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Abstract

In this paper, we analyze the dynamic relationships between ten stock

exchanges of the euro zone using Granger causal networks. Considering

returns for which we allow the variance to follow a Markov-Switching

GARCH or a Changing-Point GARCH process, we first show that over

different periods, the topology of the network is highly unstable. In partic-

ular dynamic relationships vanish over very recent years. Then, expanding

on this idea, we analyze patterns of information transmission within the

network. Using rolling windows to study networks’topology in terms of

information clustering, we find that the nodes’state changes continually.

Moreover, the system exhibits periods of flickering in information trans-

mission. During these periods of flickering, the system also exhibits desyn-

chronization in the information transmission process. These periods do

precede tipping points or phase transitions on the market, especially before

the global financial crisis, and can thus be used as early warnings. To our

knowledge, this is the first time that flickering in information transmission
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is identified on financial markets, and that flickering is related to phase

transitions.

Keywords: Causal Networks ; Topology ; Flickering ; Desynchronisa-

tion ; Phase Transitions.

JEL codes: C1, C4, G1.

1 Introduction

Consider an electronic component designed to emit a signal which is about to

fail, that is about to switch from one state to an other. This component is likely

to start emitting abnormal signals, or signals in an abnormal way before the

failure, rather than abruptly failing. For instance, we are likely to observe a

flickering signal before a phase transition occurs. Consider further the compo-

nent as part of an electronic device, which is connected to other components,

forming then a complex interdependent dynamic system. Two questions then

arise: i) What will be the impact of the component’s failure on the whole sys-

tem? In other words, will the electronic device fail because of the failure of one

component ? and ii) Is it possible to know in advance that a failure will occur ?

One way to answer the first question is to look at the integrated circuit of the

device (i.e. the topology) and to focus on the importance of the component in

terms of centrality and/or the number of components connected to it (i.e. the

degree). To answer the second question, one first needs to recover the topology

of the system, and next to look at the information diffusion processes (i.e. the

signals) so as to identify abnormal periods prior to the failure at the individual

and/or the macro level (i.e. component versus circuit level).

Turning to financial systems and systemic risk, the first question has been

adressed by a number of authors using networks. Relating systemic risk to

the concepts of connectedness, contagion, and therefore diffusion of exogenous

and/or endogenous shocks within and/or across financial sectors (see Bisias et

al. 2012), Allen and Gale (2000) as well as Acemoglu et al. (2013) show that

highly interconnected networks are more resilient to small shocks but not to

large ones. Battiston et al. (2013) focus on the frailty of nodes, and then study

cascading effects as Motter and Lai (2002) do. In such models, the focus is

set on the impact of the failure of one or several nodes on the whole system.
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Furthermore, Hackett et al. (2011) and Payne et al. (2009) emphasize the

importance of networks’topology while studying clustered and degree-correlated

networks respectively.

Our paper clearly relates to the second question, that is on early warning

indicators prior to a phase transition (i.e. non-crisis versus crisis periods). We

consider financial systems as being possibly critically self-organized (Bak et al.,

1987, Bianconi and Marsili, 2004). In particular, local interrelations between

the system’s components build up a coordinated system or network. Such self-

organised network/system will turn into a critical behavior (i.e. tipping point

and phase transition) without the effect of external forces or drivers. In this

light, our main contribution is to provide early warnings of phase transitions

for the whole system (or network), which is highly suggestive of systemic risk.

To detect early warnings, we adopt a two-step methodology. First, we recover

the network topology using non-causality tests as suggested in Billio and al.

(2012). Nevertheless, we use a different class of Granger non-causality tests,

within the framework of independence tests for time series1 . Such tests are per-

formed on normalized innovations of Generalized Auto-Regressive Conditional

Heteroskedastic (GARCH) models in which we allow the variance processes to

have recurrent (Markov-Switching GARCH) or non-recurrent states or regimes

(Changing-Point GARCH). To model series, we adopt the Bayesian Bauwens

et al. (2014) methodology. Independence tests for time series are very versa-

tile and provide a very rich information concerning instantaneous correlations,

non-causality over a given number of lags, or at a given lag. They thus allow

for capturing the complex interplay such as feedbacks and spillover effects, and

are used to build directed and undirected, as well as weighted and binary net-

works here. Despite its apparent simplicity, it has been suggested by Zhou et

al. (2014) in integrate-and-fire neuronal systems (see also Winterhalder et al.,

2005) that Granger non-causality can capture non-linear relationships.

Once the topology is recovered, we first propose a period-specific analysis

of the contagion process within the network while discriminating between crisis

and non-crisis periods. We mainly show that the nodes’states are highly un-

1See Hong (1996), Duchesne and Roy (2001), Koch and Yang (1986), El Himdi and Roy

(1997), Pham et al. (2001), Hallin and Saidi (2001) among others.
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stable over time. Expanding on this idea, we identify phase transitions based

on the very short-term dynamic diffusion process of information/shocks accross

nodes. Such nodes’ short-term diffusion processes are interpreted as signals.

Our dynamic signal analysis relies on a six-month rolling window, and focuses

on triangular clustering patterns or motifs of information diffusion as defined

by Faggiolo (2007), including spillover and feedback effects.

Considering daily data about ten main European stock indices form 1994

to 2014, our findings are manyfold: i) With respect to period-specific analysis,

correlations prevail over the data sample and are regime-dependent. Such corre-

lations increase up to the period following the crisis, and then start decreasing,

ii) Besides, the number of causal relationships as well as their strength increases

up to the crisis period but vanishes after the crisis period. Over the remain-

ing sample history, there exist very few and very weak causal relationships, iii)

Based on a rolling window analysis, we first show that periods of clustering

precede periods of flickering in clustering, which are followed by a tipping point

and a phase transition. The phase transition begins with an abrupt clustering

phenomenon for all stock exchanges. Such sudden phenomenon indicates a si-

multaneous phase transition of all stock markets (i.e. synchronized clusters).

Interestingly, flickering periods also highlight times when stock exchanges ex-

hibit desynchronized information flow processes. In particular, Euro zone stock

exchanges exhibit clusters’desynchronization approximately one year before the

Global Financial Crisis. At last, the end-of-crisis period exhibits an exceptional

and specific clustering phenomenon, which is followed by the sudden disappear-

ance of clusters. Hence European stock exchanges seem to stop interacting

together. To our knowledge, we are the first to study clustering, or equiva-

lently, information diffusion patterns within causal networks. Clearly, flickering

in clustering as well as desynchronization in information transmission patterns

could serve as early warnings indicators of phase transition on the market.

This paper is structured as follows. Section 2 introduces the econometric

methodology. Section 3 focuses on the statistical properties of the data and

applies the Bauwens et al. (2014) methodology. Section 4 implements period-

specific independence and non-causality tests on filtered and orthogonalized

data. Section 5 focuses on early warning indicators of crisis. Finally, Section 6
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concludes.

2 Econometric methodology

Let r = {(r(1)′t , r
(2)′
t , ..., r

(N)′
t )′, t ∈ Z} be a set of N log-returns of a main index

of a stock-exchange, observed over T periods. Assume that each component

of r admits a Generalized Auto-Regressive Conditional Heteroskedastic process

(GARCH) representation (Bollerslev, 1986):

r
(i)
t −

p∑
l=1

ρ
(i)
l r

(i)
t−l − c

(i) =

√
h
(i)
t ε

(i)
t (1)

θ
(i)
t =

√
h
(i)
t ε

(i)
t (2)

h
(i)
t = ω(i) + α(i)θ

(i)2
t−1 + β

(i)h
(i)
t−1 (3)

ε
(i)
t ∼ iid(0, 1) (4)

Moreover, as T becomes large, consider that returns might also exhibit breaks in

their volatility process. Then, define a more realistic Data Generating Process

(DGP) as:

r
(i)
t −

p∑
l=1

ρ
(i)
l r

(i)
t−l − c

(i) =

√
h
(i)
t ε

(i)
t (5)

θ
(i)
t =

√
h
(i)
t ε

(i)
t (6)

h
(i)
t = ω(i)st + α

(i)
st θ

(i)2
t−1 + β

(i)
st h

(i)
t−1 (7)

ε
(i)
t ∼ iid(0, 1) (8)

Equation (7) allows the parameters in the variance equation to switch from one

value to another. We focus on two kinds of switching processes: i) Switch-

ing processes with recurrent states, i.e. Markov-Switching (MS-) GARCH (see

Francq and Zakoian, 2008), ii) Switching processes with non-recurrent states, i.e.

Change-Point (CP-) GARCH (He and Maheu, 2010). Let ST = {s1, s2, ..., sT }′,

the latent process {st} is a first-order Markovian process with transition matrix

either defined by:
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PS =



p11 p12 p13 p1K 1−
∑K

j=1 p1j

p21 p22 p23 p2K 1−
∑K

j=1 p2j

pK1 pK2 pK3 pKK 1−
∑K

j=1 pKj

pK+1,1 pK+1,2 pK+1,3 pK+1,K 1−
∑K

j=1 pK+1j


,

where pij = P [st = j|st−1 = i],

or by:

PC =



p11 1− p11 0 0 0

0 p22 1− p22 0 0

0 0 0 pKK 1− pKK
0 0 0 0 1


.

where PS corresponds to a Markov switching process withK+1 regimes, and

PC describes a change-point process with K breaks. Then, define the estimated

normalized return η̂(i)t = (ĥ
(i)
t )
−1/2ε̂

(i)
t , i = 1, 2, ..., N.

Next, we build binary and weighted undirected networks (BUN, WUN) as

well as binary and weighted directed networks (BDN, WDN). A binary network

is described by a graph G = (N,A), where N is the number of nodes, here the

number of stocks, and A = {aij} is the N × N adjacency matrix. For binary

networks, nodes i and j are connected by an edge if aij = 1. For a graph

G = (N,A), define the indegree, outdegree and total degree for node i as:

dini =
∑
j 6=i

aji = (A
′)i1 (9)

douti =
∑
j 6=i

aij = (A)i1 (10)

dtoti = dini + d
out
i = (A′ +A)i1 (11)

where A′ is the transpose of A.

Also of interest are the bilateral edges between i and j, i.e. aij = 1 and

aji = 1:

d↔i =
∑
j 6=i

aijaji = A
2
ii (12)

The weighted networks parallel the binary one. They are defined by the graph

G = (N,W) where W = {wij} is a matrix of weights ranging from 0 to 1.
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Then, replacing in (9) to (11) A byW one can focus on the strength of a node,

and the strength of the net.

To build BUN, WUN, BDN and WDN, i.e. to recover the topology of the

network, we use non-correlation, or independence tests for time series. These

tests are very versatile and are based on normalized residuals cross-correlations

of models (1) or (5). They encompass several tests: i) Non-significance of a cross-

correlation at a lag k = 0 or k ∈ ±{1,M}, ii) Portmanteau test to check for

overall independence, i.e. non-significance of all leads and lags, iii) Portmanteau

tests to check for non-causality in the Granger sense. Independence tests for

time series have been introduced by Haugh (1976). They have been extended by

Hong (1996), Duchesne and Roy (2003) or Koch and Yang (1986), this latter also

taking into account patterns in cross-correlations. El Himdi and Roy (1997),

Pham et al. (2001) or Hallin and Saidi (2001) among other present multivariate

extensions. Also, El Himdi et al. (2003) propose a nonparametric test. In

this paper we have used the El Himdi and Roy (1997), Hallin and Saidi (2001)

and El Himdi et al. (2003) approaches, as well as several refinements2 . Having

obtained very similar results, in the sequel, only the ones based on the El Himdi

and Roy (1997) methodology are presented.

Generally, let η̂(1) = {η̂(1)t , t ∈ Z} and η̂(2) = {η̂(2)t , t ∈ Z} be two sets of

filtered series using univariate or multivariate models, i.e. (normalized) residuals

of models estimated independently with values in Rd1 and Rd2. Define the

covariances and cross-covariances C(hh)η̂ (0) and C(12)η̂ (k) as:

C
(hh)
η̂ (0) = T−1

T∑
i=1

η̂
(h)
t η̂

(h)′
t , h = 1, 2 (13)

C
(12)
η̂ (k) =

 T−1
∑T

i=1 η̂
(1)
t η̂

(2)′
t−k 0 ≤ k ≤ T − 1

T−1
∑T

i=1 η̂
(1)
t η̂

(2)′
t−k 1− T ≤ k ≤ 0.

(14)

the correlations and cross-correlations are defined as:

R
(hh)
η̂ (0) = {diag C(hh)η̂ (0)}−1/2C(hh)η̂ (0){diag C(hh)η̂ (0)}−1/2 (15)

and:

R
(12)
η̂ (k) = {diag C(11)η̂ (0)}−1/2C(12)η̂ (k){diag C(22)η̂ (0)}−1/2 (16)

2 In particular, instead of cross correlations, we have also used partial cross-correlations

and then used a LR test. All codes available at peretti@univ-paris1.fr
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Then the null of non-correlation or independence can be tested using the port-

manteau statistic:

QM = T
M∑

k=−M

T

T − |k|

(
vec R(12)

η̂ (k)
)′ (

R
(22)
η̂ (0)⊗R(11)

η̂ (0)
)−1 (

vec R(12)
η̂ (k)

)
(17)

Under the null of non-significance of cross correlations at all leads and lags, QM

is distributed as a Chi-square with (2M + 1)d1d2 degrees of freedom.

Using the above statistic,Granger non-causality tests are easy to derive by

summing over {1,M} or {−M,−1}. For instance, testing for Granger non-

causality from X(2) to X(1) (X(2) ; X(1)) amounts to computing the test

statistic:

Q+M = T
M∑
k=1

T

T − k

(
vec R(12)

η̂ (k)
)′ (

R
(22)
η̂ (0)⊗R(11)

η̂ (0)
)−1 (

vec R(12)
η̂ (k)

)
(18)

Similarly, to test for non-causality from X(1) to X(2) (X(1) ; X(2)), one is to

use:

Q−M = T
−M∑
k=−1

T

T − |k|

(
vec R(12)

η̂ (k)
)′ (

R
(22)
η̂ (0)⊗R(11)

η̂ (0)
)−1 (

vec R(12)
η̂ (k)

)
(19)

Under the null, both tests (18) and (19) are chi-square distributed with Md1d2

degrees of freedom.

All above tests are portmanteau tests. It is also useful to look at the signif-

icance of an individual lead/lag. A natural test statistic is given by:

Q(k) = T
T

T − |k|

(
vec R(12)

ε̂ (k)
)′ (

R
(22)
ε̂ (0)⊗R(11)

ε̂ (0)
)−1 (

vec R(12)
ε̂ (k)

)
(20)

which is also chi-square distributed with d1d2 degrees of freedom.

In this paper, to build BUN and WUN we use (17) with k = 0 and M = 7

and (20) with k = 0. Therefore, an edge exists between two nodes, if the test

is rejected at the 5% threshold. For BDN and WDN we use (18), (19) and (20)

with k 6= 0,M = 7 (and M = 1 for 20), and this for each pair of the set η̂.

3 Data properties and orthogonalization

Table (1) displays benchmark stock market indices as well as related ARCH-

LM test statistics for the ten European countries under consideration as well
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as U.S.A. (SP500 index return). The analysis is based on daily data spanning

January 1998 to May 2014. Except for one return series, all series exhibit non-

null skewness and excess kurtosis. Moreover, as expected, all series exhibit

second-order dependence.

Please insert Table (1) about here

To test for breaks in volatility processes, and discriminate between recurrent

(MS-GARCH) and non-recurrent (CP-GARCH) regimes, we follow Bauwens et

al. (2014). The methodology on a Bayesian approach which combines sequential

Monte Carlo (SMC) and Markov Chain Monte Carlo (MCMC) methods. For

each model, we perform 10,000 particle Gibbs iterations. After convergence in

the Geweke sense (Geweke, 1992), we then compute the marginal likelihood

by bridge sampling (1,000 iterations). The number of particles is set to 150 for

changing point models, and 250 for Markov Switching models. Finally, we select

the model for which the marginal likelihood is maximal.

Please, insert Table (2) about here

Table (2) displays the results of the Bauwens et al. (2014) Bayesian pro-

cedure. Results support a no-break model for AEX and a two-break model

(i.e. three non-recurrent states) for ASE. All other series exhibit a recurrent

two-state Markov-Switching process (i.e. high and low volatility regimes). In

the sequel, normalized residuals will be based on these models. With regard to

SP500, our results are similar to Bauwens et al. (2014), as shown by Figure (1).

Please insert Figure (1) about here

Using the above procedure, we build two sets of normalized residuals η̂ =

{η̂(1)′t , η̂
(2)′
t , ..., η̂

(10)′
t , t ∈ Z} ={((ĥ(1)t )−1/2ε̂

(1)
t )′, ((ĥ

(2)
t )−1/2ε̂

(2)
t )′, ..., ((ĥ

(10)
t )−1/2ε̂

(10)
t )′, t ∈

Z} corresponding to European stock exchanges, and η̂Bench = {η̂(11)′t , t ∈

Z} ={((ĥ(11)t )−1/2ε̂
(11)
t )′, t ∈ Z} corresponding to the SP500. Once data are

filtered by the proper Data Generating Process, we further need to adress a

key issue. To build networks, we use non-correlation and non-causality tests

between each pair of nodes, i.e. between each pairs of η̂. Nevertheless, it is

well known that in bivariate systems, non-causality and non-correlation tests
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might be biased due to the omitted variable problem (i.e. spurious relation-

ships, see e.g. Triacca, 1998). To tackle this issue, we consider the SP500 index

as a central variable which influences all European exchanges. We then adopt

the Duchesne and Nkwimi (2013) methodology to orthogonalize series with re-

spect to the causal structure of another series. The orthogonalization method

is a two-step procedure. First, we compute the cross-correlations between each

component of η̂ and η̂Bench. For each k ∈ {0, ...,M}, we compute the test

statistics (20) and keep the significant lags. Then, we regress {η̂(i)t }Tt=1 on the

significant lags of {η̂(bench)t }Tt=1,and keep the corresponding residuals {ε̂
(i)
t }Tt=1.

Doing this for each European stock index i = 1, 2, ..., N , we build a set of N = 10

orthogonalized series ε̂ = {(ε̂(1)′t , ε̂
(2)′
t , ..., ε̂

(N)′
t )′, t ∈ Z} with regard to SP500

index. In the sequel, all tests are implemented on this set.

4 Period-based analysis

We first perform our analysis over 6 different periods given by Table (3). As

mentioned above, three kinds of networks can be built: i) Networks where nodes

are connected if the null of independence is rejected at 5%, ii) Networks where

nodes are connected if non-causality is rejected at 5%, also called functional

connectivity, iii) Networks where nodes are connected if for a given lead/lag the

null of non-significance of the individual cross-correlation is rejected.

Please insert Table (3) about here

Results are summarized by both heatmaps and networks. To build heatmaps,

we use both total degrees (11) and weights. To compute weights ranging from

0 to 1 for a single node, and as all tests of connectivity are based on sums of

individual (squared) cross-correlations or on individual cross-correlations at a

given lag, we proceed as follows. For independence and non-causality tests and

for each period, we divide the test statistics by the maximal value obtained

over one period. For individual lags, we just take the absolute value of the

cross-correlations.

Please insert here Figure (2) about here
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Figure (2) displays the heatmaps resulting from independence tests for K =

7. Focusing on degrees (upper panel), all stock exchanges are highly intercon-

nected over the first 5 periods whereas, over the last period, Greece disconnects

from the network of Euro zone stock exchanges. Moreover, the total degree

slightly decreases (i.e. less interconnections) for all stock markets except for

Ireland and Portugal. As regards strength (lower panel), which ranges from 0

to 9, the main striking feature is the abrupt change in the strength of depen-

dence among stock exchanges after the post-crisis period. During the crisis, the

strength of the network increases, remains high during the post-crisis period,

and then seems to vanish. As a result, the closer we get to the crisis period,

the more mutually dependent stock exchanges become, due to the increasing

strength of their network. All stock exchanges being connected during the cri-

sis, connections’ strength reaches their highest level by that time. However,

some stock exchanges start disconnecting after the crisis period. Furthermore,

Greece exhibits a weak connection to the Euro zone network of stock exchanges.

Thus, even if the Greek stock exchange is risky, its has a reduced impact on

other Euro zone stock exchanges.

Figures (3) and (4) provide a deeper analysis of the Euro zone network of

stock exchanges while focusing solely on either non-correlation or non-causality

tests. Focusing on non-correlation tests, Figure (3) provides a similar informa-

tion as previous heatmaps because Euro zone stock exchanges are highly cor-

related. Specifically, all stock exchanges are strongly interrelated, and strength

begins to increase before the Global Financial Crisis, being maximal during and

just after the Global Financial Crisis. Such clustering phenomenon emphasizes

the strong simultaneous and joint reaction of stock exchanges. However, there

is an abrupt downturn in the network’s strength after the post-crisis period so

that some stock exchanges start disconnecting.

As regards non-causality tests (K = 7), Figure (4) provides key informations

about both the reception (i.e. incoming information) and transmission (i.e.

outgoing information) of financial shocks across stock market places. Before

the Global Financial Crisis, the degrees of the network are quite high up to

the crisis period, and then vanish. A similar result appears when one focuses

on the strength of the network. Strikingly at the end of sample (over period

11



6) only three stock exchanges are weakly interconnected from a causal point of

view. Such feature suggests the absence of dynamic interrelations over the recent

periods, and thus a low risk of contagion (i.e. almost non-existing spillover and

no feedback effects).

Please insert here Figures (3) and (4)

The network representations corresponding to heatmaps in Figure (4) are

illustrated by Figures (5), (6) and (7). Corresponding network representations

are provided for the six periods covering the data sample (see Table 3). Such

figures emphasize the evolution of the dynamic causal network of Euro zone

stock exchanges over time. Specifically, the network’s density increases up to the

crisis period, diminishes during the post-crisis period, starts increasing during

the sovereign debt crisis period, and then strongly drops over the post-sovereign

debt crisis period. Over the last period of the sample, there are very few causal

relationships between Euro zone stock exchanges. Moreover, previous figures

display incoming and outgoing connections between the network’s nodes (i.e.

between stock exchanges). Thus, we observe clearly the directional propagation

of shocks across stock market places over time.

Please insert here Figures (5), (6) and (7)

5 Flickering in information transmission

One major result of the previous section is that the topology of the network

changes from one period to another. Specifically, information transmission chan-

nels within the network are unstable over time, which leads to complex patterns

of transmitted and emitted signals. It is therefore of interest to focus on such

an unstability in order to: i) Check if the evolution of certain patterns of infor-

mation transmission match with the different phases of the financial market as

reported in Table (3), ii) Determine early warning indicators, preceding tipping

points or phase transitions.

Please insert Table (4) about here
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We use a six-month rolling window, and focus on the very short-term (K±1)

information diffusion schemes, and in particular, on specific triangular patterns

or motifs as defined by Faggiolo (2007). Table (4) introduces the definitions

for four types of clustering coeffi cients (Cji , j = Cyc,Out,Mid, In) as well as

the total clustering coeffcient (CDi ) for BDNs and WDNs. For a node i, the

cycle pattern (Cyc) corresponds to feedback effects and the out pattern (Out)

to spillovers. In the middleman pattern (Mid), the node i appears to be a relay

in the information propagation (i.e. intermediate transmitter). In the in pattern

(In) , the node receives information from its neighbors (i.e. receiver). Thus,

all complex interactions are well captured by the various clustering coeffi cients

under consideration.

Results are displayed in Figures (8), (10) and (11). Figure (8) plots the

heatmap of total clustering for BDNs (upper panel), ranging from 0 to 1. This

Figure also displays an indicator of crisis (grey) and non crisis (white) peri-

ods as mentionned in Table (3). Such indicator is labelled ’Regimes’. For a

comparison purpose, we also plot the time-path of the density of the network

(lower panel). Figure (10) plots heatmaps for each kind of triangular patterns

for BDNs. At last, we average the total clustering coeffi cients of WDNs over

each rolling window (see Figure 11).

Interpreting clustering in dynamic networks as emitted or received signals,

allows to study the whole dynamics of the system. The heatmap of total clus-

tering (Figure 8) unveils key information. Starting from the Dot.com bubble,

each return series, except for Greece, does exhibit very large periods of clus-

tering with variable intensities. Then, around March 2001, clustering abruptly

stops, and the system turns into a flickering period so that some nodes alter-

nate between clustering and non-clustering states. During such periods, each

node flickers between being in and out the information diffusion process. At

the same time, periods of clustering become shorter. In other words, the net-

work’s nodes continually become active or inactive, emphasizing that we face an

ever-changing network (Odum and Barret, 2005) in terms of information trans-

mission. This rapid alternation of states does precede a phase transition, the

market entering then the pre-crisis period. The beginning of the transition is

characterized by a sudden rise of clustering for all stock exchanges at nearly the
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same time. Focusing on the pre-crisis period, similar patterns are found. From

the beginning of the pre-crisis period to early 2005, the whole system exhibits

a high degree of clustering, especially after 2004. Then, abruptly in early 2005,

the system starts to flicker, alternating between clustering and non-clustering

states. Such feature is also reflected in the density of the network in early 2006,

and more specifically in the average clustering coeffi cient (Figure 11). Hence,

compared to Billio et al. (2012), the relevant information, may not be the in-

crease in degrees before a financial crisis, but rather the flickering in degrees,

which occurs after their increase (e.g. during the pre-crisis period).

Focusing on the Global Financial Crisis period, it is interesting to notice that

it begins with an abrupt change in clustering (phase transition) for the whole

system, and also ends with an abrupt change. Over the post crisis period,

clustering totaly disappears, which is line with our previous causality tests.

Anecdotal results show that the sovereign debt crisis period begins and ends with

a sudden rise in clustering. As a consequence, our methodology’s added-values

are twofold. First, we are able to detect forthcoming phase transitions, and

second, we are able to date crises’beginnings and ends. Such dating matches

with the different market phases reported in Table (3). Therefore flickering

precedes a phase transition and acts as an early warning.

Flickering phenomena as early warning signals have been reported in complex

systems, especially in ecology (e.g. Dakos et al., 2013) as well as in climatology

(Livina et al., 2010). Interestingly, Dakos et al. (2013) noticed that flickering

between basins of attraction may appear far before bifurcation or tipping points,

and could then be used as early warnings. To our knowledge, this is the first

time that flickering in information diffusion processes is studied, exhibited and

described in financial systems.

In addition to rapid flickering, before a tipping point occurs, the informa-

tion diffusion process starts desynchronizing accross nodes. We observe either

asynchonicity of signals or arising noises within the system. To handle such

pattern, we compute a dummy variable taking a unit value if the node enters

total clustering, and 0 otherwise. Then, we divide the pre-crisis period into four

equal sub-samples, and compute the Jaccard similarity coeffi cient over each

sub-sample to capture the transition from synchronicity to asynchronicity. The
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Jaccard similarity coeffi cient is a pairwise correlation index which checks for

the similarity in the date of appearance of clusters. Corresponding results are

displayed in Figure (12). The darker the color, the more synchronous the nodes

become. Synchronization is strong over the two first sub-periods (except for

Portugal), and then vanishes. Indeed, over the third sub-sample, the network

starts desynchronizing. Over the fourth sub-period, there is a disconnection

in the information transmission patterns, shown by a decrease of most pairwise

correlations. However, the network still exhibits a weak synchronous core, which

is composed of Germany, Italy, France and UK. Such feature suggests that, just

before the Global Financial Crisis, we have a core network that remains weakly

synchronized, and a periphery network, which is fully desynchronized.

Please insert Figure (8) about here

As a conclusion, shocks are continually diffused and absorbed within the

network a long time before the crisis occurs. All the system’s components (i.e.

stock exchanges) interact in a synchronous way. Differently, before the crisis,

shocks are diffused and absorbed in a discontinuous and asynchronous manner

by network’s components. Information diffusion patterns become intermittent

(i.e. flickering phenomenon), which announces a forthcoming phase transition

(i.e. a crisis). The flickering phenomenon appears approximately one year before

the crisis. Therefore our results suggest that flickering acts as an early warning

signal, and the degree of desynchonization reveals the vicinity of the tipping

point.

Please insert Figures (11) (12) (10), and about here

6 Conclusion and discussion

In this paper, we have analyzed the dynamic relationships among ten European

stock exchanges. We have focused on networks where two nodes are connected

by functional or causal connectivity. Instantaneous correlations are also consid-

ered. Our major findings are manyfold. Using a period-based analysis, we have

found that the network of Euro zone stock exchanges was unstable over time,
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so that the number of connections and their related strength were highly time-

varying. Strikingly, there remain very few causal relationships at the end of our

data sample (i.e. post-sovereign debt crisis period), indicating that contagion

over these recent years seems to be low. Such information is of huge significance

to the regulatory authority (e.g. monitoring and marking-to-market processes,

assessment of risk exposures, gauging contagion risk). Expanding on the un-

stability of the topology, we have focused on motifs of information diffusion

processes (i.e. triangular clusters) in order to capture early warnings of phase

transition. We have shown that the whole system exhibited flickering informa-

tion clusters with a high degree of desynchronization before a phase transition

occurs. As a consequence, flickering in information transmission can act as an

early warning signal, and the degree of desynchonization reveals the vicinity of a

tipping point. Our analysis, also allows to date crisis periods. To our knowledge,

this is the first time that flickering in clusters is identified in complex financial

systems. The ability to extract early warnings about forthcoming crises is use-

ful to regulators in order to take preventive measures and mitigate contagion

risk. Such tool could effi ciently help regulators undertake their monitoring and

supervisory activities.

There is an avenue for future research within this area. One would consist in

enlarging our dataset to include credit defaults swaps as well as bonds. Another

direction could be to study cascading errors, and then relating our network to

the riskiness of nodes.
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7 Tables and graphs to be included in the paper

Table 1: Description and statistical properties of index returns

Country Index Mean Variance Skew. Kurt. ARCH(4)
France CAC40 0.0002 0.0002 0.05 4.29 469.06 (0)
Netherland AEX 0.0001 0.0002 -0.10 5.50 634.78 (0)
Greece ASE 0.00003 0.0003 -0.02 3.11 337.43 (0)
Belgium BEL20 0.0001 0.0001 0.05 5.63 555.97 (0)
Germany DAX 0.0002 0.0002 -0.05 3.83 524.29 (0)
Italy FTSEMIB 0.00005 0.0002 -0.12 3.88 512.71 (0)
Spain IBEX 0.0002 0.0002 0.00 4.19 482.80 (0)
Ireland ISEQ 0.0001 0.0002 -0.61 7.19 526.78 (0)
Portugal PSI 0.00005 0.0001 -0.27 7.02 301.96 (0)
U.K. UKX 0.0002 0.0001 -0.10 5.81 634.65 (0)
USA SP500 0.0002 0.0001 -0.20 6.58 745.58 (0)

Note: P-values are given between parentheses. ARCH-LM test is performed at lag 4.
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Table 2: Marginal likelihoods

Regimes
1 2 3 4 5

AEX MS-GARCH -6293.57 -6294.14 -6296.68
AEX CP-GARCH -6293.57 -6298.78 -6297.46 -6302.92 -6307.9
ASE MS-GARCH -7484.95 -7440.39 -7462.49
ASE CP-GARCH -7484.96 -7464.58 -7433.67 -7437.97 -7437.66
BEL20 MS-GARCH -5855.88 -5845.54 -5859.66
BEL20 CP-GARCH -5855.88 -5856.19 -5855.08 -5854.99 -5857.82
CAC40 MS-GARCH -6575.57 -6570.94 -6576.87
CAC40 CP-GARCH -6575.58 -6579.27 -6579.17 -6576.07 -6582.44
DAX MS-GARCH -6672.93 -6671.32 -6680.63
DAX CP-GARCH -6672.93 -6677.58 -6681.49 -6684.95 -6688.8
FTSEMIB MS-GARCH -6587.34 -6579.35 -6587.89
FTSEMIB CP-GARCH -6587.34 -6586.1 -6579.63 -6579.42 -6589.55
IBEX MS-GARCH -6678.06 -6669.91 -6675.54
IBEX CP-GARCH -6678.15 -6679.26 -6673.07 -6675.38 -6681.4
ISEQ MS-GARCH -6155.85 -6141.69 -6157.37
ISEQ CP-GARCH -6155.83 -6155.25 -6155.85 -6145.67 -6156.4
PSI MS-GARCH -5749.94 -5728.98 -5750.49
PSI CP-GARCH -5749.93 -5747.45 -5732.02 -5736.89 -5731.67
UKX MS-GARCH -5692.76 -5691.33 -5698.55
UKX CP-GARCH -5692.75 -5691.44 -5694.12 -5697.48 -5698.27
SP500 MS-GARCH -5775.66 -5765.51 -5776.65
SP500 CP-GARCH -5775.66 -5777.91 -5771.92 -5767.62 -5768.15

Table 3: Periods of the analysis

Name Dates
1 Dot.com bubble 07JAN98-09OCT02
2 Pre-crisis 10OCT02-02JUL07
3 Crisis 03JUL07-01MAY09
4 Post-crisis 02MAY09-30APR10
5 Sovereign debt crisis 01MAY10-31MAR13
6 Post-sovereign debt crisis 01APR13-20MAY14
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Table 4: Patterns of triangles and clustering coeffi cients (CC)

Patterns CCs for BDNs CCs for WDNs

Cycle CCyci =
(A)3ii

dini douti −d↔i
CCyci =

(W )3ii
dini douti −d↔i

Middleman CMid
i = (AA′A)ii

dini douti −d↔i
CMid
i = (WW ′W )ii

dini douti −d↔i
In CIni = (A′A2)ii

dini (dini −1)
CIni = (W ′W 2)ii

dini (dini −1)

Out COuti = (A2A′)ii
douti (douti −1) COuti = (W 2W ′)ii

douti (douti −1)

Total CDi =
(A+A′)3ii
2TDi

CDi =
(W+W ′)3ii

2TDi

Note: TDi is the total number of triangular patterns that node i can form.

Figure 1: SP500 square returns, and unconditional variance for a two-regime

MS-GARCH process.
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Figure 2: Independence tests. Total degrees and total strength of the network.

Figure 3: Instantaneous correlations. Total degrees and total strength of the

network.
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Figure 4: Causality. Total degrees and total strength of the network.
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Figure 8: Total clustering. Six-month rolling window.

Figure 9: Density of the network. Six-month rolling windows.
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Figure 10: Four different kinds of clustering.

Figure 11: Average clustering coeffi cient for WDNs and flickering periods.
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Figure 12: Jaccard similarity coeffi cients for four different (pre-crisis) sub-

periods.
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