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1. Introduction 

 

In the last decades long memory time series models have been widely 

examined. Applications of these models can be found in several fields, e.g. 

hydrology, chemistry, economics and finance.  

Several estimation techniques have been proposed in literature to detect the long 

memory phenomenon in both time and frequency domain (see for example Palma, 

2007 for a review); they aim at estimating the long memory parameter d that 

incorporates the strength of the persistence. Most of the methods have been 

thought, in principle for the stationary case, i.e. their theoretical properties hold 

only when d is in  (−1/2,+ 1/2). Some recent simulation study have been carried 

out to compare the performance of the long memory parameter estimators in case 

of stationary models (among the others, Bouthahar et al., 2007 and Tsay, 2009). 

Here, we are interested in nonstationary long memory models, i.e. when the 

long memory parameter d no longer is in  (−1/2,+ 1/2), but it actually can be 

≥ 1/2. Broadly speaking, the issue of estimating nonstationary long memory has 

been addressed in two ways, either extending existing methods to estimate d to the 

case of nonstationarity (as in Velasco, 1999a and 1999b) or proposing new 

methods (resorting, for example, to wavelets as in Moulines et al., 2008 and 

Boubaker and Péguin-Feissolle, 2013). 

In this paper, we conduct a Monte Carlo experiment to show and compare the 

performance of a variety of estimators, traditionally conceived for stationary 

models, of the long memory parameter d in case of nonstationarity. On purpose, we 

did not focus on new-generation estimators, but did concentrate on traditional 

estimators, belonging to three group. Among (i) heuristic estimators, we consider 

the Higuchi method (1988), the aggregate variance method (1995) and Lo (1991) 

method. Among (ii) parametric estimators, we consider Whittle method (Fox and 

Taqqu, 1986) and among  (iii) semiparametric methods, we consider the GPH 

method by Geweke and Porter-Hudak (1983) and its modified version by Smith 

(2005). All these methods have been employed on both the original time series and 

first difference of the series. This is done to include in the analysis an idea by 
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Hurvich and Ray (1995) who propose, in case of nonstationarity, to estimate d on 

the first difference of the series, i.e. on the series made stationary so that the 

estimators are expected to work again in the range of d where their properties are 

guaranteed.  

Results of the Monte Carlo experiment show that the Whittle estimator has the 

best performance in case of nonstationarity, followed by the GPH. Moreover, the 

strategy of preliminarily differentiate the series helps improve the results.  

The structure of the paper is as follows. In the second section we will briefly 

recall the most important characteristics of the long memory models. In the third 

section we present the estimators of the long memory parameter we will study. The 

fourth section is devoted to the Monte Carlo experiment and some conclusions. 

 

 

2. Long memory models 

 

Usually, a long memory model Xt can be characterized by a single memory 

parameter  𝑑 ∈ (−1/2,+ 1/2), called degree of the memory, which controls the 

shape of the spectrum near zero frequency and the hyperbolic rate decay of its 

autocorrelation function. More precisely the spectral density 𝑓(𝜆) of the long 

memory model is approximated in the neighborhood of the zero frequency by 

 

     f(𝜆)~𝑐𝜆−2𝑑 as 𝜆 → 0+, 0 < 𝑐 < ∞                                                                        (1) 
 

Thus f(𝜆) → ∞  as λ → 0+. Under additional regularity assumptions of 𝑓(𝜆), 

the autocorrelation function 𝜌(𝑘) of the long memory model has the following 

asymptotic behavior: 

 

    𝜌(𝑘)~𝑐𝑘2𝑑−1 as 𝑘 → ∞                                                                                                (2) 
 

these features characterize ARFIMA(p,d,q) models
1
 (Granger and Joyeux, 1980) 

 

    Φ(𝐵)∆𝑑𝑋𝑡 = Θ(𝐵)𝜀𝑡                                                                                          (3) 

 

of which the fractional noise is a special case 

 

      ∆𝑑𝑋𝑡 = 𝜀𝑡                                                                                                          (4) 

 

                                                      
1 ARFIMA models are a generalization of ARIMA, where d is not integer. 
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The properties of these models depend on the long memory parameter value d. 

More, specifically, an ARFIMA(p,d,q) model is stationary and invertible when  

𝑑 ∈ (−1/2,+ 1/2), usually this interval is reduced to (0,1/2) When d ≥ 1/2 the 

ARFIMA is nonstationary, although for 𝑑 ∈ [1/2, 1) it is mean-reverting, meaning 

that there is no long-run impact of an innovation on the value of the process. When 

d ≥ 1 mean-reversion does not longer hold. Clearly, the case d = 0 and d = 1 (i.e. 

shot memory stationarity and unit root) are encompassed as particular cases of a 

more general parametrization. 

 

 

3. Estimation techniques for ARFIMA processes 

 

Now we briefly describe the methods we will consider in our Monte Carlo 

experiment to estimate the long memory parameters. For space reason we will not 

be able to go in details about the methods and refer to the original papers.  It is 

possible to group these methods in three categories: heuristic, parametric and 

semiparametric methods.  

Among heuristic methods, we consider: (a) Higuchi method (Higuchi, 1988) 

which measures the fractal dimension of a non-periodic and irregular time series; 

(b) the aggregate variance method (Fox and Taqqu, 1995) that concentrates on the 

behavior of the variance of the sample mean and (c) the rescaled range (R/S) 

method, Lo (1991), which studies the behavior of the partial sums of deviation of 

the series from its sample mean.  

As for parametric methods, we consider Whittle method (Fox and Taqqu, 

1986). Given the ARFIMA(p,d,q) in (3), the vector of parameters 𝜽 =
(𝑑, 𝜙1, … , 𝜙𝑝, 𝜃1, … , 𝜃𝑞) is estimated via the Whittle approximation of the log-

likelihood by minimizing with respect to θ: 

�̂�2(𝜃) =
1

2
∑

𝐼(𝜆𝑗)

𝑓(𝜆𝑗)
𝑇′
𝑗=1  (5) 

where T’ is the integer part of  
𝑇−1

2
 and 𝐼(𝜆𝑗) and 𝑓(λj) are, respectively, the 

periodogram and the spectral density at the Fourier frequencies. The Whittle 

method has several theoretical and practical advantages. However, its disadvantage 

is in that the parametric form of the spectral density is assumed to be known a 

priori.  

Among the semiparametric methods we consider the GPH estimator (Geweke 

and Porter-Hudak, 1983). The advantage in resorting to these methods is that there 

is no need to specify the entire model since the only necessary information is the 
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behavior of the spectral density near the origin. Given an Given and 

ARFIMA(p,d,q) as in (), its spectral density is: 

𝑓(𝜆)~𝑐𝑓 (4 𝑠𝑖𝑛2 (
𝜆

2
))

−𝑑

   λ→∞ (6) 

As the periodogram 𝐼(𝜆) is an asymptotically unbiased estimator of 𝑓(𝜆), it is 

possible to estimate d by running the OLS regression: 

log(𝐼(𝜆𝑗)) = log 𝑐𝑓 + 𝛽 log (4 𝑠𝑖𝑛2 (
𝜆

2
)) + 𝜀𝑗 (7) 

The former is an asymptotic relationship that holds only in a neighborhood of 

the origin. This means that, considered over all the ordinates of the periodogram (-

π,+ π), it would produce highly biased estimates. Consequently, GPH is so actually 

calculated by running the least squares regression only for the m lowest 

frequencies. We also considered Smith’s (2005) modified version of the GPH 

method that takes into account the approximation he derived of the bias.
2
 

As anticipated, the 5 methods have been thought for the stationary setting. The 

theoretical properties no longer hold in case of nonstationary, or, in case they do, it 

is only for a limited interval.
3
  In case of nonstationarity the relative recent 

literature is rich of contributes along two directions. There are estimators that adapt 

existing methods in order to gain asymptotic properties also in case of 

nonstationarity; among these we can mention the tapered versions of the GPH or 

the Whittle method (Velasco and Robinson 1999a, 1999b). There are also brand-

new methods, e.g. wavelet based estimators (McCoy and Walden, 1996; Moulined 

et al. 2008). 

As for the brand-new methods, it should be stressed that often these methods 

are much more sophisticated (and complicated) than the existent. For this reason, in 

this paper we study, via Monte Carlo simulations, the effective performance of the 

traditional methods in case of non stationary long memory, also when they are 

employed on the first difference of the time series (now stationary) following 

Hurvich and Ray (1995).   

 

 

                                                      
2 Actually, in our Monte Carlo experiment, the performance of the version of the GPH estimator modified by 

Smith (2005) is not particularly good.  
3 For example the Whittle estimator is shown to possess asymptotic properties for 1/2 < 𝑑 < 3/4, included 
asymptotic normality. The same holds for the GPH. 
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4. Monte Carlo experiment 

 

In this section we present the Monte Carlo experiment we conduct to show and 

compare the performance of the 5 estimators of the long memory parameter 

described in the previous sections: Higuchi, Aggregate Variance, Lo, GPH, GPH 

modified by Smith (GPH-S, hereafeter) Whittle. The Data Generating Process 

(DGP, hereafter) we consider is the fractional noise, ARFIMA (0,d,0), for various 

values of the long memory parameter.  

In particular, we considered three scenarios. In the first we consider stationary 

DGPs and we simulate fractional noise with  d= 0.1,0.2,0.3,0.4. This scenario is 

included in the MC experiment with the role of benchmark, given that all the long 

memory parameter estimators should have a good performance in this case. In the 

second scenario, we generate time series with d= 0.6,0.7,0.8,0.9, i.e. nonstationary 

but mean reverting long memory. In the third scenario, we study nonstationary and 

not mean-reverting long memory, done by generating time series data with 

d=1.1,1.2,1.3,1.4. Over all cases, the innovation is 𝜀𝑡~𝑁(0,1), the sample size 

considered are T=250,500,1000 for 2000 Monte Carlo simulations. All series are 

generated with 200 additional values in order to obtain random starting values. The 

performance of the estimators is expressed in terms of mean squared error (MSE) 

across Monte Carlo simulations.
4
 

The results of the experiment are reported in the tables 1-5. In Table 1 we 

present the MSE for the stationary case. 

Table 1  Stationary long memory: Monte Carlo MSE   

T d R/S Aggr Var Higuchi GPH GPH-S Whittle 

250 0.1 0.0117 0.009 0.014 0.0494 0.1672 0.0031 

 0.2 0.0137 0.0126 0.0144 0.0526 0.1653 0.0034 

 0.3 0.0162 0.0163 0.0173 0.0476 0.1617 0.0033 

 0.4 0.0207 0.0214 0.0141 0.0452 0.1804 0.0034 

500 0.1 0.0085 0.0073 0.0116 0.0296 0.0869 0.0013 

 0.2 0.0109 0.0087 0.0132 0.0296 0.0902 0.0016 

 0.3 0.0131 0.0118 0.0153 0.029 0.091 0.0015 

 0.4 0.0158 0.0174 0.0147 0.0303 0.09 0.0015 

1000 0.1 0.0069 0.0057 0.012 0.0193 0.0193 0.0007 

 0.2 0.0092 0.0076 0.0135 0.0196 0.0196 0.0007 

 0.3 0.011 0.0099 0.0141 0.0188 0.0188 0.0007 

 0.4 0.0149 0.0158 0.0137 0.0194 0.0194 0.0007 

                                                      
4 For the GPH the estimation has been conducted setting m equal to the square root of the sample size, as 

suggested in the original article by Geweke and Porter-Hudak (1983). 
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In Table 2 we present the MSE results for the nonstationary mean reverting 

case, both for the original series (upper panel) and the first difference of the series 

(lower panel).  

Table 2  Nonstationary (mean reverting) long memory: Monte Carlo MSE  (original 

series upper panel, first differenced series lower panel 

T d R/S Aggr Var Higuchi GPH GPH-S Whittle 

  Original series  

250 0.6 0.0393 0.0529 0.0323 0.0511 0.1696 0.0035 

 0.7 0.0567 0.0846 0.0645 0.0474 0.1385 0.0036 

 0.8 0.0872 0.13 0.1155 0.0464 0.1461 0.0037 

 0.9 0.125 0.1965 0.1858 0.0454 0.1465 0.0033 

500 0.6 0.0325 0.047 0.0352 0.0308 0.0931 0.0016 

 0.7 0.0509 0.0791 0.0656 0.0316 0.0943 0.0019 

 0.8 0.0838 0.1278 0.1192 0.031 0.0903 0.0019 

 0.9 0.1267 0.1899 0.1861 0.028 0.0805 0.0017 

1000 0.6 0.0314 0.0444 0.0339 0.0202 0.0202 0.0008 

 0.7 0.0517 0.0767 0.0667 0.0188 0.0188 0.0009 

 0.8 0.0837 0.1237 0.116 0.0204 0.0204 0.0012 

 0.9 0.1323 0.1888 0.1863 0.0184 0.0184 0.0011 

  First differenced series 

250 0.6 0.0434 0.0102 0.0084 0.0488 0.1672 0.0027 

 0.7 0.0275 0.0073 0.0065 0.05 0.1561 0.0035 

 0.8 0.0184 0.0064 0.0074 0.0464 0.1678 0.0031 

 0.9 0.0126 0.0076 0.01 0.0517 0.1736 0.0037 

500 0.6 0.0337 0.0067 0.0062 0.0313 0.0948 0.0014 

 0.7 0.0201 0.0044 0.005 0.0295 0.0894 0.0014 

 0.8 0.0123 0.0042 0.0063 0.0314 0.0915 0.0013 

 0.9 0.0085 0.0048 0.0076 0.0288 0.0892 0.0016 

1000 0.6 0.0259 0.0046 0.0046 0.0199 0.0199 0.0007 

 0.7 0.0147 0.003 0.0044 0.0187 0.0187 0.0007 

 0.8 0.0088 0.0033 0.0056 0.0175 0.0175 0.0007 

 0.9 0.0065 0.004 0.0073 0.018 0.018 0.0007 

 

In Table 3 we present the MSE results for the nonstationary not mean-reverting 

case, both for the original series (upper panel) and the first difference of the series 

(lower panel). 
Table 3  Nonstationary (nont mean reverting) long memory: Monte Carlo MSE  (original 

series upper panel, first differenced series lower panel 

T d R/S Aggr Var Higuchi GPH GPH-S Whittle 

  Original series  
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250 1.1 0.2613 0.3867 0.3807 0.0396 0.1284 0.0066 

 1.2 0.332 0.5103 0.5095 0.0487 0.1295 0.0242 

 1.3 0.448 0.6576 0.6525 0.0821 0.1314 0.0682 

 1.4 0.5142 0.8236 0.8207 0.1398 0.177 0.1353 

500 1.1 0.2663 0.3778 0.3841 0.0223 0.0607 0.0051 

 1.2 0.3766 0.5039 0.5077 0.0377 0.0745 0.0236 

 1.3 0.4989 0.6494 0.6571 0.071 0.0912 0.0651 

 1.4 0.5861 0.8147 0.8217 0.1348 0.1446 0.1402 

1000 1.1 0.2994 0.3789 0.384 0.0193 0.0193 0.0046 

 1.2 0.3815 0.5053 0.5116 0.0309 0.0309 0.0236 

 1.3 0.5208 0.6503 0.6564 0.0681 0.0681 0.0683 

 1.4 0.6095 0.8162 0.8213 0.1352 0.1352 0.1413 

  
First differenced series 

250 1.1 0.0129 0.009 0.0144 0.0488 0.1752 0.0033 

 1.2 0.0143 0.011 0.0148 0.0453 0.1727 0.0031 

 1.3 0.0157 0.0141 0.0156 0.0466 0.1672 0.0034 

 1.4 0.0208 0.0214 0.0188 0.046 0.1596 0.0033 

500 1.1 0.0089 0.007 0.0112 0.0279 0.0952 0.0015 

 1.2 0.0106 0.0077 0.0136 0.0278 0.0897 0.0014 

 1.3 0.0135 0.0111 0.0146 0.0301 0.0941 0.0014 

 1.4 0.0182 0.0178 0.0142 0.0309 0.0933 0.0015 

1000 1.1 0.0076 0.0061 0.0119 0.0183 0.0183 0.0007 

 1.2 0.0093 0.0074 0.0126 0.0194 0.0194 0.0007 

 1.3 0.0118 0.0105 0.0144 0.019 0.019 0.0007 

 1.4 0.0144 0.0156 0.0127 0.0188 0.0188 0.0007 

 

From Table 1 (stationarity case) we can observe that while d is far from the 

nonstationarity area, almost all estimation methods have a low level of MSE, also 

at relatively small sample sizes. It is in particular when d gets close to the bound ½ 

that it is possible to appreciate the better performance of the Whittle method, 

followed by the GPH and Higuchi methods, as the other methods worsen their 

performance visibly. 

In Table 2, upper panel, we observe for the majority of methods the process of 

worsening of the MSE performance with the increase of d continues. Only for 

Whittle and GPH estimators the performance is steadily good, more precisely not 

only they are the methods with the best performance, but also their MSE level stays 

approximately at the same level as in Table 1. This means that the two methods do 

not suffer excessively from the lack nonstationarity (probably because mean-

reversion still holds). In general, things improve when all 5 methods are applied to 

the first difference of the time series (lower panel of Table 2). However, we note 

that for Whittle method in particular, there seems to be no relevant difference from 
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upper panel and lower panel, leading us to believe that for this methods 

differencing is not necessary. 

In Table 3 we study the nonstationary and non mean-reverting scenario. In this 

case, for all methods this is a rather difficult task because we are very far from the 

area where the theoretical properties hold. Taking the first difference (lower panel) 

leads to quite better results, especially if Whittle and GPH are adopted. So in this 

case, taking the first difference seems to be really a reasonable option, that leads to 

good MSE performance (in line with the stationary case magnitude order), 

especially if Whittle and GPH are used.  

In Table 4 and 5 we present for the nonstationary (respectively mean reverting 

and non-meanreverting) case, the ratio of the MSE of the estimate on the original 

series and on its first difference. These Tables help emphasize the effective 

improvement in adopting the first difference and under which conditions this 

happens.  

Table 4  Nonstationary (mean reverting) long memory: ratio of Monte Carlo MSE of the 

estimate on the original series and on  first differenced series  

T d R/S Aggr Var Higuchi GPH GPH-S Whittle 

250 0.6 0.547 2.975 2.2985 0.9141 0.8133 0.1221 

 0.7 0.986 6.9778 6.5715 1.9012 2.0766 0.1789 

 0.8 1.6752 22.0144 18.624 3.7096 3.0392 0.5752 

 0.9 3.0927 54.9223 64.572 1.6946 1.557 0.0138 

500 0.6 0.5446 3.2609 2.7961 0.963 0.7935 0.5118 

 0.7 1.0532 9.1372 9.017 2.3609 2.6762 1.0504 

 0.8 1.9897 41.7805 60.1748 6.8971 4.3158 1.1782 

 0.9 3.7907 68.415 57.1477 3.2824 2.158 0.7604 

1000 0.6 0.5768 3.8248 3.3794 1.1626 1.1626 1.3785 

 0.7 1.1811 10.903 11.7163 1.787 1.787 3.8535 

 0.8 2.3524 56.6822 577.6202 3.3903 3.3903 2.4796 

 0.9 4.5605 58.3148 50.1638 18.44891 18.4489 2.7687 

 

When the figures in the Tables are smaller than 1, this means that the MSE 

coming from the estimate on the first differenced time series is larger than that on 

the original series. On the contrary, the larger the figures are with respect to 1, the 

more recommended is to estimate d on the first difference of the time series. 

As expected, in Table 4, regarding nonstationary mean-reverting time series, the 

figures have an oscillatory behavior around 1, especially for the Whittle method, 

thus confirming what emerged from Table 2, i.e. if 
1

2
< 𝑑 < 1 the effects of 

nonstationarity are non that severe and, consequently, is not so relevant (sometime 
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not even visible) the improvement in the performance obtained by adopting the 

strategy of taking the first difference of the series before estimating d. 

Table 5  Nonstationary (not mean reverting) long memory: ratio of Monte Carlo MSE of 

the estimate on the original series over  first differenced series  

T d R/S Aggr Var Higuchi GPH GPH-S Whittle 

250 1.1 16.79 16.4638 26.3091 41.9561 10.7115 3.2634 

 1.2 93.086 12.4855 25.3358 13.9063 4.5804 8.2807 

 1.3 16.3558 9.3688 23.0359 22.4873 18.5583 13.2683 

 1.4 9.8334 7.3744 18.1095 35.0908 267.265 25.7747 

500 1.1 21.9624 17.3914 36.1323 34.2809 7.09977 5.2897 

 1.2 253.9619 14.8114 26.0578 44.379 7.83361 17.8265 

 1.3 23.1643 10.5538 25.0266 53.8314 414.2553 27.0515 

 1.4 11.1353 8.12 24.4066 59.2308 31.3384 45.5639 

1000 1.1 90.7188 18.8324 24.8224 14.458 14.458 11.8739 

 1.2 86.4642 14.6381 30.2226 32.4125 32.4125 27.2745 

 1.3 20.3471 10.7909 26.324 144.1566 144.1566 44.5244 

 1.4 13.7794 8.5732 28.0049 25.8235 25.8235 205.3707 

 

In Table 5, instead, all figures are systematically larger than 1. This is because 

for all considered estimation methods (even for the Whittle), the performance 

hugely improves in case the first difference is preliminarily taken. Once more, this 

is in line with the previous results, in particular those shown in Table 3. The effects 

of nonstationarity are very severe and, consequently, it is significant the 

improvement in the performance obtained by adopting the strategy of taking the 

first difference of the series before estimating d.  

 

 

5. Conclusions 

 

To conclude, in this work we present a Monte Carlo study to show and compare 

the performance of some traditional and well-known estimator of the long memory 

parameter in case of nonstationary fractional noise models. We are aware that in 

the literature recently has been proposed a variety of methods for estimating the 

long memory parameter in the nonstationary case, yet we are interested in how the 

traditional methods perform in case the first difference of the series is taken and in 

this work we intend to fill this literature gap. 

The simulation results show that, among the traditional methods the Whittle 

estimate (followed by the GPH) is the best performing in terms of Monte Carlo 

MSE and this holds also when stationarity no longer holds, in particular if mean-
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reversion is preserved. Indeed, if the nonstationary time series is mean reverting the 

performance  of the Whittle estimator is comparable with the stationary case and 

there seem to be no special need to preliminarily take the first difference.  Instead, 

when the nonstationarity is so strong that mean-reversion is lost and all methods 

perform badly, working with first difference of the time series (in particular 

estimating with Whittle method) is recommended.  

To sum up, we conclude that in several cases it could be that there is no need to 

resort to sophisticated (and difficult to implement) methods for estimating 

nonstationary long memory. It may happen that taking the first difference of the 

series and then proceed with the traditional estimators, especially Whittle estimator  

is a good enough strategy to obtain reliable estimates of the long memory 

parameter in the nonstationary hypotheses.  

Future research on this topic is in order with the aim of extending the simulation 

experiment so that also new-generation method, such as wavelets methods will be 

included. 
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SUMMARY 

Estimating the Long Memory Parameter in Nonstationary Models: Further 

Monte Carlo Evidence 
 

In this work we perform a Monte Carlo experiment to show and compare the 

performance of a variety of estimators of the long memory parameter d in case of 

nonstationary processes. Both parametric and semiparametric estimators are considered. 

Moreover they have been employed both on the original time series and on the first 

difference of the series. Results show that  the Whittle estimator is the best performing and 

the strategy of preliminarily differentiate the series is worthy, but not for all the estimators. 
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