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Abstract. This article presents a novel methodology to as-
sess flood risk to people by integrating people’s vulnerabil-
ity and ability to cushion hazards through coping and adapt-
ing. The proposed approach extends traditional risk assess-
ments beyond material damages; complements quantitative
and semi-quantitative data with subjective and local knowl-
edge, improving the use of commonly available information;
and produces estimates of model uncertainty by providing
probability distributions for all of its outputs. Flood risk to
people is modeled using a spatially explicit Bayesian net-
work model calibrated on expert opinion. Risk is assessed in
terms of (1) likelihood of non-fatal physical injury, (2) like-
lihood of post-traumatic stress disorder and (3) likelihood
of death. The study area covers the lower part of the Sihl
valley (Switzerland) including the city of Zurich. The model
is used to estimate the effect of improving an existing early
warning system, taking into account the reliability, lead time
and scope (i.e., coverage of people reached by the warning).
Model results indicate that the potential benefits of an im-
proved early warning in terms of avoided human impacts are
particularly relevant in case of a major flood event.

1 Introduction

Fluvial flooding is the most threatening natural hazard in
Europe in terms of economic impact. For instance, between
2003 and 2009, 26 major events caused market-valued dam-
ages amounting to about EUR 17 billion, with 320 human fa-

talities (EEA, 2010). Flood risk management is thus a prior-
ity for the European Union (e.g., EFAS-IS, 2015; European
Commission, 2007), but the quantification of the benefits of
flood risk prevention measures is an unresolved challenge in
disaster research, mainly because the academic community
has not yet developed a shared standard to quantify flood risk.
The definition and measurement of natural disaster risk are
active research topics (Gain et al., 2012). The most widely
adopted framework in disaster risk reduction (DRR) envis-
ages the calculation of expected damages as a function of
hazard, physical vulnerability and exposure (Crichton, 1999;
UNDRO, 1980). According to the DRR framework, hazard is
characterized by specific return periods – an estimate of the
likelihood of the event – and together with the vulnerability it
is usually expressed as a dimensionless index, while the ex-
posure is expressed with the unit(s) of measurement of the el-
ements at risk, in physical or monetary terms. Although dis-
asters can impact social-ecological systems in multiple ways,
this approach has been mainly used to assess damages to built
infrastructure.

Ideally, as pointed out by recent literature (Balbi et al.,
2013; Meyer et al., 2013), a comprehensive cost assessment
should include the following cost elements:

1. damages to receptors that have a market value (direct
tangible costs)

2. damages to people and the environment that have intrin-
sic value but no market value (direct intangible costs)
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Figure 1. The KULTURisk framework with the identification of the main sources of data . Note: concept definitions are available in Giupponi
et al. (2014).

3. costs generated outside the time frame or the geograph-
ical location of the hazardous event (indirect costs).

Even though a few attempts at holistic assessment exist
(e,g., Jonkman et al., 2008; Gain et al., 2015), in practice
only direct tangible costs are assessed most of the time (Balbi
et al., 2013) because material damages are often considered
sufficient to analyze and justify decisions regarding structural
risk reduction measures (e.g., dikes, embankments). Another
difficulty with the traditional DRR framework is that it ne-
glects the fact that the magnitude of the costs of disasters is
influenced by the adaptive behavior of communities to absorb
or cushion hazards (Rose, 2004). This is evident when con-
sidering the human dimension of vulnerability (Cutter et al.,
2003), which has been progressively recognized as one of the
main components of risk (UNISDR, 2005). While the phys-
ical dimension of vulnerability describes the susceptibility
of man-made structures and infrastructure to be negatively
affected by hazardous events, the human dimension of vul-
nerability encompasses both the ability to cope with the haz-
ard ex post and the capacity to adapt to hazardous events ex
ante from a social perspective (Giupponi et al., 2014). Dur-
ing the 1990s, disaster management was primarily focused
on the response of governments, communities and interna-
tional organizations to deal with the consequences of disas-
ters after they occurred. More recently, emphasis has shifted
to the role of knowledge and preparedness (UNISDR, 2009)
and downplaying the human dimension of vulnerability is
no longer acceptable. The reason for this shift is twofold:

(a) natural hazard occurrence is subject to intrinsic uncer-
tainty, which will be exacerbated by climate change; and
(b) the consequences of a natural hazard increasingly depend
on the behavior of the affected communities and their capac-
ity to adapt.

The case of early warning systems (EWSs) is iconic
(Carsell et al., 2004; Nguyen et al., 2013; Daupras et al.,
2015) as by anticipating the hazard they can reduce not only
the amount of direct tangible costs – people can move trans-
portable properties outside of the exposed area – but they can
also (i) save human lives (direct intangible costs), (ii) change
the behavior of people avoiding long-lasting trauma (indirect
intangibles costs) and (iii) prevent post-disaster evacuation
costs (indirect tangible costs). This article adopts the KUL-
TURisk methodological framework (Bullo, 2013; Giupponi
et al., 2014) and presents a method to quantify the benefits
of EWS. The KULTURisk framework (see Fig. 1) proposes
two main innovations with regards to the state of the art: (1) a
non-monetary measure of risk that goes beyond direct tangi-
ble costs and (2) consideration of the individual and collec-
tive ability to reduce risk. The first is functional to the second
because the quantification of intangible and indirect costs is a
prerequisite for assessing the benefits of both non-structural
measures and preparedness. Until recently the KULTURisk
framework has been mainly implemented by means of de-
terministic risk assessment methods (Bullo, 2013; Mukolwe
et al., 2014; Gain et al., 2015; Ronco et al., 2015), devoting
only a limited attention to the treatment of uncertainty. How-
ever, uncertainty analysis and communication has a central
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role in modern flood risk management (Hall and Solomatine,
2008). In this article we propose a new variation: a proba-
bilistic and spatially explicit model developed with Bayesian
networks (BNs) based on elicited expert knowledge. We ar-
gue that this novel methodological configuration enables a
more effective spatial flood risk management by differen-
tiating risk estimates in each spatial unit of the landscape
and keeping track of the associated uncertainty. We focus on
flood risk to people because we assume that results can better
reflect the integration of people’s vulnerability and ability to
cushion hazards by coping and adapting and do not need a
full monetization to be clearly understood. Moreover, among
the possible impacts to individuals, life loss is evidently the
most relevant due to its irreversibility.

In Sect. 2, we describe the case of the greater Zurich area
and the simulation scenario, the Bayesian modeling frame-
work and the expert knowledge elicitation process. In Sect. 3
we test the sensitivity of the vulnerability module of the
framework and we describe the expected flood impacts and
their local implications in a spatially explicit fashion. We
conclude by highlighting the importance of EWSs in the new
course of integrated flood risk management, discussing the
advantages and limitations of the proposed methodology and
envisioning future research options.

2 Material and methods

2.1 Case study: The greater Zurich area

The case study area (see Fig. 2) is the lower part of the Sihl
River valley in Switzerland. The Sihl River is a pre-alpine
river with a catchment area of 336 km2 (Addor et al., 2011;
Buchecker et al., 2013). Since 1938, the river discharge of the
Sihl has been influenced by the Sihl Lake, a reservoir used for
hydropower production located in the upper part of the river
basin. The water used for energy production is not released
back into the Sihl River but rather diverged into the lake of
Zurich. The Sihl River valley with its sub-catchments is par-
ticularly prone to flash floods triggered by summer thunder-
storms. During wintertime snow accumulates in the headwa-
ters, melting and generating runoff into the river during the
warmer months. Large parts of Zurich, Switzerland’s largest
city, are positioned along the alluvial cone of the river it-
self. The river flows through the city and runs beneath the
main railway station located in the city center before join-
ing the Limmat River (Addor et al., 2011; Buchecker et al.,
2013). It has been estimated that in case of a 300- to 500-year
flood event, direct tangible costs can amount up to 5 billion
Swiss Francs (AWEL). In 2005, Zurich narrowly escaped a
major flood when a thunderstorm moved away from Zurich
towards central Switzerland. Our case study area covers an
area of 78 km2 including part of the city of Zurich with 21
districts plus 5 municipalities (Adliswil, Kilchberg, Langnau
am Albis, Rüschlikon, Thalwil). The residential areas cover
41.28 km2, with approximately 289 000 inhabitants. About

10 000 estate properties are located in hazard zones (Maidl
and Buchecker, 2015).

Since 2008 the EWS IFKIS Hydro Sihl (Intercantonal
Early Warning and Crisis Information System) has been in
place. The system uses meteorological information, mea-
sured data from gauging stations, e.g., precipitation intensity
and discharge level, and event-related information provided
by observers working in the field. Models forecast the ex-
pected runoff and the information is uploaded to a visualiza-
tion platform that can be accessed by all members responsi-
ble for taking decisions on flood risk control in the Sihl River
basin (Romang et al., 2011). The function of the EWS is to
provide decision support for local emergency response offi-
cers to consider increases in the retention capacity of the Sihl
Lake. In case of an expected flood, water is preventively re-
leased from the lake (drawdown) directly into the Sihl River
without passing through the power plant. The release of wa-
ter increases the buffering capacity of the lake, reducing the
probability of flood for the city of Zurich, but at the same
time causes a decrease in power production, making false
alarms costly. Moreover, in order to be effective, the release
of water needs to happen at least 1 day before a serious event
(Addor et al., 2011; Romang et al., 2011). Accurate forecasts
within this lead time challenge current forecasting method-
ologies and require investments that needs to be evaluated
against potential benefits (Pappenberger et al., 2015).

Despite the limitations described, the EWS is regarded as
useful in significantly reducing flood risk, although its ben-
efits have never been quantified. For the purpose of defin-
ing the EWS baseline, four experts1 from local authorities
were surveyed about their perceived – thus subjective – per-
formance of the EWS regarding its reliability (the probabil-
ity of a correct forecast), lead time (time in hours between
the warning and the event occurrence) and scope (the cov-
erage of people reached by the warning). This information
was collected in the form of multiple choice questions and
then translated in the baseline probabilities of Table 1 using
the frequency of outputs from the respondents. In this article,
we consider what the implications of an alternative scenario
are when the EWS is improved to its maximum effective-
ness (whatever the current technology allows). This is a the-
oretical situation to explore the benefits of the EWS given a
certain marginal change in its performances, without consid-
ering its feasibility. The assumptions about the baseline and
the alternative scenario are summarized in Table 1. A differ-
ent range of improvement in the EWS effectiveness spectrum
may well be assessed by changing these assumptions.

2.2 Methods: Bayesian networks to estimate risk

Building on the traditional DRR approach (UNDRO, 1980;
Crichton, 1999), our framework postulates that the magni-

1These experts are different from the 25 experts consulted to
extrapolate estimated risk output (see Sect. 2.3).
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Figure 2. Case study area. Note: map produced by Martina Bullo, available in Ronco et al. (2015).

Table 1. Early warning baseline and improved scenarios. The 1 %
in the baseline is forced to avoid having a non-observable state in
the vulnerability BN.

EWS Baseline Improved

Reliability 1 %a 49 %b 50 %c 100 %c

Lead time 25 %a 50 %b 25 %c 100 %c

Scope 24 %a 75 %b 1 %c 100 %c

a low/insufficient; b moderate/about sufficient; c high/completely
sufficient.

tude of flood risk is directly related to the intensity of the
hazard as well as to the whole (i.e., physical and human) vul-
nerability of the exposed system. Hazard, vulnerability and
exposure are integrated into a single function of risk using
BNs as described in the following section.

A BN is a graphical representation of a joint probabil-
ity distribution, which consists of a qualitative part, a di-
rected acyclic graph representing conditional dependencies
and a quantitative one, a collection of numerical parameters
representing conditional probability distributions. BNs con-
stitute a widely accepted formalism for representing uncer-
tain knowledge (subjective or objective) and for efficiently
reasoning with it (Pearl and Russell, 1998; de Campos and
Castellano, 2007). In a causal network the causal influences
between the considered factors are expressed with edges be-

tween parent and child nodes. Each node represents a ran-
dom variable defined by a probability distribution that can
be continuous or discretized. The dispersion in the proba-
bility distribution of the output node (e.g., vulnerability in
Fig. 4) can be considered as a proxy for model output un-
certainty. BNs (both the conditional probability distributions
and the structure) can be constructed through expert opinion
or by learning from the data. There has been many studies
in the past years on the automatic learning, so-called training
(Buntine, 1996), of Bayesian networks from the data (e.g.,
on flood vulnerability Vogel et al., 2012) and, consequently,
many learning algorithms have been developed based on dif-
ferent methodologies (de Campos and Castellano, 2007). In
this study we employ a mixed approach whereby opinions
expressed by flood experts are used to create an extended
data set to train the BNs.

BNs have been applied to research problems across many
disciplines, including natural resource management (Mc-
Cann et al., 2006). In particular, BNs have found increasing
application to environmental management under uncertainty,
including integrated water management issues (e.g., Barton
et al., 2008). Examples are also available in the domain of
natural hazard management (Vogel et al., 2014). Amendola
et al. (2000) use BNs to consider the chain of indirect dam-
ages caused by natural hazards. Antonucci et al. (2004) as-
sess debris flow hazards using credal networks. Straub (2005)
illustrates the potential of BNs for rockfall hazard ratings.
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Figure 3. Customized application of the KULTURisk framework.

Vogel et al. (2012) and Schröter et al. (2014) estimate the
flood damage to residential buildings using BNs trained on
real world data, including usually neglected characteristics
of the flooded objects, and the results outperform the tradi-
tional stage–damage function approach (Elmer et al., 2010)
and keep track of uncertainty. Spatial Bayesian assessments
are gaining attention from the scientific community in dif-
ferent disciplines, especially in epidemiology and human ge-
ography (e.g., Raso et al., 2012; Celio et al., 2014). For ex-
ample, Grêt-Regamey and Straub (2006) integrate BNs with
GIS to assess risk of avalanche in a spatially explicit fashion.
The main advantages of BNs are the ability to mix different
kinds of representation (e.g., quantitative, semi-quantitative,
data-based, opinion-based), to behave correctly with missing
data and to account for and help communicating uncertainties
in different part of the assessments. In the case of flood risk
it is common to have background knowledge about expected
impacts, among which some are subjective (from experts’
assessment) and some objective (from previous events). Ex-
perts possess prior information about the prevalence of pos-
sible conditions of hazard and vulnerability from previous
events.

2.3 Spatial data and Bayesian model components

Geographical information systems and BN models are fully
coupled in the simulations used for this study. The spa-
tial context for the study is a rasterized landscape of 50 m
resolution where models run in each grid cell. We used
the GeNIe software (https://dslpitt.org/genie/wiki/GeNIe_
Documentation) to develop and test the BN modules, which

were integrated and spatialized by the modeling infrastruc-
ture (see Villa et al., 2014) that directly supports GeNIe’s
native format2.

In Fig. 3 we show the application of the KULTURisk
framework in a spatially explicit and Bayesian fashion. The
hazard map, defining the level of hazard per each grid cell,
is produced by the hazard BN feeding on three maps of
flood depth, water velocity and debris factor. The vulnera-
bility map, defining the level of vulnerability in each cell
of the landscape, is produced by the vulnerability BN, thor-
oughly described and tested in Sect. 3. The hazard and vul-
nerability BN are combined into a single BN trained with the
data provided by experts’ opinions, as explained in the next
Sect. 2.4, to produce the expected percentages of people af-
fected by the flood. These ratios are then multiplied by the
number of exposed receptors in each grid cell, provided by
the exposure scenarios, to estimate the expected number of
people affected. In the following we refer to each of these
three modeling components in more detail3.

Hazard is commonly represented by maps of intensity of
flood, provided by hydrological analysis and modeling, with
reference to different return periods. For this study we used
three hazard maps provided by the GIS Centre of Canton
Zurich describing the flood extension of a 300-year event in
terms of flood inundation depth (D), velocity of flooded wa-

2The modeling infrastructure computes one inference for each
object created within the simulation using the specified network de-
veloped in GeNIe; spatial models using raster data, as in this case,
create one object for each cell.

3All the Bayesian modules are provided as .net files in the Sup-
plement.
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ter (V ) and debris factor (DF). This can be considered as a
worst-case scenario for the study area. The hazard Bayesian
module is developed mirroring the hazard rate (HR) function
of DEFRA (2006) to which we introduced stochastic noise,
whereby

HR=D× (V +β)+DF. (1)

In our case we matched the combination of the discretized
inputs to three levels of hazard: low hazard for HR lower
than 2, moderate hazard for HR between 2 and 4 and high
hazard for HR above 4, using β equal to 0.5.D is discretized
into four states: 0 to 0.5 m, 0.5 to 1 m, 1 to 1.5 m and above
1.5 m. V is discretized into three states: lower than 2 m s−1,
between 2 and 4 m s−1 and above 4 m s−1. DF is a binary
variable, where

means absence and 1 means presence of debris factor. The
mentioned discretizations are consistent with the classes de-
rived from the equations proposed by Ronco et al. (2015) and
so is the hazard map.

Vulnerability maps result from the combination of both
physical and social components, as detailed in Sect. 3.1. In-
put variables for the vulnerability Bayesian model were bro-
ken down into four main groups of variables: coping ability,
susceptibility, risk governance and early warning effective-
ness. Coping ability is described by the percentage of people
over 75 years old, disabled people and non-native speakers
(e.g., newcomers, foreigners). The mentioned data are pro-
vided by the Statistical Offices of Canton Zurich and the City
of Zurich. Susceptibility is a function of age of the exposed
buildings (source: GIS Centre Canton Zurich), percentage of
single and two storey buildings (source: local statistical of-
fices) and speed of onset – the time that flood wave peak takes
to reach the building, which is location dependent and de-
rived from averages provided by the four EWS local experts
for selected points within the case study area. Risk gover-
nance is articulated into societal risk awareness (derived from
Maidl and Buchecker (2015) – a survey of property owners)
and per capita number of emergency personnel (Hegi, Protec-
tion and Rescue Zurich, 2013, pers. communication). Early
warning effectiveness is modeled as described at the end of
Sect. 2.1 (see Table 1). The vulnerability BN, as the hazard
BN, matches the combinations of the discretized inputs to
three levels of vulnerability: low, moderate and high.

Exposure is the presence of people and assets in the mod-
eled landscape. In this application we employ two scenarios:
(1) we use the average residential population density per dis-
trict to represent human receptors in the event of an overnight
flood and (2) we use data about hourly presence of people
in selected public buildings of relevance (schools, stations,
shopping centers, etc.) during a working day to represent hu-
man receptors in the event of a working hours flood hit4. The

4In the latter scenario, the data provided by the Civil Engineer-
ing Department of the City of Zurich cover only those districts of
the study area where risks have been assessed as the highest.

advantage of this approach is that it offers a realistic assess-
ment in areas with a low residential population density but
high presence of people during the day, e.g., in shopping ar-
eas.

2.4 About the use of elicited expert knowledge

Expert knowledge has been used in three different phases of
the model development:

1. a team of experts belonging to the KULTURisk Project
have built and internally peer reviewed the vulnerability
module (see the next section);

2. four local professionals, selected by the Swiss Fed-
eral Institute for Forest, Snow and Landscape Re-
search (WSL) among those dealing with the EWS
IFKIS Hydro Sihl, have provided the knowledge to es-
tablish the baseline conditions of the early warning ef-
fectiveness component within the vulnerability module
(see Table 1);

3. 25 international flood experts, selected among authors’
contacts from own institutions and from sector specific
scientific conferences related to the topic (e.g., EGU
Leonardo 2012: Mojtahed et al., 2012; EGU General
Assembly 2013: Giupponi et al., 2013), were inter-
viewed to extrapolate experts’ estimates on risk output
that were used to train the impact risk Bayesian model
(see Fig. 3, i.e., the interaction of hazard and vulnera-
bility).

In the following, we discuss the latter phase. The panel of
experts was consulted through a questionnaires (provided as
the Supplement) in order to deduce their opinions about ex-
pected impacts of given conditions of hazard and vulnerabil-
ity within the case study. Among these experts, 20 had more
than 5 years of experience on floods, 15 had been consulted
by public bodies on flood risk and 10 had direct knowledge
about the case study. Experts were asked to rank the likely
effect on a hypothetical individual for different scenarios of
hazard and vulnerability using a numeric score between 0
and 100. Both hazard and vulnerability were described as
discrete states (high, moderate or low) using a narrative for-
mat. For example, moderate hazard was described through
the phrase “the flood depth is marginal (e.g., < 0.5m), but
the water velocity is significant for an average person (e.g.,
> 2 m s−1) and there is some debris factor”; moderate vul-
nerability was described as “It’s a residential area of individ-
ual houses with basement, where many retired people reside.
There have been flash floods before but the EWS is not at
the technological level to deal with those. However, the civil
protection agency is physically located within the area”.

Experts provided responses about the likelihood of:
(1) non-fatal physical injury, (2) post-traumatic stress disor-
der (PTSD) and (3) death. In the questionnaire, experts were
also asked to define the effect of exposure on risk. Although
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some experts recognized the existence of a nonlinear relation,
preliminary results were produced under the assumption that
risk increases linearly with exposure.

The data provided by this panel of experts were aggre-
gated to create a large representative data set. This data set
was used to train the BN with bootstrap sampling, so that
the contingent probabilities in the network could match the
causal structure and probability distribution of the original
sample. The dimension of the data set allowed the use of the
PC learning algorithm, a well-established constraint learning
algorithm named after its authors, Peter Spirtes and Clark
Glymour (Spirtes et al., 2000). The learning process shaped
a trained impact risk BN producing the three types of out-
put in a discretized fashion. We ran this BN in each cell of a
rasterized landscape, delivering probability distributions for
spatially varying hazard and vulnerability factors. We finally
multiplied these factors by the number of exposed receptors
provided by the exposure scenarios, computing distributions
for the actual number of people affected.

3 Results and discussion

3.1 Analysis of the vulnerability module

The Bayesian vulnerability module was developed and tested
by the authors and experts participating to the KULTURisk
consortium. The foundations of the conceptual model were
established during the development of the KULTURisk
framework (Mojtahed et al., 2012; Balbi et al., 2012; Giup-
poni et al., 2013) and are thoroughly documented in Giup-
poni et al. (2014). The number of factors potentially influ-
encing vulnerability is large, and their single and joint ef-
fects are largely unknown. A minimal set of factors should
include both physical and social variables (e.g, Cutter et al.,
2003; Thieken et al., 2005; Adger and Vincent, 2005; Kuh-
licke et al., 2011). The main challenges in assessing flood
vulnerability are related to (a) tailoring the set of indicators
to the context and scale and (b) aggregating and weighting
indicators (or estimating the function or probability distribu-
tion from the data).

Regarding the selection of indicators, social scientists ar-
gue that vulnerability factors should be investigated in each
case study by interacting with local stakeholders, mainly us-
ing semi-quantitative research approaches (e.g., Steinführer
et al., 2008). We took a slightly different approach, which
avoids deep stakeholder participation by making use of local
knowledge from the experts involved in this study. The selec-
tion of the vulnerability indicators was tailored to the appli-
cation context taking into account hazard type, spatial scale
and data availability. Where the data were not spatially ex-
plicit, the available information was used to build prior prob-
abilities for the input nodes (see Sect. 2.2). All the data were
discretized for use in BNs; discretization breaks of numeric
variables are either suggested by experts (e.g., speed of on-
set) or, lacking hypotheses on which to base discretization,

uniformly distributed (e.g., age of building). Further analysis
could focus on the effect of discretization (Uusitalo, 2007).

Regarding the aggregation of indicators, Giupponi et al.
(2014) suggest employing a socially weighted multi-criteria
method, which also implies relevant stakeholders’ involve-
ment. Coherently with the previous step, we instead opted
for an expert-informed Bayesian approach, whereby prefer-
ence weights are implicitly captured by the network causal
structure and by the conditional probability distribution val-
idated by the experts. Following the guidelines of Marcot
et al. (2006), who detail robust strategies to develop and
update untrained BNs for environmental management pur-
poses, we represent each node of the vulnerability BN mod-
ule through discrete states and then identify the single most
likely outcome for each combination of parent node states,
effectively forcing one outcome state for each input combi-
nation. In this development phase, we tried to approximate
equal weights for each input node on the intermediate nodes,
while among the intermediate nodes the effect of early warn-
ing effectiveness is doubled with respect to the others (i.e., 40
vs. 20 %). Then probabilities were adjusted to represent rea-
sonable probability distribution. In the development of the
first-cut model (named alpha-level in Marcot et al., 2006) we
also respected the following principles in order to keep its
complexity under control:

1. the number of parent nodes to any given node is three
or fewer

2. input nodes are based on existing data (mainly spatially
explicit data)

3. intermediate nodes are used to summarize the major
themes (e.g., early warning effectiveness summarizes
the three dimensions of EWSs).

The result of the selection and aggregation of indicators
as described above is the vulnerability module represented
in Fig. 4, which exhibits four main components (intermedi-
ate nodes) whereby early warning effectiveness and suscepti-
bility include influencing factors (input nodes) typically dis-
played in studies of flood damages to residential buildings
(Thieken et al., 2005; Merz et al., 2013), while coping abil-
ity and risk governance include typical factors of social vul-
nerability literature (Cutter et al., 2003; Adger and Vincent,
2005).

Sensitivity analysis shows that the results are mostly sen-
sitive to input parameters related to risk governance. This
information is detailed in Table 2, where the sensitivity of
each output is broken down for every possible interval of out-
come (i.e., low, moderate and high vulnerability) following
the methods in Kjaerulff and van der Gaag (2000) (Sect. 4).
In this analysis, based on the Tornado diagrams available in
GeNIe, we consider only the effects of individual input nodes
and not their combinations. A conditional confidence analy-
sis (Christopher Frey and Patil, 2002) is performed, taking
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Figure 4. Vulnerability Bayesian network and summarized sensitivity.

each state of input nodes individually. For every state of the
output node (i.e., vulnerability) the range of variation of the
marginal probability is computed over all the possible states
of the input nodes.

In Table 2, sensitive input parameters are mostly related to
the emergency personnel and to the risk awareness factors.
Low vulnerability is the most sensitive output state with 13
input parameter states that can induce a change in the output
state probability of above 10 %. Among these the maximum
variation (28 %) can be produced by a thorough presence of
emergency personnel, which in turn increases the probability
of low vulnerability. More specifically, the range effect on the
target (low vulnerability) spans from 20.1 to 48.1 %, against
a posterior probability of 25.7 %, and is produced with a full
variation of the parameter probability, from 0 to 100 %.

The states of input parameters are varied to their full range
for the purpose of testing this module assuming high uncer-
tainty on the given prior probabilities. In general terms, the
sensitivity of the vulnerability module is acceptable given
the ranges of input change imposed. Moreover, early warn-
ing parameters do not appear to be overly sensitive to under-
mine the results; for example, low EWS reliability and lim-
ited EWS scope can affect the expected probability of low
vulnerability up to 10–12 %. This is relevant in view of the
discussion of results proposed in the next section.

3.2 Simulated spatial results

Simulated results can be presented as a comparative analysis
of the baseline (i.e., presence of the current EWS) with the al-
ternative scenario representing the improvement of the EWS
to a maximum theoretical effectiveness. The latter assumes
that its reliability, scope and lead time are completely effec-
tive with respect to the baseline informed by the perception
of experts (See Table 1). This method allows the quantifica-
tion of the expected benefits of the EWS in terms of avoided
injuries, PTSD and fatalities.

The model original output are raster maps with a resolu-
tion of 50 m. We only present a representative set of these
maps (Fig. 5). For each cell in which the BN is applied
the output is expressed as a discretized probability distribu-
tion. To represent uncertainty we produced maps of the co-
efficient of variation (CV) calculated from the distributions
along with maps of the mean values in each cell. For exam-
ple, Fig. 5b describes the uncertainty of the probability of
getting injured due to an overnight flood. An average uncer-
tainty (CV around 0.5) is shown for the cells with highest
expected probability, higher uncertainty is shown in some
cells with low expected probability (e.g., the city) as well
as in some cases of expected medium–high probability (e.g.,
the Werd district) as discussed in the following paragraphs.
Uncertainty captures where the quality of input data could
improve to produce more precise risk estimation with our
model. The summary of results, aggregated per district and
municipality and not taking into account the related uncer-
tainty, is presented for the two exposure scenarios in Table 3
(day flood) and Table 4 (overnight flood). While the single
scenario results in Fig. 5 communicate expected results and
uncertainty per each pixel of the landscape, the summarized
results in Tables 3 and 4 emphasize the changes between sce-
narios aggregated per district.

Our simulation suggests the importance of EWSs in reduc-
ing risk to human life for a major flood event: a very effec-
tive EWS could avoid about 153 injuries, 111 PTSDs and 3
fatalities in a day event or 266 injuries, 210 PTSDs and 14
fatalities in a night event.

The difference and spatial distributions between day and
night scenarios depends on different exposure data (the two
scenarios do not consider the same districts). For example,
the city district could be at high risk mainly in case of day
flood. Alt-Wiedikon and Langstrasse appear to be at risk
in both day and overnight cases, while Albisrieden, Alt-
stetten and Sihlfeld are mainly at risk during an overnight
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Table 2. Main sensitivities of the Bayesian vulnerability module in percentages.

Low vulnerability Moderate vulnerability High vulnerability
Expected prob. w/o evidence= 25.70 Expected prob. w/o evidence= 49.54 Expected prob. w/o evidence= 24.76

Parameter and state Range effect Parameter and state Range effect Parameter and state Range effect
on target on target on target

EmergencyPersonell_S3a 20.1–48.1a PeopleRiskAwareness_S2a 46.4–62.1a EmergencyPersonell_S1a 16.8–56.4a

EmergencyPersonell_S1a 5.9–30.6a EmergencyPersonell_S1a 37.7- 52.5a PeopleRiskAwareness_S1a 19.1–47.3a

PeopleRiskAwareness_S3a 13.3–33.9a PeopleRiskAwareness_S1a 40.2- 51.8a EmergencyPersonell_S3a 4.1–30a

PeopleRiskAwareness_S1a 12.4–29a EmergencyPersonell_S2a 42.7-54.1a PeopleRiskAwareness_S3a 17.6–35.4a

PeopleRiskAwareness_S2a 14.3–28.5a OldPeople_S3c 47.3–50.6c AgeOfBuildings_S5a 23.5–35.4a

AgeOfBuildings_S5a 13.9–27.1a DisabledPeople_S3c 47.3–50.6c EmergencyPersonell_S2b 21.1–30.2b

DisabledPeople_S3a 21.9–33.5a Foreigners_S3c 47.4–50.6c DisabledPeople_S1b 21.9–30.5b

OldPeople_S3a 22–33.5a Scope_S1c 48.7–51.9c Foreigners_S1b 22–30.3b

Reliability_S1a 14.4–25.8a Reliability_S1c 49.5–52.5c Reliability_S1b 24.7–33b

Foreigners_S3a 22–33.2a Scope_S3c 47.3–50.2c AgeOfBuildings_S1b 18.1–26.5b

DisabledPeople_S1a 18.3–29.3a PeopleRiskAwareness_S3c 48.4–51.1c DisabledPeople_S3b 19.1–27.5b

Foreigners_S1a 18.5–29.3a OldPeople_S1c 48.6–51.1c OldPeople_S1b 21.8–30b

OldPeople_S1a 18.7–29.5a DisabledPeople_S1c 48.7–51.2c OldPeople_S3b 19.2–27.4b

Scope_S1a 17.6–28.4a Foreigners_S1c 48.7–51.2c Foreigners_S3b 19.4–27.4b

AgeOfBuildings_S1b 25.3–34b EmergencyPersonell_S3c 47.8–50c AgeOfBuildings_S4b 24.1–31.8b

Scope_S3b 23.1- 33.3b AgeOfBuildings_S1c 47.8–50c Scope_S1b 22.9–30.4b

AgeOfBuildings_S4b 17.8–27.4b LeadTime_S3c 47.5–49.5c Scope_S3b 19.3–26.6b

SpeedOfOnset_S3b 19.4–27b Reliability_S3c 48.5–50.5 c SpeedOfOnset_S3b 23.6–30.2b

OneAndTwoStoreyBuildings_S1b 20.5–27.5b Reliability_S2c 48.6–50.5c OneAndTwoStoreyBuildings_S3b 23.2–29.3b

OneAndTwoStoreyBuildings_S1b 22.7–29.5b LeadTime_S3c 49.2–50.5c OneAndTwoStoreyBuildings_S1b 21.6–27.2b

LeadTime_S3b 25.6–32.2b AgeOfBuildings_S5c 49.4–50.7c LeadTime_S3c 20.1–24.8b

Note: for each state of the vulnerability node, we list the first 21 most sensitive input parameters and related states and their effect on the output. The values correspond to an induced variation of the
input parameters states from 0 to 100 % (full range). a sensitivity range of above 10 %; b sensitivity range 10 to 5 %, c sensitivity range below 5 %. Parameters of early warning systems are in bold.

Table 3. Affected human individuals per district or municipality-day flood. Note: only affected districts are shown.

ID District or Injuries Injuries PTSD PTSD Dead Dead
municipality baseline improved baseline improved baseline improved

2 Albisrieden 1 0 1 0 0 0
3 Alt-Wiedikon 35 29 31 26 1 0
4 Altstetten 2 1 2 1 0 0
5 City 486 358 428 337 2 1
7 Escher Wyss 0 0 0 0 0 0
8 Friesenberg 13 10 12 10 0 0
9 Gewerbeschule 0 0 0 0 0 0
12 Höngg 0 0 0 0 0 0
15 Langstrasse 25 20 22 18 1 0
16 Leimbach 3 2 3 2 0 0
17 Lindenhof 0 0 0 0 0 0
21 Sihlfeld 12 9 11 8 0 0
24 Werd 14 10 13 10 0 0
25 Wipkingen 1 0 1 1 0 0
26 Wollishofen 0 0 0 0 0 0

Total 592 439 524 413 4 1

flood. The latter shows the most condensed impacts. Thal-
wil and Adliswil are at risk during an overnight flood, but
they are not covered by exposure data for the day sce-
nario. Enge, Hard, Hochschule, Kilchberg, Langnau am Al-
bis, Oberstrass, Rathaus, Rüschlikon and Unterstrass are also
not covered by day exposure data. Note that the effect of the
EWS improvement is different in every cell and thus in every

district/municipality, according to the different contribution
to the reduction of vulnerability that it can achieve depend-
ing on the conditions of the other factors of vulnerability. For
example, vulnerability may remain high even with a very ef-
fective EWS because susceptibility is high (due to the speed
of onset) and coping capacity is particularly low (due to the
presence of vulnerable human receptors). However, in this
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Figure 5. Spatial results describing the probability of injury in the baseline overnight flood scenario: mean (a) and coefficient of variation
(b) of distribution. Note: numbering of districts refer to ID column in Table 4.

Table 4. Affected human individuals per district or municipality-overnight flood.

ID District or Injuries Injuries PTSD PTSD Dead Dead
municipality baseline improved baseline improved baseline improved

1 Adliswil 28 26 25 23 1 1
2 Albisrieden 232 201 201 174 6 0
3 Alt-Wiedikon 126 102 115 90 1 1
4 Altstetten 171 149 151 132 4 1
5 City 7 3 6 3 1 0
6 Enge 2 1 1 1 0 0
7 Escher Wyss 3 0 0 0 0 0
8 Friesenberg 31 25 28 23 0 0
9 Gewerbeschule 0 0 0 0 0 0
10 Hard 0 0 0 0 0 0
11 Hochschule 0 0 0 0 0 0
12 Höngg 35 27 30 24 0 0
13 Kilchberg 4 2 4 2 0 0
14 Langnau am Albis 8 6 7 5 1 0
15 Langstrasse 231 195 201 172 1 0
16 Leimbach 12 9 11 9 0 0
17 Lindenhof 12 2 3 2 0 0
18 Oberstrass 5 4 5 3 0 0
19 Rathaus 0 0 0 0 0 0
20 Rüschlikon 2 1 2 1 0 0
21 Sihlfeld 266 192 231 173 2 1
22 Thalwil 35 30 30 26 1 0
23 Unterstrass 0 0 0 0 0 0
24 Werd 86 66 76 63 0 0
25 Wipkingen 67 56 59 50 0 0
26 Wollishofen 0 0 0 0 0 0

Total 1363 1097 1186 976 18 4
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application we do not explore how early warning effective-
ness could be conditional on the timing (day vs. night) of the
event.

The simulation results lead to distinguish three main types
of districts that could be affected by a flood event: (1) the in-
ner city of Zurich, (2) Zurich’s nightlife district and (3) the
densely populated residential areas which cover most of the
case study area including the five municipalities in the Sihl
valley. The city district is especially at risk during a day
flood. This district is characterized by numerous commercial
activities such as shops, restaurants and other businesses and
includes Zurich’s main railway station. It thus encapsulates
the busiest areas in Zurich, although the actual number of in-
habitants is relatively low. Zurich’s main station is not only a
central hub for national and international rail transportation
but also includes an underground shopping complex with
more than 130 shops and about 50 restaurants and take away
services. Shops are open 365 days a year from early morning
until at least 21:00 h (20:00 h during public holidays). In ad-
dition, the main hall is used for events of all kinds, markets,
shows, exhibitions, etc. The Swiss Federal Railways (SBB)
estimates that about 400 000 people pass through the station
every day. As the Sihl River flows directly underneath the
station, a flood could trap a lot of people underground. Early
evacuation of the railway station is a key task to avoid major
human costs in case of day flood.

In contrast to the city district, the Langstrasse district is
at risk both in case of day and overnight flood. Langstrasse
is a district with very mixed functions. On the one hand, it
is a very popular nightlife district with plenty of restaurants,
bars, pubs, discos, etc. On the other hand, it is a multicul-
tural residential area with more than 10 000 inhabitants. Rent
in Langstrasse is comparatively cheap, attracting people with
low incomes. The percentage of residents depending on so-
cial welfare (14 % in 2006) is the highest in Zurich. There is
a high percentage of foreigners among the residents (up to
50 % in certain streets), many of them with limited knowl-
edge of German (Craviolini et al., 2008). These factors con-
tribute to the vulnerability of the district to unusual events
such as flooding. Traditionally, residents are warned by a
general sound alarm and via radio about an impending flood,
but especially in the Langstrasse district it might be difficult
to reach everybody in this way. Jointly with Albisrieden, Alt-
stetten, situated along the river Limmat downstream to where
the Sihl joins the Limmat, is one of the residential districts
most at risk in case of an overnight flood due to a relatively
high population density. Measures to reduce flooding along
the Limmat were implemented in 2013. A 1.8 km long sec-
tion of the Limmat has been restored and expanded up to
8 m, giving the river more space in case of flood events. At
the same time, new dams have been constructed to protect
critical areas (Zurich, 2013). In this particular case our sim-
ulation suggests that an efficient EWS could prevent most of
the fatalities in case of a major overnight flood.

4 Discussion and conclusions

Flood risk has been traditionally measured through the ex-
pected monetary damage to material objects – mostly build-
ings. This may have encouraged the common practice of as-
sessing risk reduction measures that are focused mainly on
structural intervention, like dams and levees, leaving aside
the influence of people’s behavior in dealing with floods.
Conversely, regardless of structural protections, increased
exposure by means of occupation of land by human settle-
ments has been in fact the main driver of increased flood risk
in the last years (UNISDR, 2009). The evolution of land en-
croachment, together with the vulnerability of exposed set-
tlements and the increasing frequency of extreme events due
to climate change, is calling for a new course in integrated
flood risk management.

Non-structural measures (e.g., relocation and detention
basins) and preparedness (e.g., EWSs and rising risk aware-
ness) are gaining ground in the governance of risk prevention
and reduction, as words like “adaptation” and “coping abil-
ity” become of common use in the policy-making arena. In
particular, EWSs are recognized as an efficient risk reduction
option in flood prone areas, as flood forecasting undergoes
technological innovation in terms of reliability and lead time
(see Pappenberger et al., 2015). However, there are still few
studies about the quantification of the benefits of EWSs. In
this article we demonstrate a novel approach based on the
KULTURisk framework (Balbi et al., 2012; Giupponi et al.,
2014), which attempts to fill this research gap for what con-
cerns the potential avoided consequences to human recep-
tors.

In general, the benefits of a risk prevention measure are the
difference between potential consequences determined under
the baseline scenario and the potential consequences under
an alternative scenario where new or improved risk preven-
tion measures are put in place. We measure how a marginal
change in the effectiveness of the EWS affects the expected
impacts to human receptors. We simulate a scenario analy-
sis focused on the potential benefits of EWS improvement
to a maximum theoretical effectiveness of its performances.
Even if at the moment such an improvement might not seem
very realistic, it could become more accessible in the coming
years thanks to the improving technology, computers, models
and data collection methods. This simulation suggests that
the potential benefits of a fully efficient EWS in terms of
avoided human impacts are particularly relevant in case of a
major flood event.

Our application tailored on the Zurich case study is pro-
posed here as a proof of concept to explore the possible role
of the combination of probabilistic methodologies, like BNs,
and expert-elicited knowledge in the spatially explicit mod-
eling of flood risk and the assessment of non-structural risk
reduction measures under uncertainty. Although the deliv-
ered results appear reasonable, and are backed up by parallel
studies as we discuss in the next paragraph, more research
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is required for robust policy recommendations. For example,
the vulnerability model has been peer reviewed by domain
experts in order to produce the final version implemented in
this study. However, strategies like data learning (where data
is available) or deep stakeholder inclusion (where resources
are available) could be put in place for consolidating this part
of the methodology. For this article we simply acknowledged
these limitations and discussed a sensitivity analysis to com-
plement the results of the vulnerability module.

Further, we only focus on risk as direct costs, whereby the
human impacts in each cell of the modeled landscape take
into account vulnerability, hazard and exposure of that partic-
ular cell. Thus at this stage we neglect the impacts in one cell
that could be caused by the hazard and vulnerability in the
neighboring cells. Additionally, we assume a linear relation
between risk and exposure. However, for the more densely
populated areas the probability of human impacts as provided
by the experts for moderate exposure conditions may be ex-
ceeded. This may lead to underestimation of the potential risk
associated with such high exposure cases. Finally, the results
and the related uncertainty could change if a different set of
experts were consulted.

The results of our simulation reinforce that, from a
methodological point of view, it is possible to employ quan-
titative data (flood modeling and GIS data), and semi-
quantitative information integrating subjective (expert opin-
ion) and local knowledge (risk perception and EWS base-
line), to produce estimates in line with more established (and
deterministic) approaches. In particular, the application of
BNs allows us to produce probabilistic results and include
an explicit visualization of model uncertainty. Moreover, the
incorporation of early warning scenarios allows the assess-
ment of the potential benefits of the EWS.

As a mean of preliminary cross-validation, we can antici-
pate that the results for the baseline overnight flood scenario,
for what concerns injuries and fatalities, are dimensionally
and spatially consistent with the equivalent GIS analysis car-
ried out during the KULTURisk project with a deterministic
model and no expert involvement (Bullo, 2013; Olschewski,
2013; Ronco et al., 2015). The probabilistic and expert-
informed results reflect a more pessimistic outlook on in-
juries (1300 vs. 1000 people affected) and appear slightly
more conservative about fatalities (18 vs. 29 deaths). Com-
pared to the mentioned deterministic application the main ad-
vantage of using a probabilistic methodology like BNs is the
possibility of using the information on uncertainty, deriving
from both model structure and data, as showed in Fig. 5b.
The communication of uncertainty is an added value of this
methodology because it improves the transparency and reli-
ability of the results. In addition, having the vulnerable part
of the framework developed in Bayesian fashion allows us to
analyze hypothetical scenarios that have been difficult to cap-
ture in the past such as in the case of EWS. By altering base-
line conditions of key variables related to early warning ef-
fectiveness, we are able to simulate ex ante the benefits of im-

proving the business as usual conditions. The quantification
of the required investments are beyond the scope of this pa-
per although a local planner could get an idea of the hotspots
where to intervene both in terms of expected impacts and un-
certainty level: for example, a decision to be taken in an area
where high uncertainty should drive research to improve the
quality of the data that feed into the model or the model it-
self if the goodness of data is considered to be satisfactory.
Finally, with respect to the original application of the KUL-
TURisk methodology, our model also considers an alterna-
tive scenario of EWS improvement both for overnight and
day flood.

This work could be further expanded in two main ways.
The simplest one is the comparison of the costs and the ben-
efits of the EWS. This comparison requires the estimation
of investments and running costs related to a fully efficient
EWS, as envisioned in our scenario, including the state of the
art forecasting models, real time weather data assimilation,
full population warning coverage, personnel requirements for
operation and maintenance, etc. Such a development would
in turn lead to the monetization of the benefits, differently
from what we presented in the results section. Under a more
traditional economic perspective, it is possible to envisage
ways to estimate monetary values by applying the method of
disability-adjusted life years (DALY) (Murray et al., 2013) to
injuries and PTSD results and to assess the loss of lives us-
ing the value of statistical life (VSL) method (Jonkman et al.,
2003). While DALY quantifies the burden of being in states
of poor health or disability (including the implications of age
on productivity) in terms of forgone good years of expected
life, VSL captures the value that an individual places on a
marginal change in their likelihood of death. Bearing in mind
the widespread criticism around these two methods (mainly
for VSL), monetized figures can later fit into a traditional
cost–benefit analysis framework. More interestingly, greater
innovation could derive from the hazard modeling part of the
approach described in this article. While we presented a static
hazard scenario provided by exogenous hydrological models,
we also envision the possibility to integrate a flood module,
which would be able to simulate different hazards linked to
a weather generator module. This would sustain the ability
to test different climate change scenarios. Further technolog-
ical developments are focusing on the automated generation
of questionnaires from the BN structure and the use of e-
participation methodologies (Bojovic et al., 2015) to extract
BNs training data.

The Supplement related to this article is available online
at doi:10.5194/nhess-16-1323-2016-supplement.
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