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Stereoselective Synthesis of Chiral Isatin Containing
Bisphosphonates as Potential Anti-Resorption Bone Drugs
Lorena De Luca, Andrea Chiminazzo, Laura Sperni, Giorgio Strukul, and Alessandro Scarso*[a]

Bisphosphonates are currently the major class of drugs used for

the treatment of osteoporosis, a disease that leads to bone
fragility and increase in fracture risk that affects hundreds of

million elderly individual worldwide. All commercially available

bisphosphonates are achiral albeit their activity is demon-
strated to be related to inactivation of specific enzymes.

Cinchona alkaloid urea derivatives are efficient organocatalysts

for the asymmetric aldol reaction of ketones to an isatin

containing bisphosphonate precursor to provide a class of new
chiral enantioenriched potentially anti-resorption bone drugs.

High chemical yields were generally achieved in a wide array of

substrates tested and in several cases ee’s in the 60–96 % range
could be observed.

Introduction

Similarly to hydroxyapatite (HAP) that represents the major

constituent of the mineral portion of bones, bisphosphonates

(BP) are a class of molecules bearing two phosphonate moieties
but connected through a methylene linker. BP are specific bone

targeting species[1] used for decades in medicinal chemistry[2]

for the treatment of bone disorders such as hypocalcaemia and

osteoporosis even though the correlation between their
chemical structure and biological activity is still a highly

debated topic.[3, 4] The cellular activity of BPs is related to their

ability to inhibit specific enzymes like farnesyl diphosphate
synthase (FPPS), geranylgeranyl diphosphate synthase

(GGPPS)[5, 6] and other ones[7] present in osteoclasts that are the
cells deputed for bone resorption.

The presence of an hydroxyl group in position R1 of the BP
(Figure 1) provides higher affinity for HAP and the presence of
N containing residues on R2 promotes a good performance in

terms of anti-resorptive efficiency as in the commercially
available alendronic and zoledronic acids clinically used to
contrast osteoporosis (Figure 1). Further studies evidenced that
more lipophilic BPs lacking the presence of the gem-OH group

in position R1 and bearing N containing cationic residues with a
long alkyl chain on R2 are even more efficient to contrast bone

resorption[5] with other therapeutic positive effects as anti-
cancer,[8] anti-bacterial and anti-malarial species.[9] The search
for more potent and better tolerated N containing BPs is a

highly desirable topic. Similarly, the development of chiral BPs

and their investigation is a rather unexplored topic[10] that
deserve further investigation.[11]

BPs with R1 = OH are usually prepared from a carboxylic

acid[12, 13] or an acyl chloride[14] while BPs with R1 = H are more
commonly prepared by Michael addition of nucleophiles to
vinylidenebisphosphonate tetraethylester (VBP)[15] as a typical
building block. The latter approach enabled the preparation of

several classes of BPs bearing steroid conjugates,[16] hetero-
cycles[17] or thiols.[18] General classes of BPs have been prepared

also by metal catalyzed addition of boronic acids and indoles
to VBP as recently disclosed by our group.[19, 20] VBP can be
efficiently exploited as dienophile[21] for cycloaddition reactions

reacting with dienes[22] and nitrones.[23]

Isatin is a simple molecule found both in plants[24] and in

the human body as it is a metabolic derivative of adrenaline[25]

but it is commonly employed also for the manufacture of dyes,

pigments, flavors, pharmaceuticals, flame-proofing agents,

corrosion inhibitors, dry bleaches, disinfectants, and sanitizing
agents. It is a highly versatile starting material for the synthesis

of natural products, heterocyclic, and non-cyclic compounds.[26]

This molecule and its derivatives showed a broad spectrum of

biological activities[27] like anti-HIV,[28] anti-bacterial,[29] anti-
fungal,[30] anti-viral,[31] properties to name a few.
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Figure 1. Chemical structure of bisphosphonates, pyrophosphoric acid,
alendronic and zoledronic acids and vinylidenebisphosphonate tetraethyl
ester.
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Asymmetric catalysis on Isatin[32] derivatives has recently
received great attention because it allows a series of highly

enantioselective reactions,[33] also for the preparation of bio-
logically active spirooxindoles.[34] In particular aldol reactions[35]

on isatin derivatives turned out to be extremely stereoselective
when using amine based organocatalysts like chiral proline

derivatives,[36] 1,2-cyclohexanediamine species,[37] leucinol and
valinol as primary amines[38] or Cinchona alkaloid amine
derivatives.[39] Alternatively, good stereoselectivities were ob-
served also with a chiral thiourea catalyst bearing Cinchona
units[40] or [2.2]paracyclophane-based derivatives.[41]

In the present contribution we report the highly stereo-
selective synthesis of isatin containing BPs obtained by organo-

catalyzed aldol condensation on an isatin containing BP
precursor (Scheme 1) as potential drug molecules to contrast

osteoporosis mediated by Cinchona alkaloid urea derivatives as
efficient organocatalysts.

Results and Discussion

Since Isatin is a nucleophilic amide derivative already inves-
tigated for Michael reactions,[42] the reaction between isatin and

vinylidenebisphosphonate tetraethyl ester (VBP) was initially
tested observing the formation of the corresponding tetraethyl

product 1 a as Michael addition BP product in 86 % isolated
yield after 18 h at 60 8C (Scheme 1).

While Michael addition to VBP proceeded with excellent

yields, attempts of isatin addition to monosubstituted VBP
precursors led to their decomposition probably because of

limited stability under basic condition. 1 a was subjected to
subsequent deprotection of the phosphonate ester moiety by

treatment with bromotrimethylsilane followed by hydrolysis
with the water/methanol solution (9:1) to give the correspond-
ing bisphosphonic acids 1 a-OH in good yield that is soluble in

water and represents a model for the new class of chiral
enantioenriched drug candidates.

1 a and 1 a-OH were characterized by 1H and 31P-NMR
spectroscopy in CDCl3 and D2O respectively showing in the

latter case sharp signals indicative of the absence of aggrega-
tion phenomena in water (see Supporting Info). The carbonyl

group in position 3 of the isatin moiety is an important

electrophilic unit that can be further functionalized. The aldol
condensation between acetone used as solvent and 1 a
(Scheme 1) leading to the corresponding chiral tertiary alcohol
was investigated using a series of organocatalysts in order to

optimize the yield and stereoselectivity of the reaction. As
reported in Table 1, the reaction with sparteine was completely

inefficient, while using diphenyl-L-prolinol the expected prod-
uct was formed in 85 % yield after 48 h at room temperature,

but unfortunately in the racemic form. We then tested a series
of dimeric conjugates of cinchona alkaloids as reported in
Table 1, entries 3–5, observing in all cases yields from 9 to 50 %

yield but with no or minimal asymmetric induction on the
products. Among other alkaloids, cinchonidine led to the

formation of the product in 51 % yield and 10 % ee, while
higher yields were observed with quinine and quinidine (63 %

Scheme 1. Synthesis of tetraethyl [2-(2,3-dioxo-2,3-dihydro-1H-indol-1-yl)
ethane-1,1-diyl]bis(phosphonate) 1 a by Michael addition of Isatin to VBP and
organocatalyzed aldol condensation of carbonyl compounds to 1 a.

Table 1. Synthesis of chiral aldol products between acetone and 1 a
catalyzed by different organocatalysts.

# Organocatalyst Yield (%) ee (%)a

1 (-)-sparteine 0 -
2 diphenyl-L-prolinol 85 0
3 (DHQ)2Pyr 9 7
4 (DHQ)2PHAL 50 0
5 (DHQ)2AQN 19 0
6 Cinchonidine 51 10
7 Quinine 63 3
8 Quinidine 75 12
9 Thio-epi-QNb 2 a 85 3

10 Thio-epi-QDb 2 b 82 34

Experimental conditions: 0.16 mmol of 1 a, solvent: 1 mL acetone, 25 mol%
of organocatalyst, rt, 42 h, 31P NMR yield. a) Determined by HPLC on a Lux
Cellulose 2 chiral column. b) 18 h.
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and 75 %, respectively) still with low enantioselectivity (12 and
3 % ee, respectively). The use of thiourea derivatives of epi-

quinine (Thio-epi-QN, 2 a) and epi-quinidine (Thio-epi-QD,
2 b)[43] allowed to improve the catalytic activity yielding better

product formation (85 and 82 % yield, respectively) in 18 h at
room temperature, while an increase in asymmetric induction

(34% ee) was observed only with 2 b.
These results spurred the investigation of the solvent effect

on the reaction. We repeated the aldol condensation between

the isatin-BP adduct and 10 equivalents of acetone catalyzed
by 2 b in solvents like toluene, THF and acetonitrile observing

after 48 h comparable yields in the condensation product (18,
21 and 32 %, respectively) but positively increased enantiose-

lectivity (3, 23 and 48 % ee, respectively). We also investigated
the reaction with epi-quinidine-thiourea organocatalyst at
@10 8C instead of room temperature observing a decrease in

product yield down to 35 % but without increase in the
stereoselectivity of the reaction, observing 36 % ee similarly to

room temperature.
In order to investigate the scope of the reaction, isatin-BP

was reacted with different aliphatic and aromatic, cyclic and
acyclic ketones in the presence of the aromatic thiourea

derivatives 2 a and 2 b (Table 2). The ketones were used also as

solvents when liquid at room temperature, while they were
employed as 1.8 M solution in acetonitrile if solid at room

temperature. The isolated products were characterized by 1H,
31P, 13C NMR spectroscopy (see Supporting Info).

They are all characterized by two distinct resonances for the
diastereotopic P atoms in the 31P {1H}-NMR spectrum while 1H-

NMR spectra showed typical signals[44] assigned to Ha

(5.75 ppm) and to Hb and Hc (the overlapped signal at
3.25 ppm), as shown in the typical example reported in

Figure 2.
The use of a longer aliphatic ketone like 2-octanone led

with 2 b to a similar yield compared to acetone but with a
decrease in enantioselectivity down to 16 % ee (Table 2, entry 2)

while the sterically hindered 3,3,–dimethyl-2-butanone with the

same organocatalyst did not form the expected aldol product
(entry 3).

Cyclic aliphatic ketones showed very different results
depending on the size of the ring. In fact, while cyclo-
pentanone and cyclooctanone did not react with 2 b, cyclo-
butanone and cyclohexanone led to 79 % and >98 % yield,

respectively observing the formation of two diastereoisomeric
species syn and anti.

While with the cyclobutanone derivative the separation of
the stereoisomers and the determination of de and ee resulted
impossible, with cyclohexanone using 2 b as catalyst a diaster-

eoisomeric ratio of 67:33 and 90 % ee and 82 % ee for the two
pairs of enantiomers were observed (Table 2, entry 5). The same

reaction carried out with 2 a provided 71 % yield with 69:31
diastereoisomeric ratio and 62 % ee and 91 % ee for the pairs of
enantiomers (Table 2, entry 5). It is worth noting that even

though Quinine and Quinidine derivatives are true diaster-
eoisomers differing for the inverted configuration at C8 and C9,

often in asymmetric catalysis they behave as enantiomers
leading to inversion of the stereoselectivity and because of this

Table 2. Synthesis of chiral aldol products 3 a-3 q between methyl ketones
and 1 a catalyzed by 2 a and 2 b organocatalysts.

# Ketone Product Catalyst Yield (%)a ee (%)b

1

3 a

2 b 82 34

2

3 b

2 b 89 16

3

3 c

2 b 0 =

4 2 b 79c,d n.d.

5

3 e

2 b
2 a

>98

dr 67:33
90
82

dr 69:31
62
91

71

6

3 f

2 b >98 n.d.

7

3 g

2 b >98 n.d.

8

3 h

2 b >98 n.d.

9

3 i

2 b >98 81
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they are usually referred as pseudo-enantiomers.[45] In the

reactions reported in Table 2 this is specifically what was
observed with cyclohexanone and other ketones. In fact, the

two diastereoisomeric thiourea catalysts in most cases led to
the formation of the corresponding aldol products in compara-

ble yields but with opposite enantioselectivities. Other cyclo-
hexanones bearing 2- and 4-methyl or 4-isopropyl substituents

on the six membered ring with 2 b led to quantitative

formation of the aldol condensation products but the presence
of three stereocenters on the molecule led to a mixture of

stereoisomers that could not be separated (Table 2, entries 6–
8).

The reaction was extended to the use of aromatic ketones.
In particular with 2 b acetophenone led to quantitative

formation of the desired product with 81 % ee. We then

investigated the steric and electronic effects of the acetophe-
none derivative on the stereoselective aldol condensation. This

is the case of the reaction with p-methyl-acetophenone
mediated by 2 b that provided 94 % yield with 96 % ee in favor

of the more retained enantiomer, while with 2 a the yield was
83 % and 95 % ee in favor of the least retained enantiomer.

With p-t-Bu-acetophenone yield was 93 % with 86 % ee for the

most retained enantiomer when using 2 b, and the stereo-
selectivity was inverted with 2 a observing 78 % yield with 95 %
ee for the least retained enantiomer. With p-pentyl-acetophe-
none using 2 b 89 % yield was observed but with a marked

decrease of enantioselectivity down to 16 % ee. With electron
donating groups like for p-methoxy-acetophenone the reaction

was efficient with 70 % and 94 % yield with 2 a and 2 b
respectively, but the determination of the products ee by chiral
HPLC resulted impossible. With electron withdrawing groups

like p-bromo-acetophenone yield was 82 % and 60 % ee, while
o-bromo-acetophenone led to quantitative product formation

but a dramatic drop in ee (6 %). Similarly, m-chloro-acetophe-
none provided quantitative yield and 37 % ee.

A plausible mechanism[46] of the asymmetric organocata-

lyzed reaction is reported in the supporting information
comprising the activation of the carbonyl groups of isatin by

hydrogen bonding with the thiourea moiety and the concom-
itant methyl ketone deprotonation by the tertiary amine of the

organocatalyst.

Table 2. continued

# Ketone Product Catalyst Yield (%)a ee (%)b

10

3 j

2 b
2 a

94
83

96
95

11

3 k

2 b
2 a

93c,d

78c,d

86
95

12

3 l

2 b 89c,d 16

13

3 m

2 b
2 a

70c,d

94c,d

n.d.
n.d.

14

3 n

2 b 0 =

15

3 o

2 b 82d 60

16

3 p

2 b >98 6

17

3 q

2 b >98 37

Experimental conditions: 1 a 0.16 mmol, ketone 1 mL, organocatalyst
25 mol%, 18 h, 25 8C. a) 31P NMR yield. b) Determined by chiral HPLC on a
Lux Cellulose 2. c) 42 h. d) ketone 1.8 M solution in 1 mL of acetonitrile; n.d.
not determined.

Figure 2. 1H-NMR and 31P {1H}-NMR spectra of the addition product between
1 a and acetone..
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Conclusions

In conclusion, herein we reported about the enantioselective
organocatalyzed synthesis of isatin containing bisphosphonates

as chiral potential anti-resorption bone drugs. The use of
thiourea derived epi-Quinine and epi-Quinidine as organo-

catalysts enabled the efficient aldol condensation between
carbonyl compounds such as acyclic and cyclic aromatic and

aliphatic ketones to an isatin containing Michael addition

product of VBP. In particular high yields were obtained with
aliphatic acyclic and cyclic ketones with good level of

enantioselectivity when using cyclohexanone. Alternatively,
good yields and ee values up to 96 % were observed with

acetophenone derivatives. In most cases the alternative use of
the two thiourea organocatalysts allowed to obtain predom-

inantly either enantiomer of the aldol reaction products.

Molecules 3 j as major enantiomers are currently under study in
order to investigate their biological and toxicological properties

in the inhibition of bone resorption by osteoclasts and results
will be reported soon.

Supporting information summary

The supporting information file contains experimental details
about the organocatalytic stereoselective reactions for the

formation of the aldol products, and full characterization of the
products.
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