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This work focuses on the selection of new areas for shellfish farming along the coast of the Northern Adriatic Sea (Italy). Shellfish site suitabil-
ity was assessed by means of a methodology based on Spatial Multi-Criteria Evaluation (SMCE), which provided the framework to combine
mathematical models and operational oceanography products. Intermediate level criteria considered in the analysis included optimal growth
conditions, environmental interactions, and socio-economic evaluation (e.g. organic carbon deposition; distance to harbour). Results showed
that the whole coastal area comprised within 0 and 3 nm is highly suitable for farming of mussel, while the area comprised between 3 and
12 nm is divided between a highly suitable northern part, and a less suitable southern one. Seven different scenarios of development of shell-
fish aquaculture industry were explored. The introduction of a new species, and the assessment of the exposure to storm events are specific
aspects taken into account in development scenarios. Results show that the degree of suitability for shellfish aquaculture in this area would
not change dramatically with the introduction of oyster farming. Furthermore, results highlight that: (i) the growth potential in this area is
high; (ii) the space with suitability index >0.5 increases when prioritizing the optimal growth condition criteria, and (iii) the socio-economic
is the most restrictive Intermediate Level Criteria. Results were discussed by deriving general lessons concerning the use of SMCE in aquacul-
ture space allocation, from the specific application in the Northern Adriatic Sea. Challenges and opportunities related to the proposed meth-
odological framework, with particular reference to the use of resources provided by remote sensing and operational oceanography by means
of mathematical models, were also discussed. Results can support a science-based identification of allocated zones for aquaculture in order to
avoid conflicts, and promote sustainable aquaculture in the Mediterranean Sea, where the space for these activities is becoming increasingly
limited.
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Introduction
The selection of areas allocated to aquaculture plays a key role in

supporting the sustainable development of this industry (EATIP,

2012). Space selection should take into account both the produc-

tion, ecological and social carrying capacity of a given area

(McKindsey et al., 2006), and the conflicting uses of marine space

(Douvere, 2008). Furthermore, aquaculture planning involves

stakeholders in order to lead to more realistic and effective poli-

cies and spatial plans but, at the same time, stakeholders have

diverse objectives leading to space competition and affecting the

consultative process (Sevaly, 2000). In the EU, the «Blue Growth

Strategy» (EC, 2012), includes aquaculture as one of its pillar.

However, within this region, the shellfish industry has to comply

with Directives aimed at preventing further deterioration of mar-

ine ecosystems, and regulating human uses of the sea («Marine

Strategy Framework Directive - MSFD» 2008/56/CE, European

Community, 2008; «Maritime Spatial Planning - MSP» 2014/89/

EU, European Community, 2014). Available space for
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aquaculture activities is becoming increasingly limited and a

proper design of Allocated Zones to Aquaculture (AZAs) is neces-

sary in order to avoid conflict, to promote a sustainable maricul-

ture (Sanchez-Jerez et al., 2016) avoiding environmental

degradation and negative interaction with other marine activities.

The designation of new AZA should be considered in a context

of Ecosystem Approach for Aquaculture (EAA), promoting sus-

tainable development, equity and resilience of the social-

ecological system (Soto et al., 2008). According to the report FAO

(2015), the selection of sites/areas allocated to aquaculture plays a

key role in supporting the sustainable development of aquacul-

ture farming within the framework of the EAA. To this regard,

the identification of AZA, the selection of individual sites and the

design of Aquaculture Management Areas (AMAs) are three com-

plex and key issues, which has to be dealt within the framework

of a comprehensive spatial planning (FAO, 2013).

Different studies presented applications of Spatial Multi-

Criteria Evaluation (SMCE) to aquaculture site selection, as these

methodologies allow one to deal with complex spatial problems

(e.g. Pérez et al., 2005; Longdill et al., 2008; Radiarta et al., 2008,

2011; Hossain et al., 2009; Silva et al., 2011; Liu et al., 2014;

Nayak et al., 2014; Brigolin et al., 2015; Dapueto et al., 2015).

SMCE techniques are used to aggregate different spatial factors,

such as existing marine use and biotic variables, into a spatial

Suitability Index (SI) providing a comprehensive assessment for

the decision-makers of suitability of the aquaculture activity

(Longdill et al., 2008; Silva et al., 2011).

The present paper focuses on the selection of areas to be allo-

cated to off-shore shellfish culture along the coast of the Emilia-

Romagna Italian region (Northern Adriatic Sea). Longline farm-

ing of Mediterranean mussel (Mytilus galloprovincialis) along this

coast started in the 90s (Prioli and Moretti, 2000; Prioli, 2004),

and now represents an important source of product for the na-

tional market (21.6 � 103 metric tons in 2013, �33.6% of the na-

tional production (MiPAAF, 2014)). The product is sold both at

the local and the national level. Most farms are located within

3 nm from the coast, at a depth of �10 m (Adriatic Atlas); in

2015, they were managed by 29 companies. The Legislative

Decree n. 201/2016 has recently set the framework for the MSP

implementation in the Italian Seas. The regulators are represented

by a Committee lead by the Italian Ministry of Infrastructure

and Transports, and including 1 delegate of Italian region for

each reference maritime area and 4 Ministries: (i) Environment,

Land and Seas; (ii) Agriculture and Forestry; (iii) Economic

Development; (iv) Cultural Heritage and Activities and Tourism.

Information concerning current issues and perspectives of the

activity was collected at a stakeholder workshop, held in

Chioggia (Italy) on 7th November 2015 in the framework of the

EU H2020 project “Aquaspace”. The workshop involved repre-

sentatives from shellfish farmers associations, research organiza-

tions, and regulators, who identified the three main issues listed

below:

(i) the establishing of new farms in deeper areas, beyond the 3

nm limit, would be beneficial to the activity, as it could

allow the introduction of a new longline technology, i.e. the

Japanese longline system;

(ii) the introduction of new, more profitable, species, such as

Pacific oyster (Crassostrea gigas) (Gennari et al., 2014);

(iii) the need of assessing the risks for a farm because of storm

events, in particular in less sheltered off-shore areas.

Taking into consideration these issues, our aim in the present

work is twofold:

� to develop a framework combining mathematical models and op-

erational oceanography products to assess shellfish site suitability;

� to explore the sensitivity of suitability maps to species diversi-

fication and different prioritization of the criteria.

Material and methods
SMCE (Malczewski, 2006) is the general framework in which ana-

lysis was carried out. SMCE application to aquaculture site selec-

tion has been described elsewhere (see e.g. Pérez et al., 2005;

Longdill et al., 2008; Radiarta et al., 2008; Hossain et al., 2009; Silva

et al., 2011; Liu et al., 2014; Nayak et al., 2014; Brigolin et al., 2015;

Dapueto et al., 2015). This section provides a brief introduction on

SMCE and, subsequently, a detailed description of the criteria that

were mapped in order to deal with our case study.

This approach was used to investigate future perspectives of shell-

fish culture in an area of the Adriatic Sea, in the nearby of the

Emilia-Romagna coasts (Figure 1). The area of the continental shelf

comprised between 3 and 12 nm was selected. This portion of sea

has an overall extension of 1561 km2. Mussels are farmed with long-

line systems, and the sea farms are placed between 1.5 and 3 nm

(Prioli, 2008). In the next future this activity is expected to increase,

expanding outside the 3 nm and up to 12 nm, and introducing

Crassostrea gigas as new farmed species (Gennari et al., 2014).

Spatial Multi-Criteria Evaluation
The foundation of SMCE is the analytic hierarchical process de-

veloped by Saaty (1980), which is used to develop a set of relative

weights for each criterion selected. SMCE allows dealing with

complex spatial decision problems, through the combination of

different criteria, once they are grouped, standardized, and

weighted. In our study, SMCE was carried out in three steps: (i)

the normalization of criteria; (ii) the assignment of a weight to

each one of them; (iii) the aggregation of criteria in order to ob-

tain the SI. Each criterion was normalized by linearly re-scaling

each value in the range 0–1, by subtracting the minimum value

and dividing by the range of the raw data (Eastman, 1999). In

this way, the values of criteria were reclassified by means of a new

numerical scale. Normalization is done in the way that high nor-

malized values match with a better suitability for shellfish culture.

In accordance with Radiarta et al. (2008), the criteria were

grouped in macro-categories, called “Intermediate Level Criteria”

(ILC). In this study three ILC were considered (see Figure 2): (i) op-

timal growth conditions (OG); (ii) environmental interactions (EI);

(iii) socio-economic evaluation (SE). Different criteria were con-

sidered for each ILC: time to reach the market size for mussels

(OG); time to reach the market size for oysters (OG); area subjected

to elevated organic deposition (EI); distance from ports and high-

ways (SE); significant wave height (SE)—considered as an indicator

of farm exposure to storm events. A uniform grid with a 4-km reso-

lution was used to represent the SMCE spatial domain—this re-

sulted from a compromise of the scales of the different data used.

Details are provided in the section “Mathematical models”.

The SI was calculated by applying the weighted linear combin-

ation. The normalized criteria were combined linearly by using
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relative weight as coefficients. This allowed us to obtain a SI rang-

ing from 0 to 1, where values close to 1 indicate the highest suit-

ability. We divided the SI in 5 classes of suitability: 0–0.25, very

low suitability; 0.25–0.35, low suitability; 0.35–0.50, medium

suitability; 0.50–0.75, high suitability; >0.75, very high suitability.

Constraints because of the presence of other activities were

superimposed in the final suitability map by using a Boolean clas-

sification scheme (suitable areas 1, unsuitable areas 0) (Falconer

et al., 2013).

The analysis considered the reference situation and the seven

different scenarios were summarized in Table 1. Each scenario re-

sulted from a combination of aquaculture production, and

weighting assignment (of ILC):

(1) two productions were considered: (i) only mussels; (ii) mus-

sels and oysters;

(2) four priorities for Intermediate Level Criteria (Table 1).

Values for OG and EI were calculated as described in the

section “Mathematical models”. For OG scenarios 1–4 we con-

sidered only the criterion “time to reach the market size for

mussels”, while for scenarios 5–8 we included also the “time

to reach the market size for oysters” one. The two criteria

were combined by assuming a 0.5/0.5 weights combination.

Values for SE in scenarios 1–4 combined the “significant wave

height” and the “distance from ports criteria” (0.5/0.5), while

the 5–8 scenarios combined the “significant wave height” and

the “distance from highways criteria” (0.5/0.5). Then the com-

bination criteria were normalized to a [0,1] scale (Table 1).

Data analyses were performed using free open software R

3.2.3, R packages raster, ncdf4 and maptools (R Core Team,

2015), and QGIS 2.10.1 Pisa (Quantum GIS Development

Team, 2015).

Figure 1. Study site: the portion of sea considered along the entire coast of Emilia-Romagna and constraints, imposed by current uses which
cannot coexist with shellfish farms.
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Mathematical models
0D individual-based population dynamic models for the farmed

species and 3D Lagrangian models of farm organic matter de-

position were applied at each cell of the 4 km grid. Model de-

scription and simulations set-up are provided below. Model

inputs–outputs are set within the overall SMCE framework in

Figure 2.

Individual models
Two species-specific bioenergetic models were applied for Pacific

oysters (Pouvreau et al., 2006) and Mediterranean mussel

(Brigolin et al., 2009). These individual models are, respectively,

based on a Dynamic Energy Budget (DEB) (Pouvreau et al.,

2006), and on a Scope for Growth (SfG) (Brigolin et al., 2009)

formulation. The Mediterranean mussel model was previously

validated for the northern Adriatic (see Brigolin et al., 2009),

while the Pacific oyster model validation, presented in Pouvreau

et al. (2006), allowed one to simulate the energy budget in the

Pacific oyster in various environments with the same set of par-

ameters. Further details on individual models caveats and limita-

tions are provided in the discussion. These models allow one to

explicitly take into account the influence of water temperature

and food availability on individual growth and metabolism. In

this respect, environmental forcing required in input are: chloro-

phyll-a concentration and sea water temperature.

These data were obtained from Earth Observation, as described

in “Integration of remote sensing, operational oceanography and

cartographic data”, thus enabling us to map the OG criterion

“time to reach the market size” for both M. galloprovincialis and

C. gigas, which was estimated on the basis of the simulated shell

length, taking into account mussel, 5 cm, and oysters, 6 cm, min-

imum market sizes. In order to obtain robust estimates we simu-

lated the evolution of lengths throughout a typical grow-out cycle

at all grid points assuming that mussels are stocked in September,

using input data concerning the years 2003–2012 and then aver-

aging the outputs. Furthermore, individual models allow one to

compute daily faeces and pseudofaeces production rates: these

Table 1. Scenarios considered by the SMCE, the weights assigned to each criterion and, between parentheses, the weights assigned to each
variable.

Product Market Priority Scenario number
Weights

Growth
(mussel/Oyster) Environment

Socio-economic
(wave/ports/highways)

Mussels Domestic No priority 1 (REF) 0.33 (1/0) 0.33 0.33 (0.5/0.5/0)
Optimal growth 2 0.50 (1/0) 0.25 0.25 (0.5/0.5/0)
Environment interactions 3 0.25 (1/0) 0.50 0.25 (0.5/0.5/0)
Socio-economic 4 0.25 (1/0) 0.25 0.50 (0.5/0.5/0)

Mussels and
oysters

International No priority 5 0.33 (0.5/0.5) 0.33 0.33 (0.5/0/0.5)
Optimal growth 6 0.50 (0.5/0.5) 0.25 0.25 (0.5/0/0.5)
Environment interactions 7 0.25 (0.5/0.5) 0.50 0.25 (0.5/0/0.5)
Socio-economic 8 0.25 (0.5/0.5) 0.25 0.50 (0.5/0/0.5)

REF corresponds to an expansion of the current situation in the 3 – 12 nm area – no priority to a specific ILC is given.

Figure 2. Information flow, and framework adopted in the SMCE. Colours mark the different Intermediate Level Criteria (ILC): i) “optimal
growth” (orange, ); ii) “environmental interactions” (red, ); iii) “socio-economic evaluation” (green, ). Constraints are shown in blue ( ).
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were used as inputs for the deposition model, see below.

Individual-based growth models were coded in Matlab. The or-

dinary differential equations were numerically solved by means of

a fourth-order Runge Kutta scheme.

Population models
In the simulated growth-out cycle, shellfish are stocked in

September and harvested after 11–12 months (for mussels see

Brigolin et al., 2009). The same cycle was hypothesized for

oysters, which are not yet cultivated in the area. Individual mus-

sels are seeded at 4.0 cm length (according to data collected in

Brigolin et al., 2009), and oysters are seeded at 2.5 cm length

(Gennari et al., 2014). An idealized farming cycle was considered,

assuming a recruitment completely controlled by the farmers,

and a fixed mortality rate, here set at 10% year�1 (Gangnery

et al., 2004). A typical Adriatic longline farm, covering an area of

2 km2, and producing �600 t year�1 was represented. Mussels

and oysters were seeded at a density of 15 ind m�2. The individ-

ual model was up-scaled to the population level by means of a set

of Monte Carlo simulations, which were used for estimating the

size structure of the population (the virtual population was made

up of 5000 individuals; for additional details see Brigolin et al.,

2009). In accordance with Bacher and Gangnery (2006) such dif-

ferences were accounted for by assigning to each specimen a dif-

ferent maximum clearance rate, reflecting variability in individual

phenotypes as well as differences in the localization of specimens

within the farm.

Deposition models
The mapping of the EI criterion requires the estimation of the or-

ganic enrichment of surface sediment because of the presence of a

shellfish farm. In order to achieve this goal, the transport and de-

position on the seabed of the organic matter released by shellfish

was simulated using the integrated model Fish Cage Integrated

Model (FiCIM), described by Brigolin et al. (2014). The model

combines three generic modules, respectively accounting for: (i)

individual growth and dynamics of the farmed population; (ii)

Table 2. Factors for site selection in Emilia-Romagna, data used for
the analysis and spatial resolution.

Spatial data
Spatial
resolution

Input data
Sea surface temperature 4 km
Chlorophyll-a concentration 4 km
Current velocity 8 km
Wave height derived from SWAN model 1 km
Bathymetry 200 m
Optimal growth (OG)—individual-based models output
Days to commercial size for Mytilus galloprovincialis 4 km
Days to commercial size for Crassostrea gigas 4 km
Environmental Interactions (EI)—deposition model output
Enriched area, >0.1 g C m�2 d�1 20 m
Socio-economic evaluation (SE)
Distance between nodes and the nearest port –
Distance between nodes and the nearest highways on-ramp –

Figure 3. SMCE results for the reference condition (REF, see Table 1): (a) SI considering the existing leases for shellfish farming; (b), (c), (d)
and (e) criteria considered in this scenario (normalized values are reported in Supplementary Appendix).
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organic particle tracking and deposition; (iii) benthic degradation

(early diagenesis). For a validation of the particle tracking model

the reader is remanded to the original work by Jusup et al.

(2009). The integrated model was tested at a fish farm located in

the Southern Adriatic Sea (Brigolin et al., 2014). Subsequently,

the population module for farmed shellfish was introduced, and

the model was tested at a mussel farm located in the Northern

Adriatic (Brigolin, pers. comm.). The deposition was modelled

considering the typical farm and the farming cycle presented (see

“Population models”). Mussels are grown on ropes �4 m long,

which are suspended on cables, and placed at depths between 2

and 4 m. Lines are positioned parallel to the coast, along the prin-

cipal current direction at a distance of 40 m between each other.

Length of each line is �2 km. The farmed area was assumed to be

characterized by a flat bathymetry, with depths depending on the

location of the site, and set according to site-specific cartographic

data described in the section “Integration of remote sensing, op-

erational oceanography and cartographic data”.

The present work made use of a model version developed for

screening purposes, in which the final output considered is the

area (m2) in which the average organic carbon flux along the

farming cycle (UC)> 0.1 g C m�2 d�1. UC was selected, being

considered as a major driver of sediment biogeochemical trans-

formation (see Hargrave et al., 2008; Hargrave, 2010). The thresh-

old value was set on the basis of work by Cromey et al. (1998),

who classified “moderate organic enrichment” >0.1 g C m�2 d�1.

This fixed threshold value assumes that sediment texture does not

change significantly over the study area, in accordance with the

findings presented in Giordani et al. (2002), who observed mud

contents ranging between 98 and 99% at their stations (S1, E11,

S2, and S3), which can be regarded as representative of a large

part of the study area. Furthermore, the oxic–anoxic ratio in ben-

thic biogeochemical processes is mostly controlled by differences

in organic matter grain size and composition (this assumption

was discussed for this area in Brigolin et al., 2011). The areas

>0.1 g C m�2 d�1 were determined on a 2D map of resolution 20

m � 20 m, and providing the average flux of C towards the sea

bed (g C m�2 d�1) along the farming cycle. The deposition model

was run at each cell over the 4 km � 4 km spatial grid, i.e. assum-

ing to install a farm within each cell of the domain. Parameters

used in the deposition model, values and their references are re-

ported in Supplementary Table SA1 (Supplementary Appendix).

Organic matter deposition was simulated by means of a

Lagrangian technique (Jusup et al., 2007). A detailed description

of the particle tracking algorithm and of the details of coupling

between population and deposition models is provided by

Brigolin et al. (2014). The settling velocity of each particle was

randomly selected from a normal distribution (faeces l¼ 1.0;

r¼ 0.1 cm s�1; pseudofaeces l¼ 0.1; r¼ 0.01 cm s�1; see Weise

et al., 2009). The model required in input time series of water

Figure 4. Scenarios produced by the SMCE. Details of each scenario are provided in Table 1.

6 D. Brigolin et al.

Deleted Text:  above
Deleted Text: section 2.2.2
Deleted Text: approximately 
Deleted Text: approximately 
Deleted Text: section 2.3
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: -
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: x
Deleted Text: &thinsp;<sup>&minus;</sup>&thinsp;
Deleted Text: &thinsp;<sup>&minus;</sup>&thinsp;
Deleted Text:  x 
http://icesjms.oxfordjournals.org/lookup/suppl/doi:10.1093/icesjms/fsx018/-/DC1
http://icesjms.oxfordjournals.org/lookup/suppl/doi:10.1093/icesjms/fsx018/-/DC1
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;


velocity at an hourly time step. The integrated model was coded

in FORTRAN while the Lagrangian equation for the deposition

model was solved following Jusup et al. (2007). FiCIM model

runs were performed on SCSCF (www.dais.unive.it/scscf), a

multiprocessor cluster system owned by Ca’ Foscari University of

Venice running under GNU/Linux.

Integration of remote sensing, operational oceanography
and cartographic data
Information flow within SMCE analysis is summarized in Figure

2, and spatial resolution of each class of data used in the analysis

is reported in Table 2. The final resolution of the SI maps is 4 km

� 4 km. Time series of monthly Sea Surface Temperature (SST)

and concentration of Chlorophyll-a were extracted from the

EMIS (http://emis.jrc.ec.europa.eu/) database for the years 2003–

2012 by means of the R package EMISR v0.1 (R version 3.0.3).

Chlorophyll-a and SST data were derived from the sensor Modis

(Moderate Resolution Imaging Spectroradiometer) Aqua and

Terra, respectively, with a spatial resolution of 4 km (see Table 2).

This resolution was preferred to the higher spatial resolution of

2 km for the lower degree of missing days (because of cloud

coverage). Maps showing average SST and Chlorophyll-a concen-

tration in the study area within the whole time period are pro-

vided in Supplementary Appendix.

Bi-hourly 2D current velocity data were provided by the

European MyOcean project (Copernicus Marine Service—Ocean

monitoring and forecasting service; http://www.myocean.eu/)

produced by means of NEMO ocean model version 3.1 (Madec,

2008) on a regular grid with a spatial resolution of 8 km. Data of

eastward (u) and northward (v) current velocity (m s�1) were

downloaded for the period comprised between 1st September

2014 and 31st August 2015, covering 1 year (the choice of this re-

stricted time window was imposed by data availability).

Subsequently, data for each grid point were extracted and linearly

interpolated to produce hourly time series, which were provided

as an input to the FiCIM model (see Deposition models). Depth

for simulations was rescaled and set at each grid point, based on

the Emodnet bathymetry data and downloaded from the dedi-

cated website portal (http://www.emodnet-hydrography.eu/),

with a native spatial resolution of 0.0021 degrees (�200 m).

Additionally, wave height, distance from ports and highways

were considered as important criteria for the development of

aquaculture activities. Significant wave height was calculated by

means of the SWAN (Simulating WAves Nearshore) model run

operationally by the Hydro-Meteorological Service of the

Regional Environment Protection Agency of Emilia-Romagna for

the wave forecasting of the Emilia-Romagna coast, with a compu-

tational resolution of �1 km. This model is implemented on a

regular grid (1 km � 1 km), combining data derived from the

WAM (Wave Model), WaveWatch III and SWAN model itself.

Hourly data used in SMCE covered a time window of more than

9 years, from October 2006 until February 2016, corresponding

to the entire dataset published by the agency. Over this time-

frame, the 90th percentile for the significant wave height was

computed for each grid point of the SMCE domain (4 km �
4 km). Furthermore, the distance of each grid cell from ports and

highways was derived through the Nearest Neighbour Analysis.

In particular, for each cell, using QGIS, we estimated the distance

to the nearest port and consequently the distance from the port

to the nearest highway ramp, taking advantage of Google Maps.

Conflicting uses of the sea in the area were mapped based on a

recent initiative providing access to cartographic data through

WebGIS services, Shape (http://atlas.shape-ipaproject.eu/). These

constraints to the development of shellfish farm aquaculture are

mapped in Figure 1. Spatial resolutions of input data used for the

analysis are provided in Table 2, all data were re-scaled to the 4

km resolution, the same spatial resolution of the input data of the

mathematical models.

Results
SI for shellfish culture
Figure 3a shows the SI, for the baseline scenario (current situ-

ation) taking into account the current distribution of shellfish

farms. The whole coastal area comprised within the 3 nm was

found to be suitable for mussel farming, with SI values comprised

between 0.53 and 0.76, and a mean of 0.65. This is not the case

for the area comprised between 3 and 12 nm, in which SI shows a

clear spatial pattern decreasing going southwards and eastwards

(at increasing distance from the coast). The total available area

comprised within 3 and 12 nm is 1561 km2. This is reduced to

824 km2 after accounting for constraints imposed by existing

uses. Within this space, the portion with SI >0.5 is 580 km2.

Interestingly, all the mussel farms currently in place, marked in

blue in Figure 3a, are located in zones characterized by relatively

high suitability (average SI of pixels in which farms are located is

>0.65).

Figure 3b–e shows the non-normalized results obtained for

each criterion. These include days to reach the commercial size

(Figure 3b) for which values are comprised within the 92 days up

to 3.5 nm, along the whole coastline, exceeding the 150 days only

Table 3. Extension of the available space in km2 (percentage of the total area): results were aggregated in five suitability classes (each class is
defined by a SI interval).

Low suitability ! ! ! High suitability
SI N Scenarios 0–0.25 0.25–0.35 0.35–0.5 0.50–0.75 0.75–1

Scenario number 1 REF 0.6 (0.07%) 26.8 (3.25%) 217.4 (26.37%) 570.2 (69.17%) 9.4 (1.14%)
2 OG 0.6 (0.07%) 17.2 (2.09%) 144.8 (17.56%) 624.3 (75.73%) 37.5 (4.55%)
3 EI 8.9 (1.08%) 36.3 (4.40%) 206.5 (25.06%) 563.2 (68.32%) 9.4 (1.14%)
4 SE 20.5 (2.49%) 53.9 (6.54%) 364.5 (44.22%) 385.4 (46.75%) 0.0 (0.00%)
5 No priority 8.4 (1.02%) 30.8 (3.74%) 315.1 (38.22%) 470.1 (57.02%) 0.0 (0.00%)
6 OG 0.5 (0.06%) 25.6 (3.11%) 256.6 (31.14%) 530.6 (64.36%) 11.0 (1.33%)
7 EI 8.4 (1.02%) 45.0 (5.46%) 266.5 (32.32%) 504.5 (61.20%) 0.0 (0.00%)
8 SE 8.4 (1.02%) 77.9 (9.45%) 401.9 (48.76%) 336.1 (40.77%) 0.0 (0.00%)

The reference situation and the seven scenarios presented in Table 1 have been considered.
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in the south eastern portion of the studied domain. The distance

to harbour is represented in Figure 3c, where it is possible to de-

tect equally distributed values that increase going offshore, with,

in general, lower distances in the southernmost portion of the

area. The depositional area >0.1 g C m�2 d�1 (Figure 3d) appears

to be patchly distributed with highest values recorded at lower

depths, close to the coastline, and lowest values in the central part

of the domain. With respect to significant wave height (Figure

3e) values >1.0 m, are present in the whole area comprised be-

tween 3 and 12 nm, with values progressively declining while ap-

proaching the coast, and going below the 0.8 m within the 3 nm.

Comparing scenarios of shellfish aquaculture
development in Emilia-Romagna
Figure 4 compares the SI under REF with the 7 explored scenarios

of development of shellfish aquaculture industry in Emilia-

Romagna. The SI maps produced under the different scenarios

show slight differences, which can be further assessed by compar-

ing the extension of the areas by suitability class, which are re-

ported in Table 3. Suitable space (SI >0.5) for developing the

shellfish aquaculture industry reaches the lowest value under S8

(mussels and oysters; socio-economic priority), which presents

488 km2, 59% of the total space, with SI below 0.5. On the other

hand, S2 presents 38 km2, >5% of the total space, ranked as

highly suitable (SI >0.75). With respect to ILC priority, higher SI

scores are obtained when prioritizing OG, while SE scenarios pre-

sent the lowest scores. Remarkable changes in the spatial patterns

of SI are visible when changing the market (see Figure 4 S4 vs.

S8).

Discussion
The synergistic capabilities of GIS and SMCE allow one to obtain

information for decision-making, providing evident benefits to

the applied research (Malczewski, 2006). The Emilia-Romagna

coastal zone is intensively used by multiple actors with various

purpose and involving different stakeholders. The activities range

from maritime transport to fishing, aquaculture, offshore plat-

forms and sand extraction (Policy Research Cooperation, 2011).

The multiple maritime uses need a spatial planning that combine

different layers and in our study SMCE allowed us to combine

satellite data, operational oceanography products and carto-

graphic (WebGIS) data. The key step for the combination of these

information sources was the application of mathematical models

of individual growth and aquaculture–environment interactions.

We recommend that future work on MSP implementation in the

region will consider the pure suitability evaluation for shellfish

aquaculture, not taking existing uses into account—in this re-

gard, all the maps produced within this work are povided in

Supplementary Appendix without the mask of Figure 1.

Expanding shellfish farming along the Emilia-Romagna
coast
Results suggest that the space for shellfish aquaculture would pre-

sent comparable suitability (SI value) in presence of the single ac-

tivity of mussel farming, and of mussel and oyster faming

practiced in parallel—we recall here that oyster farming is cur-

rently not present in this area. More specifically, under scenario

1, the area above 0.5 SI is 70% of the available space between 3

and 12 nm (net of other existing uses), which reduces to 57%

under scenario 5.

The scenario analysis carried out by assigning priorities to the

different ILC highlighted the following characteristics of the area:

(i) the growth potential is high—space with SI >0.5 increases

when prioritizing OG; (ii) the socio-economic is the most re-

strictive ILC.

The first aspect is closely related with production carrying cap-

acity. Former local studies investigated this issue at the farm scale

in the past in the Gulf of Trieste (Martincic, 1998) and for a typ-

ical Adriatic longline farm (Brigolin et al., 2008), evidencing that

farm geometry can have an effect on the production carrying cap-

acity. However, the Western Northern Adriatic (WNA) is re-

garded as a highly productive portion of sea, ranging from

mesotrophic to eutrophic conditions, according to the specific

area and season (Zoppini et al., 1995; Zavatarelli et al., 1998;

Solidoro et al., 2009). The Emilia-Romagna portion of coast,

studied in this work, is considered as the most productive area in

WNA, being under the direct influence of Po river (loads from

Po were estimated by Cozzi and Giani (2011) around 1 105 tons

N year�1 DIN and 2.5 103 tons P year�1 PO4 for the 1995–2007

period). The river plume extends southwards, originating a

strong coastal current (Western Adriatic Current) (Cushman-

Roisin et al., 2001). A formal estimation of shellfish production

carrying capacity has not been performed for the area. However,

mussels, the only cultivated species, have been reported to com-

plete their growth-out cycle within a time of 10–12 months

(Prioli et al., 2003, 2004; Pastres et al., 2009). An indication of the

growth potential of this area is provided by the time required to

reach the commercial size of 5 cm, which within the 3 nm is

around 90 days (starting from an initial length of 3.5 cm), as re-

ported in Figure 3b. This is in agreement with mussel biometric

data by Brigolin et al. (2009), who reported a growth from 3 to

4 cm achieved in 3.5 months, and one rearing cycle completed in

11 months, when mussel shell reach a length of 6 cm. OG show a

decreasing spatial gradient going south-east, which is primarily

related to the average seasonal spatial gradient in phytoplankton

concentrations, controlled by the Po river plume (Zavatarelli

et al., 1998; Solidoro et al., 2009). OG for oyster presents slightly

lower values, as one can see from comparing Figures 4–2 and 4–6.

A possible explanation of this feature is related with the use of the

model by Pouvreau et al. (2006), which was tested on field data

from the Thau lagoon (Western Mediterranean Sea, France). We

suggest that future work should include further model testing

with in situ data from the Adriatic Sea, to confirm our model pre-

dictions. This will imply the set-up of oyster farms pilot proto-

types. Distance from harbours (Figure 3c) and significant wave

height (Figure 3e) determined the performance with respect to SE

(Socio-Economic) ILC. In both cases, at a first glance, maps show

quite homogeneous land-sea gradients. Eight harbours are disse-

minated within this highly inhabited portion of coast, with a

higher density towards its southern part (see Figure 2). The aver-

age distance to cover from a hypothetical new farm located on

the bathymetric of 15 m would be of 12.6 km. Differently, signifi-

cant wave height, the second SE of the ILC considered, presents

on top of the coast-sea gradient, also a north south decrease, indi-

cating that most suitable areas, with respect to this specific feature

are in the southern part of the region. The result is of interest, be-

cause it shows to farmers venturing on new investments a trade-

off between the growth potential and the possible risk associated

with rough sea conditions, possibly affecting the longlines.

Environment Interactions (EI) ILC is also presenting a land-sea

gradient, but reversed, with more intense deposition predicted
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closer to the coastline, at low bathymetries. The spatial gradient

of EI is less clear, primarily depending on the spatial and tem-

poral variability of currents in the area, which quantification is

probably influenced by the coarse resolution (8 km) of the oper-

ational hydrodynamic model (with respect to this point see the

additional discussion in the section “Making use of resources

provided by remote sensing and operational oceanography in site

selection”).

With respect to the EI criteria, mussel farming is expected to

have very limited effects on the benthic system, because only 6–

9% of the farming area is affected by deposition fluxes that we

considered to potentially have effects on benthic communities,

>0.1 g C m�2 d�1 based on the ranges reported by Cromey et al.

(1998). This limited impact is in line with previous knowledge on

organic deposition in well flushed conditions, such as the ones

characterizing long-line farms in the Northern Adriatic Sea

(Rampazzo et al., 2013). The idea of assessing environmental

interactions links to the need of preservation of the good state of

the marine environment in presence of human activities, as

required by the Marine Strategy Framework Directive (European

Community, 2008). This has already been considered in the work

by Longdill et al. (2008), who studied the space allocation of

Perna canaliculus in the Bay of Plenty (New Zealand), and linked

potential impacts on the environment to the long term sustain-

ability of the activity. However, areas with a limited degree of de-

position, such as the ones originated by mussel farms in Emilia-

Romagna, may also have a positive interaction with the sur-

rounding ecosystem, locally enhancing the diversity of benthic

habitats, and thus having a positive return in terms of services

provided to the ecosystem itself (see the review by McKindsey

et al., 2011).

Making use of resources provided by remote sensing and
operational oceanography in site selection
The interest on the applicability of tools for aquaculture science-

based management has increased remarkably in the last two dec-

ades, in relation to the need of implementing the EAA (Soto

et al., 2008). Ferreira et al. (2012) reviewed possible combinations

of geospatial data and mathematical models—collectively termed

“virtual technologies”—for the sustainable management of aqua-

culture activities. A major roadblock to a further increase in the

use of virtual technologies for aquaculture management was iden-

tified in the scarcity of data for model application (see conclu-

sions by Ferreira et al., 2012). The spatial explicit analysis

proposed in the present work demonstrates how this limitation

can be partially overcome by using information obtained from re-

mote sensing and operational oceanography. Saitoh et al. (2011)

recently reviewed operational uses of satellite remote sensing and

marine GIS for a sustainable management of aquaculture.

Previous works successfully applied SMCE to site selection for

shellfish (Buitrago et al., 2005; Longdill et al., 2008; Radiarta

et al., 2008). The use of individual-based growth models and par-

ticle tracking models in the framework of SMCE represents, to

our knowledge, an element of novelty of the present work with

respect to previous applications. In the works cited, the scoring

system used to evaluate environmental parameters and quantify

biophysical criteria was not anchored deterministically to species-

specific physiological processes. This represents a major obstacle

for model transferability to areas other than the calibration one.

Dynamic models used in the present work are integrated with a

daily time step and provide a final indicator of growth perform-

ance at the end of the cycle, allowing to combine instantaneously

the non-linear effects of the different environmental parameters

(i.e. water temperature, chlorophyll-a concentration), and inte-

grate these effects along the time of the farming cycle. The use of

deterministic growth models also allowed us to link water tem-

perature and chlorophyll-a concentrations to the assessment of

environmental interactions through the quantifications of faeces

and pseudofaeces production rates. The adoption of two different

frameworks for modelling individual growth (DEB and SfG), sug-

gests that this tool can be transferred to sites in which individual-

based models of different types have been previously calibrated/

validated—e.g. a DEB model for M. galloprovincialis was recently

applied by Sar�a et al. (2012) in Southern Mediterranean condi-

tions. Although beyond the scope of the present work, we believe

that this framework presents the capabilities for including in the

planning of aquaculture also the forecasted long-term trends in

environmental parameters induced by climate changes, as this

will represent a mandatory step for a sound science-based man-

agement (Cochrane et al., 2009). In order to increase the robust-

ness of our predictions, future work on this line must provide a

comprehensive assessment of the uncertainty of SI results, carried

out in the global mode (Saltelli et al., 2008), extended to all mod-

elling components, and taking into account both parameters and

forcing functions as sources of variability. We underline that this

analysis should include an evaluation of the effects of potential

spatial inconsistencies of remote sensing products—nearshore

and off-shore Chlorophyll-a remote sensing require different

post-processing (Barale et al., 2010). This analysis may also in-

clude a specific assessment of how the weights of each attribute

can affect the results. Finally, it is worth remarking here that the

assumption made by using a spatially uniform threshold for

defining the area influenced by organic deposition could be lim-

ited by variability in sediment nature, and therefore should be

carefully verified when transferring this model framework in dif-

ferent environments.

In the Mediterranean Sea operational oceanography presented

an increasing development during the last decade (for a review

see Pinardi and Coppini, 2010), and can be reasonably perceived

as the backbone of future coastal management applications. In

the Adriatic Sea, such as in other sub-regional areas, a numerical

ocean forecasting system is available, assimilating all the available

data in real time, and a set of forecasting oceanographic models

are running (Pinardi and Coppini, 2010). With respect to the use

of these predictions as primary data for SMCE applications it is

worth highlighting two potential limitations: (i) the availability of

models at the sub-regional scale is not equally distributed in all

the areas of the Mediterranean; (ii) the coarse spatial scale of cur-

rent velocity predictions represent a potential issue. With respect

to point (i), a good example is provided by the use of high reso-

lution wave models, which implementation is not routinely pro-

vided for all Mediterranean sub-regions. The lack of this data

could hinder the capability of assessing exposure to waves, which

links to an aspect of primary interest for farmers planning their

investment, such as the potential damages and losses of capital

because of ruptures of lines. For a portion of coast in Algeria,

Brigolin et al. (2015) recently based their evaluation of wave

height for fish farm exposure on the ad hoc implementation of

the SWAN model. With respect to point (ii), we remark that in

the present work the final spatial resolution represented a com-

promise between the finest 1 km resolution of wave height data
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and the coarser 8 km one of current velocities. In this latter case,

we remark that the availability of higher resolution hydrodynamic

models purposely designed for the area, could improve the accur-

acy of final predictions. This kind of models would also allow one

to consider the effects of inter-annual variability of hydrodynamic

conditions on the patterns of organic matter deposition, which in

the current application was limited by the availability of a single

year of data.

Conclusions
This work shows the potential of SMCE for assessing site suitabil-

ity for shellfish farming. The work does not provide a formal val-

idation of the SMCE framework, however, all the adopted models

were validated independently in previous works. The overall

SMCE validation for this area will require the installation of

prototype farms within the 3–12 nm area, including oyster farms,

which are not present in this area at the moment. With respect to

this latter point, we suggest that future work will include further

testing of the oyster model with in situ data from the Adriatic

Sea. A novel aspect of our approach is represented by the inclu-

sion within the SMCE framework of simple 0D individual-based

mathematical models, and of more complex integrated biogeo-

chemical models of the farm, which provided useful resources for

processing data obtained from remote sensing and operational

oceanography, and producing maps relative to each specific crite-

ria. This goes in the direction of overcoming limitations imposed

by scarcity of data for SMCE applications. With respect to the

specific area of study, the Western Northern Adriatic, we remark

the importance of taking into account the results of this sector-

specific evaluation within the future MSP implementation, also

considering the early stage of the implementation in the Italian

country. Suitability maps not including constraints are provided

in supplementary materials for this purpose (Supplementary

Appendix). Results show that the degree of suitability for shellfish

aquaculture in this area would not change dramatically with the

introduction of oyster farming. Values obtained for the SI under

the different scenarios considered confirm that the growth poten-

tial in this area is high, and that the Socio-Economic is the most

restrictive Intermediate Level Criteria. Results also show a trade-

off between the growth potential and the possible risk associated

with rough sea conditions, potentially of interest for farmers ven-

turing on new investments. We advocate for further work in as-

sessing the positive interaction of mussel farming with the

surrounding ecosystem, and for improving the accuracy of model

predictions by means of higher resolution hydrodynamic models.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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Pérez, O. M., Telfer, T. C., and Ross, L. G. 2005. Geographical infor-
mation systems-based models for offshore floating marine fish
cage aquaculture site selection in Tenerife, Canary Islands.
Aquaculture Research, 36: 946–961.

Pinardi, N., and Coppini, G. 2010. Operational oceanography in the
Mediterranean Sea: the second stage of development. Ocean
Science, 6: 263–267.

Policy Research Cooperation, 2011. “The potential of Maritime
Spatial Planning in the Mediterranean Sea. Case study report: The
Adriatic Sea”, Study carried out on the behalf of the European
Commision, Brussels.

Pouvreau, S., Bourles, Y., Lefebvre, S., Gangnery, A., and Alunno-
Bruscia, M. 2006. Application of a dynamic energy budget model
to the Pacific oyster, Crassostrea gigas, reared under various envir-
onmental conditions. Journal of Sea Research, 56: 156–167.

Prioli, G., and Moretti, S. 2000. L’organizzazione della mitilicoltur-
a:analisi di filiera e comparazioni europee. Uniprom, Consorzio
Promozione Prodotti Ittici (in Italian), 105 pp.

Prioli, G., Mietti, N., Malorgio, G., Fiori, F., and Matarazzo, D. 2003.
Utilizzo a scopo produttivo di metodiche innovative nell’alleva-
mento di Mytilus galloprovincialis, Cattolica (RN).

Prioli, G. 2004. Studi ed indagini rivolti al miglioramento della mitili-
coltura in Emilia-Romagna. Relazione Scientifica Mare Scarl per
la regione Emilia-Romagna (in Italian), 100 pp.

Prioli, G. 2008. La molluschicoltura in Italia. En A. Lovatelli, A.
Farias e I. Uriarte (eds). Estado actual del cultivo y manejo de
moluscos bivalvos y su proyeccion futura: factores que afectan su
sustentabilidad en America Latina. Taller Tecnico Regional de la
FAO. 20-24 de agosto de 2007, Puerto Montt, Chile. FAO Actas
de Pesca y Acuicultura. No. 12. Roma, FAO. pp. 159–176.

Quantum GIS Development Team. 2015. Quantum GIS Geographic
Information System. Open Source Geospatial Foundation Project.
http://qgis.osgeo.org (last accessed 26 May 2016).

R Core Team. 2015. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria. http://www.R-project.org/ (last accessed 26 May 2016).

Radiarta, I. N., Saitoh, S. I., and Miyazono, A. 2008. GIS-based
multi-criteria evaluation models for identifying suitable sites for
Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka
Bay, southwestern Hokkaido, Japan. Aquaculture, 284: 127–135.

Making space for shellfish farming along the Adriatic coast 11

http://www.siram-molluschi.it/download/Alto-medio%20Adriatico%20Gennari.pdf
http://www.siram-molluschi.it/download/Alto-medio%20Adriatico%20Gennari.pdf
http://www.siram-molluschi.it/download/Alto-medio%20Adriatico%20Gennari.pdf
http://www.siram-molluschi.it/download/Alto-medio%20Adriatico%20Gennari.pdf
http://qgis.osgeo.org
http://www.R-project.org/


Radiarta, I. N., Saitoh, S.-I., and Yasui, H. 2011. Aquaculture site se-
lection for Japanese kelp (Laminaria japonica) in southern
Hokkaido, Japan, using satellite remote sensing and GIS-based
models. ICES – Journal of Marine Science, 68: 773–780.

Rampazzo, F., Berto, D., Giani, M., Brigolin, D., Covelli, S.,
Cacciatore, F., Boscolo Brus�a, R., Bellucci, L. G., and Pastres, R.
2013. Impact of mussel farming on sedimentary geochemical
properties of a Northern Adriatic area influenced by freshwater
inflows. Estuarine, Coastal and Shelf Science, 129: 49–58.

Saaty, T. L. 1980. The Analytic Hierarchy Process: Planning, Priority
Setting, Resources Allocation. McGraw Hill, New York/RWS
Publications, Pittsburgh, 287 pp.

Saitoh, S. I., Mugo, R., Radiarta, I. N., Asaga, S., Takahashi, F.,
Hirawake, T., Ishikawa, Y., Awaji, T., In, T., and Shima, S. 2011.
Some operational uses of satellite remote sensing and marine GIS
for sustainable fisheries and aquaculture. ICES Journal of Marine
Science, 68: 687–695.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J.,
Gatelli, D., Saisana, M., and Tarantola, S. 2008. Global Sensitivity
Analysis: The Primer. Chichester: John Wiley & Sons, 292 pp.

Sanchez-Jerez, P., Karakassis, I., Massa, F., Fezzardi, D., Aguilar-
Manjarrez, J., Soto, D., Chapela, R., Avila, P., Macias, J. C.,
Tomassetti, P., et al. 2016. Aquaculture’s struggle for space: the
need for coastal spatial planning and the potential benefits of
Allocated Zones for Aquaculture (AZAs) to avoid conflict and
promote sustainability. Aquaculture Environment Interactions, 8:
41–54.

Sar�a, G., Reid, G. K., Rinaldi, A., Palmeri, V., Troell, M., Kooijman,
S. A. L. M. 2012. Growth and reproductive simulation of candi-
date shellfish species at fish cages in the Southern Mediterranean:
Dynamic Energy Budget (DEB) modelling for integrated multi-
trophic aquaculture, Aquaculture, 324–325: 259–266.

Sevaly, S. 2000. Involving stakeholders in aquaculture policy-making,
planning and management. In Aquaculture in the Third

Millennium. Ed. by R.P. Subasinghe, P. Bueno, M.J. Phillips, C.
Hough, S.E. McGladdery, and J.E. Arthur. Technical Proceedings
of the Conference on Aquaculture in the Third Millennium,
Bangkok, Thailand, 20–25 February 2000, NACA, Bangkok and
FAO, Rome (2000), pp. 83–93. http://www.fao.org/docrep/003/
ab412e/ab412e32.htm (last accessed 26 May 2016).

Silva, C., Ferreira, J. G., Bricker, S. B., DelValls, T. A., Mart�ın-D�ıaz,
M. L., and Y�a~nez, E. 2011. Site selection for shellfish aquaculture
by means of GIS and farm-scale models, with an emphasis on
data-poor environments. Aquaculture, 318: 444–457.

Solidoro, C., Bastianini, M., Bandelj, V., Codermatz, R., Cossarini,
G., Canu, D. M., Ravagnan, E., Salon, S., and Trevisani, S. 2009.
Current state, scales of variability, and trends of biogeochemical
properties in the northern Adriatic Sea. Journal of Geophysical
Research: Oceans, 114: C07S91.

Soto, D., Aguilar Manjarrez, J., and Hishamunda, N. (Eds.) 2008.
Building an ecosystem approach to aquaculture. FAO/Universitat
de les Illes Balears Expert Workshop. 7–11 May 2007, Palma de
Mallorca, Spain. FAO Fisheries and Aquaculture, Rome, FAO, pp.
15–35. Proceedings No. 14.

Weise, A. M., Cromey, C. J., Callier, M. D., Archambault, P.,
Chamberlain, J., and McKindsey, C. W. 2009. Shellfish-
DEPOMOD: Modelling the biodeposition from suspended shell-
fish aquaculture and assessing benthic effects. Aquaculture, 288:
239–253.

Zavatarelli, M., Raichic, F., Bregant, D., Russo, A., and Artegiani, A.
1998. Climatological biogeochemical characteristics of the
Adriatic Sea. Journal of Marine System, 18: 227–263.

Zoppini, A., Pettine, M., Totti, C., Puddu, A., Artegiani, A., and
Pagnotta, R. 1995. Nutrients, standing crop and primary produc-
tion in western coastal waters of the Adriatic Sea. Estuarine,
Coastal and Shelf Science, 41: 493–513.

Handling editor: Fabrice Pernet

12 D. Brigolin et al.

http://www.fao.org/docrep/003/ab412e/ab412e32.htm
http://www.fao.org/docrep/003/ab412e/ab412e32.htm

	fsx018-TF1
	fsx018-TF2

