.34E-01 0.19 34.44
-3 4 4.42E-02 789 4.34E-01 0.19 34.44
-4 1 4.42E-02 969 1.49E-02 0.23 1.18
-5 1 4.42E-02 1769 1.26E-02 0.42 1.00

Table 1: Result summary for our test problem P (GC). The fill distance hC`,Ω,
number of nodes N`, estimated error e` are shown for some threshold γ values,
and coarsening levels `. Note that at level ` = 0, when either MLPG or
DMLPG is enrolled, the given values does not depend on γ, hence they are
shown only one time for each algorithm, corresponding to the pseudo-value
“any” on the log10 γ column. The ratiosN`/N0 and e`/e0 between node numbers
and errors are also shown for providing an easy comparison of each coarsening
level with the reference, initial cloud at level ` = 0.
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Figure 3: Test problem P (GC). Errors obtained by exploiting the thresholds
γ = 10−2, 10−3, 10−4, 10−5, vs the number of cloud nodes. Each error curve is
labeled by the corresponding log10 γ value. Frame (a) reports MLPG errors,
Frame (b) reports DMLPG ones.
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the ratio e`/e0 between the error raised when exploiting the coarsened cloud
C`, and the error obtained by using the initial, finest cloud C0.

Note that at level ` = 0, the initial grid being the same, all values are
the same, irrespective of γ value. This is the reason why the first row in the
“MLPG” portion of the Table, pertaining to level ` = 0, shows the value “any”
for γ. In order to save space, this row is not repeated in the MLPG portion
of our Table, when γ changes. The same holds true for the rows pertaining to
the DMLPG method.

The values γ = 10−2, 10−3, 10−4, 10−5, are considered, corresponding to the
log10 γ = −2,−3,−4,−5 values, shown in the Table. Note that when γ ≤ 10−2

is set, our coarsening procedure drives to a so large error, that these threshold
values cannot be considered as feasible ones. Unfeasible are also γ ≥ 10−5

values: no node is deleted, hence our procedure is useless.
Note that the separation distance is not reported, nor it is recorded in any

of the Tables in the sequel. Actually, performing all our coarsening experiments
we did not experience any change from the initial value qC0=1/128. This is the
separation distance of the initial, uniform cloud, consisting of 65×65 uniformly
distributed nodes on the unit square, hence qC0=(1/2) (1/64) = 1/128 (recall
definition (5)). Deleting nodes inside portions of the domain leaves somewhere
unchanged pairs of neighbouring nodes, hence the separation distance, which
is driven by the distance of the closest nodes, is unchanged, too. Assume that
a pair of neighbour nodes in the initial cloud is left. Then the separation
distance does not change. In order to be more confident about this statement,
the reader can also have a look at Figures 4, 5, 7 and 8 in the sequel, and the
attached discussions.

Concerning the fill-distance, one can see that a change is reported at any
first coarsening. The initial hC0,Ω =1.10E-2, grows hC1,Ω =4.42E-2, irrespective
of γ values. This result confirms that the first coarsening indeed produce a
change in the overall distribution, as tested by the N`/N0 column values. By
inspecting Table 1 one can see that successive coarsening does not affect the
fill-distance value.

Figure 3 summarizes the error behaviors vs the number of cloud nodes. By
inspecting this Figure, one can see that our procedure can allow for significant
reductions in the number of cloud nodes, at the expense of a moderately to
large increase in the approximation error.

Let us focus on the errors raised by the MLPG method (Frame (a)). One
can see that when the coarsening threshold value is γ = 10−2, the coarsening
produces the largest reduction in the node number. On the other hand, the
error becomes larger than for any other γ value. Setting γ = 10−5 the error
on the coarsened cloud is smaller than for any other γ value. By inspecting
the upper part of Table 1, one can see that when γ = 10−2 the coarsening step
allows reducing the initial N0 = 4225 nodes to N1 =0.16N0=677. The initial
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Figure 4: Test problem P (GC). The nodes in the MLPG coarsened discretiza-
tion level ` = 1 are shown. The value γ = 10−5 is considered.

error, e0 =6.77E-04, grows to e1 =8.16E-03, i.e. a large e1/e0 = 12.5 ratio
is reported. We can say that an effective (16%) reduction in the number of
cloud nodes is obtained, but the error of the approximated solution computed
by exploiting the new, coarse cloud, is more than than 12 times higher than
using the initial, finer grid.

By analyzing Table 1, one can argue that the best performance is likely to
be obtained by setting γ = 10−5: the first coarsening level cloud counts as few
as N1=0.29·N0=1225 nodes, while the error e1 is “only” 3.57 times e0.

Figure 4 shows the first level ` = 1 discretization cloud obtained by MLPG.
Recall that the exact solution is of “Gaussian” type, displaying large variation
close to the domain center, while mild variation is displayed elsewhere. Ac-
cordingly, one can see that the nodes in our coarsened cloud “cluster” around
the domain center. Here, the finest discretization is left unchanged, hence the
separation distance for the coarsened cloud is the same as in C0.

Let us now consider the errors obtained using the DMLPG method (Frame
(b) in Figure 3). By inspecting the lower part of Table 1, one can see that unlike
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MLPG, DMLPG usually drives many coarsening levels, up to ` = 4. This is
a first noteworthy difference one experiences when coarsening with DMLPG,
respect to using MLPG. Recall that MLPG evaluates the LTV on the ground
of a completely different approach respect to DMLPG. Hence, one can explain
the difference in iterations by guessing that DMLPG produces a less smooth
LTV than MLPG does. After one coarsening step has been performed, unlike
in MLPG, the DMLPG LTV pertaining to a handful of nodes remains large,
hence those nodes are deleted.

The first DMLPG coarsening level counts not many nodes more than the
following ` = 2, 3, 4 levels, hence performing one only coarsening step is the
best procedure to elect.

By inspecting Frame (b) in Figure 3, one can guess that the best DMLPG
setting is electable to be γ = 10−4. An appreciable node reduction is observed
(far better than for γ = 10−5), and the error does not grow too much. The
values reported in Table 1 confirm that the setting γ = 10−4 provides a “good”
23% reduction in the number of nodes, while driving to a “mild” 1.18 times
higher error.

By comparing Figure 3 and Table 1, one can see that when using DMLPG,
by setting γ = 10−3 the error at level ` = 1 is as large as 32.54 times the
error on the initial, finest cloud. Further coarsenings allow for deleting a mere
node or a pair of nodes, and the error remains approximately 35 times larger
than for the C0 cloud. Note that such a large error inflation is not experienced
neither when performing one coarsening step with log10 γ=-2 (e`/e0 =2.52),
nor when log10 γ=-4 (e`/e0 =1.18). By plotting the attached coarsened clouds,
one could see (not shown here, for brevity) that the nodes in the cloud obtained
by one coarsening step for log10 γ=-3 are a subset of the nodes obtained when
log10 γ=-4 is exploited. Such an overlap strongly suggests that a numerical
instability is experienced when γ = 10−3.

Figure 5 shows the discretization level ` = 1 when the DMLPG coarsening
is performed. The threshold value γ = 10−5 is considered, like in Figure 4. By
comparing the latter Figure with the former, one can see that the MLPG cloud
counts less nodes “far” from the domain center than the DMLPG–coarsened
cloud. Inside both plots, we can identify a disc, centered in (1/2, 1/2) where
the nodes are “close”, and a “rarefied” area at the border of this disc. Recall
that the “dense” area corresponds, as expected, to the “high variation” area of
the exact solution, testified by the contour plot in Figure 1. The MLPG disc
radius is approximately 0.14 large, while DMLPG one has a larger 0.17 radius.
Note that the initial cloud is not rarefied around the domain center, hence the
separation distance remains unchanged.

Table 2 reports the CPU seconds spent for solving our test problem and
the mesh coarsenings.

By inspecting this Table one can see that the time for performing the
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Figure 5: Test problem P (GC). DMLPG discretization cloud at level ` = 1,
γ = 10−5.
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MLPG
log10(γ) ` N` T

(s)
` T

(r)
` T

(t)
` T

(s)
` /N`

-2 0 4225 17.53 1.41 18.97 4.15E-03
-2 1 677 3.14 0.30 22.41 4.63E-03
-3 0 4225 17.67 1.40 19.09 4.18E-03
-3 1 805 3.76 0.34 23.20 4.67E-03
-4 0 4225 17.94 1.39 19.36 4.25E-03
-4 1 961 4.53 0.42 24.30 4.71E-03
-4 2 933 4.51 0.43 29.24 4.84E-03
-5 0 4225 17.61 1.40 19.04 4.17E-03
-5 1 1225 5.84 0.59 25.47 4.77E-03

DMLPG
log10(γ) ` N` T

(s)
` T

(r)
` T

(t)
` T

(s)
` /N`

-2 0 4225 5.19 0.36 5.56 1.23E-03
-2 1 661 0.76 0.03 6.35 1.15E-03
-2 2 654 0.76 0.02 7.13 1.16E-03
-2 3 651 0.73 0.02 7.88 1.12E-03
-3 0 4225 5.30 0.36 5.68 1.25E-03
-3 1 793 0.86 0.03 6.57 1.08E-03
-3 2 792 0.84 0.03 7.45 1.07E-03
-3 3 790 0.83 0.03 8.31 1.05E-03
-3 4 789 0.83 0.04 9.17 1.05E-03
-4 0 4225 5.25 0.37 5.63 1.24E-03
-4 1 969 0.99 0.04 6.66 1.02E-03
-5 0 4225 5.21 0.36 5.60 1.23E-03
-5 1 1769 1.67 0.09 7.36 9.43E-04

Table 2: CPU seconds spent for solving our test problem P (GC). The value
T

(s)
` reports the CPU seconds spent for performing the solution scheme, T (r)

`

shows the seconds for the refinement procedure, while T (t)
` displays the total

CPU time spent. The ratio T (s)
` /N` is also shown.
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refinements is very small, less than 1/10 of the time spent for computing the
approximation.

In order to compare the efficiency of MLPG vs DMLPG, let us consider
the ratios T (s)

` /N`, which measure the average computational “core” cost for
performing the computations on each node. Only the time for computing the
solution, refining, and evaluating errors, are considered. Let us assume that
the best γ value for MLPG, i.e. γ = 10−5, is set. At level ` = 1 one can
see that the MLPG core cost per node is 4.77E-3. At level ` = 1 one can see
that in the DMLPG best setting, γ = 10−4, the DMLPG core cost per node
is 1.02E-3. Hence the DMLPG cost per node is 4.77/1.02 ' 4.7 times smaller
then MLPG.

By analyzing Table 2 one can see that in all our cases DMLPG core cost per
node is more than 4 times faster than MLPG. This result is a consequence of
the use of GMLS in place of MLS. The direct approximation of the functionals
proves to be appreciably faster than the approximation of the solution.

5.2 ArcTan–based test solution

Let us now consider the test problem P (T ), whose solution depicts a “hill”
close to the bottom and left sides of the domain (cf. Figure 2).

Figure 6 shows the errors vs the number of cloud nodes. Let us focus on
the errors raised by the MLPG method, shown in Frame (a). One can see that
the best node reduction is obtained by setting γ = 10−2, at the expense of a
large error inflation. A smaller node reduction is experienced when γ = 10−3,
at the expense of a smaller error increase. By inspecting Table 3, we argue
that the best choice for MLPG should be γ = 10−2 which drives a substantial
40% reduction in the node number, yet enlarging the error only 1.38 times.
The other γ values does not allow for a satisfactory deletion percentage.

Recall that the test solution now displays a “hill” close to the bottom and
left sides of the domain (cf. Figure 2). Figure 7 shows the MLPG coarsened
cloud obtained by setting γ = 10−2. One can see that many nodes remain in
the bottom and left sides of the domain, i.e. where the test solution displays
a large variation. Note that there is a portion of the domain where the initial
grid is left unchanged, hence again the separation distance does not change
after the coarsening.

Let us consider now the behavior of the DMLPG coarsening. By inspecting
Frame (b) in Figure 6 and Table 3, one can see that, like in test problem
P (GC), DMLPG drives to more than one coarsening level, unlike MLPG.

On the other hand, like in test problem P (GC), the first coarsening level
is always the most effective, the successive iterations allow for deleting an
handful of nodes. Hence computing one only level proves better than iterating
the coarsening.
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MLPG
log10(γ) ` hC`,Ω N` e` N`/N0 e`/e0

any 0 1.10E-02 4225 7.55E-02 1.00 1.00
-2 1 4.42E-02 1681 1.04E-01 0.40 1.38
-3 1 4.42E-02 2762 6.96E-02 0.65 0.92
-4 1 4.42E-02 3977 7.55E-02 0.94 1.00
-5 1 1.56E-02 4223 7.55E-02 1.00 1.00

DMLPG
log10(γ) ` hC`,Ω N` e` N`/N0 e`/e0

any 0 1.10E-02 4225 3.93E-02 1.00 1.00
-2 1 4.42E-02 1939 5.02E-02 0.46 1.28
-2 2 4.42E-02 1936 5.02E-02 0.46 1.28
-2 3 4.42E-02 1927 8.00E-02 0.46 2.04
-2 4 4.42E-02 1924 8.00E-02 0.46 2.04
-3 1 4.42E-02 3402 3.94E-02 0.81 1.00
-3 2 4.42E-02 3400 3.95E-02 0.80 1.01
-3 3 4.42E-02 3396 3.95E-02 0.80 1.01
-3 4 4.42E-02 3394 3.95E-02 0.80 1.01
-3 5 4.42E-02 3393 3.96E-02 0.80 1.01
-3 6 4.42E-02 3390 4.08E-02 0.80 1.04
-4 1 1.95E-02 4189 7.09E-02 0.99 1.80
-4 2 1.95E-02 4188 7.09E-02 0.99 1.80
-5 1 1.75E-02 4218 3.92E-02 1.00 1.00
-5 2 1.75E-02 4216 3.92E-02 1.00 1.00
-5 3 1.75E-02 4215 3.92E-02 1.00 1.00

Table 3: Result summary for our test problem P (T ). Concerning the meaning
of the symbols, see Table 1
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Figure 6: Analogous to Figure 3, concerning test problem P (T ).
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Figure 7: Test problem P (T ). MLPG coarsened cloud, ` = 1, γ = 10−2.
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Figure 8: Test problem P (T ). DMLPG coarsened cloud, ` = 1, γ = 10−2.

By considering Frame (b) in Figure 6, one can see that best node reduc-
tion is obtained when γ = 10−2. Smaller γ values, i.e. γ = 10−3, 10−4, 10−5

does not produce an appreciable reduction in the number of cloud nodes. By
analyzing Table 3, one can say that the best choice for DMLPG computations
is performing one only coarsening when γ = 10−2. This setting allows for an
appreciable 46% reduction in the node number, producing a “mild” 1.28 times
larger error.

Figure 8 shows the DMLPG coarsened cloud obtained by setting γ = 10−2.
One can see that, like previously for MLPG, the nodes remaining after the
coarsening are in the domain part where the exact solution undergoes large
variations (see Figure 2).

By comparing Figure 8 with Figure 7, one can see that the coarsened clouds
are similar. Again note that there are portions of the domain where the initial
cloud node inter-distances are not affected. Hence, the coarsening does not
change the separation distance.

Table 4 reports the CPU seconds spent for solving our test problem and the
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MLPG
log10(γ) ` N` T

(s)
` T

(r)
` T

(t)
` T

(s)
` /N`

-2 0 4225 17.52 1.40 18.94 4.15E-03
-2 1 1681 7.00 0.63 26.57 4.16E-03
-3 0 4225 17.52 1.36 18.90 4.15E-03
-3 1 2762 11.28 0.94 31.12 4.08E-03
-4 0 4225 17.60 1.37 18.98 4.16E-03
-4 1 3977 16.50 1.28 36.77 4.15E-03
-5 0 4225 17.56 1.37 18.95 4.16E-03
-5 1 4223 17.36 1.36 37.66 4.11E-03

DMLPG
log10(γ) ` N` T

(s)
` T

(r)
` T

(t)
` T

(s)
` /N`

-2 0 4225 5.17 0.35 5.53 1.22E-03
-2 1 1939 1.81 0.10 7.44 9.32E-04
-2 2 1936 1.86 0.10 9.40 9.63E-04
-2 3 1927 1.85 0.10 11.35 9.61E-04
-2 4 1924 1.80 0.10 13.26 9.36E-04
-3 0 4225 5.20 0.35 5.57 1.23E-03
-3 1 3402 3.76 0.24 9.57 1.11E-03
-3 2 3400 3.75 0.24 13.56 1.10E-03
-3 3 3396 3.77 0.24 17.57 1.11E-03
-3 4 3394 3.75 0.24 21.56 1.10E-03
-3 5 3393 3.75 0.24 25.56 1.11E-03
-3 6 3390 3.77 0.24 29.56 1.11E-03
-4 0 4225 5.16 0.37 5.56 1.22E-03
-4 1 4189 5.08 0.36 11.00 1.21E-03
-4 2 4188 5.10 0.34 16.44 1.22E-03
-5 0 4225 5.17 0.37 5.57 1.22E-03
-5 1 4218 5.20 0.36 11.13 1.23E-03
-5 2 4216 5.18 0.35 16.66 1.23E-03
-5 3 4215 5.19 0.34 22.19 1.23E-03

Table 4: Analogous to Table 2. CPU times spent when solving our test problem
P (T ).
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mesh coarsening. By analyzing this Table one can see that the best DMLPG
setting γ = 10−2, the coarsening level ` = 1 needs a 4.16E-3 core cost per node
to be computed. On the other hand in the best MLPG setting γ = 10−2, the
coarsening level ` = 1 needs a 9.32E-4 core cost per node to be computed.
Hence DMLPG core time is 4.16/0.932 ' 4.5 times smaller than MLPG one.

Like in our test example P (GC), DMLPG core cost is more than four times
smaller than MLPG one, confirming the higher efficiency of GMLS approach
over MLS one.

6 Conclusions

A coarsening procedure for the accurate MLPG/DMLPG solution of the Pois-
son problem has been introduced and numerically analyzed.

The following points are worth considering.

• Our coarsening procedure allows for effectively reducing the number of
discretization nodes, without enlarging the error too much. Both these
two competing tasks can be achieved by identifying a suitable value for
the threshold parameter γ acting on the local TV, in order to effectively
drive the deletion strategy. The value is problem–dependent.

• When our coarsening procedure is combined with the MLPGmethod, one
coarsening level only is computed, while when the DMLPG procedure is
exploited, more than one coarsening level is computed. However, the
coarsening levels ` = 2, 3, ... perform a so small reduction in the overall
node number, that they are useless for reducing the DMLPG computa-
tional cost. This difference suggests that the DMLPG LTV computation
gives an handful of large values, i.e. it is “more unstable” than when using
the MLPG-driven approach. Summarizing, achieving one only coarsen-
ing level is the best choice in any case.

• While the MLPG methods is numerically stable vs the coarsening thresh-
old γ value, DMLPG can raise abrupt changes in the error. Some γ
values trigger numerical instabilities in the DMLPG method, hence its
exploitation in our coarsening procedure seems questionable in practical
applications.

• The DMLPG “core cost”, i.e. the cost for computing the solution, re-
fining, and evaluating the errors is more than four times smaller than
MLPG. Such a better performance is to be ascribed to the use of GMLS
procedure in DMLPG, in place of MLS in MLPG.
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• In order to perform an accurate error estimation for comparing our re-
sults on different discretization clouds, the reconstruction (i.e. evalua-
tion) of the approximate solution on the reference, finest cloud must be
performed. Such a reconstruction is amenable when the MLPG method
is exploited, while it is more cumbersome when DMLPG is exploited.
This is a noteworthy advantage of MLPG over DMLPG.

Future work. We aim at applying our coarsening procedure to the solution
of time–dependent problems. By splitting the operator into one spatial and
one temporal part, at each time step we can coarsen the spatial discretization
cloud according to the evolution of the problem solution, in order to improve
efficiency, without loosing accuracy.
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multiprocessor cluster system owned by Universitá Ca’ Foscari Venezia, Italy.
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