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Abstract Coupled atmosphere-ocean general circulation mod-1

els are key tools to investigate climate dynamics and the cli-2

matic response to external forcings, to predict climate evolu-3

tion and to generate future climate projections. Current gen-4

eral circulation models are, however, undisputedly affected5

by substantial systematic errors in their outputs compared to6

observations. The assessment of these so-called biases, both7

individually and collectively, is crucial for the models’ eval-8

uation prior to their predictive use. We present a Bayesian9

hierarchical model for a unified assessment of spatially ref-10

erenced climate model biases in a multi-model framework.11

A key feature of our approach is that the model quantifies an12

overall common bias that is obtained by synthesizing bias13

across the different climate models in the ensemble, further14

determining the contribution of each model to the overall15

bias. Moreover, we determine model-specific individual bias16

components by characterizing them as non-stationary spa-17

tial fields. The approach is illustrated based on the case of18

near-surface air temperature bias in the tropical Atlantic and19

bordering regions from a multi-model ensemble of historical20

simulations from the fifth phase of the Coupled Model Inter-21

comparison Project. The results demonstrate the improved22

quantification of the bias and interpretative advantages al-23

lowed by the posterior distributions derived from the pro-24

posed Bayesian hierarchical framework, whose generality25

favors its broader application within climate model assess-26

ment.27
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1 Introduction 31

Coupled atmosphere-ocean general circulation models (GCMs) 32

use mathematical approximations of the laws of fluid dy- 33

namics, thermodynamics and chemistry to simulate the mass 34

and energy transfers and the radiative exchanges within and 35

across the global climate system (Flato et al. 2013). Cli- 36

mate simulations performed with such models provide quan- 37

titative estimates of geophysical quantities such as tempera- 38

ture and precipitation, which are used for both investigation 39

of climate dynamics and to produce historical and paleo- 40

climate simulations as well as projections of future climate, 41

where climate changes by virtue of natural as well as anthro- 42

pogenic forcings can be assessed (e.g., Tebaldi et al. 2005; 43

Flato et al. 2013). 44

Despite the continuing improvement of climate models, sim- 45

ulations performed with the current generation of GCMs in- 46

volve substantial uncertainties. The use of so-called multi- 47

model ensembles is a common practice in contemporary cli- 48

mate science, as they allow to overcome the peculiarities of 49

individual simulations, like those linked to the chosen initial 50

conditions and applied external forcing, and the deficiencies 51

of individual models, by combining the information into a 52

multi-model consensus (Lambert and Boer 2001; Neuman 53

2003; Tebaldi et al. 2005; Sain and Furrer 2010; Kang et al. 54

2012). The Coupled Model Intercomparison Project phase 5 55

(CMIP5, Taylor et al. 2012) provides the largest collection 56

of multi-model experiments with state-of-the-art GCMs. It 57

demonstrated that current climate simulations are affected 58

by large systematic errors of the mean state and variabil- 59

ity, or biases, i.e., discrepancies between observed and sim- 60
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ulated characteristics over extensive regions (Wang et al.61

2014). These biases are largely attributed to the limited un-62

derstanding of many of the interactions and feedbacks in the63

climate system (Jun et al. 2008), inadequate representation64

of well known processes in climate models and, to some ex-65

tent, the unpredictability of the climate system itself (Keller66

2009; Leith and Chandler 2010). One of the most severe67

biases shared by different models is the warm sea-surface68

temperature bias in the southeastern tropical Atlantic (Flato69

et al. 2013). Multiple causes have been identified at its ori-70

gin, in different models, including local factors, such as the71

along-shore windstress and surface heat fluxes (e.g., Wahl72

et al. 2015; Milinski et al. 2016), and larger-scale or even73

remote phenomena, such as the propagation into the south-74

eastern tropical Atlantic of downwelling anomalies gener-75

ated at the equator (e.g. Toniazzo and Woolnough 2014).76

In this paper we focus on assessing climate model biases77

in multi-model ensembles. It is debated how the informa-78

tion brought by the different models in a multi-model en-79

semble should be optimally combined to generate consen-80

sus: current climate models have been developed by sharing81

model components (Jun et al. 2008; Flato et al. 2013), and82

so they are not always independent from each other (e.g.,83

Knutti 2010). The consequent weighting models based on84

arguments such as model independence can substantially af-85

fect the estimation of multi-model consensus and associated86

uncertainty (Knutti 2010; Flato et al. 2013).87

We present a spatial analysis based on the Bayesian hierar-88

chical model that provides a unified assessment of the biases89

within a multi-model context. Specifically, the proposed prob-90

abilistic approach allows to estimate the overall bias compo-91

nent, i.e., the component of the bias which is the same for92

all models, and the individual model biases, i.e., the com-93

ponents of the bias that are specific of each model, further94

characterizing each model’s contribution to the overall bias95

and related uncertainty. We describe the different bias com-96

ponents as non-stationary spatial fields.97

Our approach represents therefore a step forward compared98

to previous assessments of climate model biases based on99

Bayesian hierarchical modeling, which dealt with spatially100

aggregated geophysical data (e.g., Christensen et al. 2008;101

Buser et al. 2009) or grid-points individually (e.g., Boberg102

and Christensen 2012).103

We illustrate the method by using observational reference104

data and an ensemble of six historical full-forcing climate105

simulations contributing to CMIP5. We focus on an applica-106

tion involving spatially referenced near-surface air temper-107

ature averaged over the years 1950-2005, and covering the108

tropical Atlantic Ocean and bordering regions.109

In the following section, we describe the data and present110

our definition of climate model bias. Section 3 discusses the111

Bayesian hierarchical method tailored for a unified assess-112

ment of climate model biases in a multi-model framework,113

while section 4 illustrates the results. We provide a conclud- 114

ing discussion in section 5. 115

2 Data and climate model biases 116

The dataset comprises observational reference and climate 117

model outputs. Although the latter are obtained from deter- 118

ministic numerical models, it is a common practice to con- 119

sider the model output as ’data’, which may not represent 120

the traditional statistical definition of data. 121

2.1 Observations and GCM output 122

We use monthly-mean data obtained from the NCEP re- 123

analysis (Kalnay et al. 1996; Kistler et al. 2001) as our 124

observational reference data. Reanalysis data are the out- 125

put of a state-of-the-art analysis/forecast system with data 126

assimilation using past data from 1948 to the present. The 127

data were provided by the NOAA/OAR/ESRL PSD, Boul- 128

der, Colorado, USA. Reanalysis data are therefore not direct 129

observations, yet they facilitate the purposes of this study by 130

providing gridded records of absolute temperatures. This is 131

an advantage compared to other observational products that 132

provide anomalies as main gridded output, such as the tem- 133

perature series produced by the Climatic Research Unit of 134

the University of East Anglia (Brohan et al. 2006). Our cli- 135

mate model outputs are based on monthly-mean data from 136

an ensemble of six historical full-forcing climate simula- 137

tions contributing to CMIP5. An overview of the models’ 138

characteristics is provided in Table 1, see Zanchettin et al. 139

(2015) for more details on the models and the simulations. 140

The analysis is for the period 1950-2005 CE for which we 141

derive climatologies of annual-mean values starting from the 142

monthly-mean time series of both observations and simula- 143

tions over the tropical Atlantic region. Geographically the 144

tropical Atlantic is defined here as the region covering the 145

latitude range 35◦S to 15◦N and the longitude range 40◦W 146

to 20◦E. 147

2.2 Climate model biases 148

Climate model bias is determined by comparing output data 149

against observations. We let Y (s) represent the temperature 150

observations and X j(s) denote the temperature simulated by 151

the climate model j at the spatial location s ∈ D for the do- 152

main D⊂R2. One crucial aspect of the complexity inherent 153

in the assessment of climate model biases is the spatial mis- 154

alignment between observations and model output. The fact 155

that model output and observations are provided on different 156

grids may hinder statistical analysis of the bias at the grid- 157

point level. To tackle this issue, we interpolated the output 158
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Table 1 The six general circulation models (GCMs) utilized for this study. BCC stands for BCC-CSM1-1 and GISS: GISS-E2-R, IPSL: IPSL-
CM5A-LR, MPI: MPI-ESM-P and MIROC: MIROC-ESM. The ensemble has also been used by Zanchettin et al. (2015).

GCMs Atmospheric resolution Research center

CCSM4 1.25◦N ×0.94◦E National Center for Atmospheric Research (USA)
BCC 2.81◦N ×2.75◦E Beijing Climate Center (China)
IPSL 3.75◦N ×1.90◦E Institute Pierre Simon Laplace (France)
MPI 1.88◦N ×1.90◦E Max Planck Institute for Meteorology (Germany)
GISS 2.50◦N ×2.00◦E NASA/Goddard Institute for Space Studies (USA)
MIROC 2.81◦N ×2.75◦E Center for Climate System Research (Japan)

data on the regular observational grid to ensure that Y (s)159

and X j(s) are aligned on the same grid (see, e.g., Jun et al.160

2008; Banerjee et al. 2014). Empirical climate model biases161

are then calculated as162

B j(s) = Y (s)−X j(s), j = 1, . . . ,6 (1)

where B j(s) denotes the bias of climate model j relative163

to the observation at spatial location s. For n sites in D,164

we observe the biases, namely {B j(si), . . . ,B j(sn)}. Figure165

1 summarizes the bias fields of near-surface air temperature166

in the tropical Atlantic region from the six climate models.167

Clearly, the different GCMs produce similar spatial features168

of the bias. For instance, all models produce a warm bias169

over the Angola-Benguela front region. We also note dis-170

tinct features for each model bias. For instance, the above171

mentioned warm bias in the Angola-Benguela front region172

has different severity in the different models, with peak val-173

ues ranging from 3 kelvin in CCSM4 to 5 kelvin on MIROC,174

and can extend either to the north, like in CCSM4, GISS and175

IPSL, or to the south, like in MIROC and BCC. Also, the176

south Atlantic mid-latitudes can feature either an extensive177

negative bias, like in CCSM4, BCC and MIROC, or an ex-178

tensive positive bias, like in GISS and IPSL. The remainder179

of this paper devotes to quantifying the shared bias and the180

individual components and associated uncertainties across181

the different climate models.182

3 Bayesian hierarchical approach for climate model183

biases184

Our aim is to obtain a statistical representation of climate185

model biases in a multi-model ensemble that separates an186

overall common bias from the individual components. We187

present a Bayesian hierarchical model formulated based on188

three levels: data, process, and parameters (Berliner 2003).189

The data model captures the information given in the form of190

empirically measured biases, conditional on a hidden spatial191

bias process. The process level models the spatial structure192

and links the hidden spatial process to a set of parameters.193

In the parameter model, prior distributions are specified for194

the parameters. The three levels are specified in terms of 195

probability distributions in a hierarchical structure 196


[data|process] : Data model
[process|parameters] : Process model
[parameters] : Parameter model,

where [A|B] denotes a conditional probability distribution of 197

A given B and [A] denotes the probability density of A. 198

3.1 Data model 199

We assume that the empirical bias B j(s) can be decomposed 200

into two components: a spatial component M j(s) and a noise 201

component ε j(s), namely 202

B j(s) = M j(s)+ ε j(s), j = 1 . . . ,6 (2)

Here {ε j(s)} is a Gaussian white noise with zero mean and 203

variance σ2
ε, j, independent from {εk(s)}, for k 6= j. Addi- 204

tionally, the noise component {ε j(s)} is assumed indepen- 205

dent from {M j(s)}. Thus, conditionally on the spatial pro- 206

cess {M j(s)}, the observed bias B j(s) has a Gaussian dis- 207

tribution with mean M j(s), and variance σ2
ε, j that represents 208

the data model level. 209

3.2 Process model 210

GCM ensemble members feature biases which may origi- 211

nate from different factors including parameterizations, dis- 212

cretization to solve the numerical equations, resolution level 213

and imposed boundary conditions. The spatial process {M(s)}, 214

with M(s) = (M1(s), . . . ,M6(s))′ is multivariate, and can be 215

modeled in different ways (Gelfand et al. 2010). Here we 216

assume that the climate bias can be additively decomposed 217

into two components 218

M j(s) = µ(s)+η j(s), j = 1, . . . ,6, (3)



4 M. W. Arisido C. Gaetan D. Zanchettin A. Rubino

−40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

CCSM4

−40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

BCC

−40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

IPSL

L
a

ti
tu

d
e

−40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

MPI

−40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

GISS

Longitude

−40 −30 −20 −10 0 10 20

−30

−20

−10

0

10

MIROC

−4

−2

0

2

4

te
m

p
e
ra

tu
re

 b
ia

s
 (

k
e
lv

in
)

Fig. 1 Empirical bias for simulated near-surface air temperature for each of the six GCMs in the ensemble relative to the observed temperature
over the tropical Atlantic region.

where µ(s) is the overall common bias capturing shared219

large-scale features for all climate models, while η j(s) de-220

scribes the jth model-specific features. Based on this inter-221

pretation, specification (3) can be viewed as a version of a222

random effect model (see Furrer et al. 2007; Kaufman and223

Sain 2010; Kang et al. 2012, for examples of applications224

in climatology). To model the two spatial components µ(s)225

and η j(s), we adopt an approach based on kernel basis func-226

tions (see, e.g., Higdon 1998) and we suppose that227

µ(s) = w(s)′αk η j(s) = w∗(s)′ν j, (4)

where w(s)= {w1(s), . . . ,wp(s)}′, w∗(s)= {w∗1(s), . . . ,w∗p∗(s)}′228

are vectors of Gaussian kernels and α = (α1, . . . ,αp)
′ and229

ν j = {ν j,1, . . . ,ν j,p∗}′ are vectors of parameters. The shape230

and number of kernels associated to w(s) and w∗(s) are dif-231

ferent. Since the individual components {η j(s) : j = 1, . . . ,6}232

aim to capture local-scale features, a larger number p∗ of233

kernels with a narrower spatial bandwidth are expected to234

be required with respect to that necessary to describe the235

overall common bias µ(s), i.e., p < p∗. However, the num- 236

ber of kernels p and p∗ will be much less than the num- 237

ber of data points n. The choice of the kernels and their 238

shapes is further discussed in section 3.4. The parameters 239

α and {ν j, j = 1, . . . ,6} are considered as random. More 240

precisely α is multivariate Gaussian α ∼ Gau(0,G), where 241

G is the p× p covariance matrix, and {ν j, j = 1, . . . ,6} 242

are mutually independent zero mean Gaussian processes, 243

ν j ∼ Gau(0,τ2
j Ip∗), where τ2

j Ip∗ is the covariance matrix 244

and Ip∗ is the p∗× p∗ identity matrix. With this setup η j(s) 245

is a Gaussian random variable with zero mean and variance 246

var(η j(s)) = τ2
j w∗(s)′w∗(s). Thus the parameters τ2

j mea- 247

sure how each climate model bias varies about the over- 248

all common bias. More specifically, different values of τ2
j 249

across the various models indicate different levels of de- 250

parture from the common bias. Alternatively, similar values 251

of τ2
j for different models indicate that they vary similarly 252

about the overall common bias, suggesting that the contribu- 253

tion of each climate model in estimating the overall common 254

bias is similar. Under these hypotheses we have constructed 255
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a non-stationary spatial process for M j(s) with covariance256

function257

cov(M j(s),M j(s′)) =
p

∑
m=1

p

∑
k=1

Gmkwm(s)wk(s′)+

τ
2
j

p∗

∑
m=1

p∗

∑
k=1

w∗m(s)w
∗
k(s
′)

(5)

where Gmk = cov(αm,αk) is the m,k entry of the covariance
matrix G, and cross-covariance function

cov(M j(s),Ml(s′)) =
p

∑
m=1

p

∑
k=1

Gmkwm(s)wk(s′), j 6= l. (6)

3.3 Parameter model258

In the parameter level, we specify prior probability distribu-259

tions for the model parameters {(σ2
ε,1,τ

2
1 ), . . . ,(σ

2
ε,6,τ

2
6 ),G}.260

Prior distributions for these parameters are generally taken261

to be non-informative. For σ2
ε, j, we assign a proper uni-262

form prior on the standard deviation scale σε, j ∼ Unif(a,b)263

for each j independently. The values of the hyperparame-264

ters a and b are chosen so as to obtain an approximately265

non-informative prior. For {τ2
j }, we use the Half-Cauchy266

(HC) prior with scale parameter θ . We avoid using the usu-267

ally implemented inverse-gamma priors, since these priors268

do not yield a proper posterior if the priors are taken to269

be non-informative. This was confirmed by our preliminary270

assessment (not shown) and supported by Gelman (2006)271

and Polson and Scott (2012). We specify the HC prior as272

τ j ∼HC(θ) for each j independently. Large but finite values273

of θ represent approximately non-informative prior distribu-274

tions. See the appendix for further details on prior and hy-275

perparameter choices. We also need to specify the prior dis-276

tribution for the covariance matrix G. The inverse Wishart277

(IW) prior has been proposed for covariance matrices like278

G, with scale parameter the identity matrix Ip and p + 1279

degrees of freedom. Although computationally convenient,280

the IW family is found to be quite constraining as p is the281

only ’tuning parameter’ available to express uncertainty in282

the elements of G (Gelman and Hill 2006; Leith and Chan-283

dler 2010). We use the modified version of the IW (see,284

e.g., Gelman and Hill 2006; O’Malley et al. 2008) which285

is based on the decomposition G = Γ QΓ , where Γ is a di-286

agonal matrix with the scaling elements {ω2
k } being given287

non-informative uniform priors over a wide range, and Q∼288

IW(p+ 1,Ip). We then determine G by computing its di-289

agonal and off-diagonal elements, Gkk = ω2
k Qk and Gkl =290

ω2
k ω2

l Qkl for k, l = 1, . . . , p.291

3.4 The choice of the kernels 292

Several types of kernel functions have been used in the lit- 293

erature, including Gaussian kernels (Stroud et al. 2001) and 294

bisquare functions (Kang et al. 2012). In this paper we have 295

considered a Gaussian kernel specified as 296

wk(s) ∝ exp{−(s− ck)
′
Σ
−1(s− ck)/2}, (7)

where ck denotes the center of the kernel and Σ determines 297

the shape. The number of kernels, p or p∗, their locations 298

and shapes must be chosen. These choices are often based 299

on the presence of prior information such as smoothness 300

and spatial dependence related to the spatial process (Stroud 301

et al. 2001). If we choose spherically shaped kernels, i.e., 302

Σ = κI2 on R2 and κ > 0, and the centers belong to a regu- 303

lar grid over an unbounded domain, (5) approximates a co- 304

variance function of a stationary isotropic process when the 305

number of kernels is very large. Alternatively, a geometri- 306

cally anisotropic process may be obtained if we choose non- 307

spherical Gaussian kernels. One way to investigate whether 308

the spatial biases are direction-dependent or not is to per- 309

form variogram analyses of the biases for different direc- 310

tions (Cressie 1993). A variogram provides a descriptive 311

statistic of the spatial continuity of a data set. Empirical var- 312

iograms are calculated by averaging the semi-variances over 313

all pairs of available observations, with a specified separa- 314

tion distance and direction. Figure 2 illustrates the empir- 315

ical variograms of the six GCM biases for the directions: 316

0◦,45◦,90◦,135◦ (i.e. North, Northeast, East and Southeast 317

direction, respectively). Observing the plots of the variograms 318

within each panel does not reveal strong anisotropy in the 319

four directions at small distances since the patterns are not 320

largely different. This suggests that we can safely choose a 321

spherical kernel. 322

Figure 3 shows the two different sets of centers which are 323

used for our main analysis. Panel (a) shows p = 36 equally- 324

spaced Gaussian kernels with scale Σ = 0.6I2 on R2, which 325

are used to model µ(s). Panel (b) shows p∗ = 45 unequally- 326

spaced Gaussian weighting kernels with the smaller scale 327

Σ = 0.4I2, which are used to model η j(s). In section 4 we 328

present a sensitivity analysis for the kernel choice, and dis- 329

cuss the advantages and drawbacks of different choices. 330

3.5 MCMC simulations 331

Parameter estimation and inference is based on a Bayesian 332

context by sampling from the posterior probability distribu- 333

tion, which is generalized as 334

[process, parameters|data]∝[data|process]×

[process|parameters][parameters].
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The posterior distributions corresponding to µ(s) and η j(s)335

cannot be obtained in closed form, so we use the Markov336

Chain Monte Carlo (MCMC) method (Gilks et al. 1996)337

with Gibbs sampler that adopt full conditional distributions.338

For the MCMC simulations we used three chains, each with339

overdispersed starting values. We performed 50000 simula-340

tions discarding the first 20000 as burn-in. The remaining341

samples were thinned at every tenth step to reduce autocor-342

relations of successive samples, from which the remaining343

3000 draws were used for posterior analyses. We performed344

the computations by using the OpenBUGS (version 3.2.3)345

statistical software package. The computation time depends346

mainly on the size of the kernel vectors. For example, if we347

use 36 Gaussian kernels to describe both µ(s) and η j(s),348

the computations take about 10 hours on a 64-bit OS X349

10.10.5 Intel Core i5 1.6 GHz. Posterior convergence was350

assessed by inspecting the simulation history of a sample351

of parameters using graphical tools and the Gelman-Rubin352

formal convergence diagnostic (Cowles and Carlin 1996).353

We then summarized the MCMC draws in terms of mean,354

median and standard deviation to make posterior inference355

about the unknowns.356

4 Results357

Figure 4 summarizes the posterior results with respect to the358

overall climate model bias µ(s). Panel (a) presents the pos-359

terior mean of the overall common bias µ(s) using the 36360

Gaussian kernels that are shown in Figure 3(a). The poste-361

rior standard deviations of µ(s) is shown in Figure 4(b). To362

better understand µ(s), Figure 4(c) shows the empirical bias363

which is estimated as a simple average of the biases from364

the six GCMs with the underlying assumption that all GCMs365

have equal weight in synthesizing the overall common bias.366

The posterior mean of the overall bias and its associated em-367

pirical estimate agree well on the general features of the bias368

over the whole tropical Atlantic region. Common features369

include the warm error over the southeastern tropical At-370

lantic, which reaches peak values exceeding 4 kelvin over371

the Angola-Benguela front region and extends westward as372

far as 10◦W. Both estimates capture a cold error of simi-373

lar severity over the western tropical Atlantic ocean, along374

the South American coast. Shared features over landmassess375

include the cold error over the subsaharan region and warm376

errors over major near-coastal mountainous African regions,377

such as the Cameroon line and the Namib desert. Compared378

to the empirical estimate, the posterior mean of the over-379

all bias intensifies the cold errors over the western Kala-380

hari and over the Congo river, while reducing the cold error381

over the subsaharan region. The posterior standard devia-382

tions of the overall common bias (Figure 4(b)) suggest that383

its estimate is largely uncertain in the southeastern tropical384

Atlantic, over the Angola-Benguela front region, where the385

largest bias is observed. Uncertainty in the common bias es- 386

timate is large also along the African coast, possibly reflec- 387

tive of the diversity in the representation across models of 388

coastal topography and/or freshwater discharge processes. 389

The bias estimate is, conversely, more certain in regions af- 390

fected by cold errors, such as the subsaharan region and the 391

western tropical Atlantic Ocean. 392

393

Overall, the posterior mean estimate of the overall bias has 394

a smoother spatial pattern than the corresponding empiri- 395

cal estimate, which changes more rapidly, in the longitude- 396

latitude space. The similarity of the bias patterns in Figure 397

3(a) and (c) suggests that the proposed method highlights 398

the same common features of the bias that are reflected in 399

the empirical bias estimate. Nonetheless, the Bayesian ap- 400

proach allows to gain deeper insights about how much each 401

climate model varies around the overall common bias. As 402

pointed out in section 3.2, the variance parameters {τ2
j : j = 403

1, . . . ,6} are useful to assess how each climate model bias 404

varies about the overall common bias. Figure 4(d) depicts 405

the posterior medians of τ j along with the 25th and 75th per- 406

centiles, which show a marked difference across the individ- 407

ual GCMs about the overall common bias. CCSM4 varies 408

the least, whereas IPSL and GISS vary the most about the 409

overall common bias. Thus, in terms of weighting the con- 410

tributions of each GCMs in synthesizing the overall com- 411

mon bias, CCSM4 is ranked first, whereas IPSL and GISS 412

have smaller weights. One benefit of the Bayesian hierar- 413

chical method is that it allows to determine the heterogene- 414

ity across the climate models, highlighting the limitations of 415

the equal weight assumption often adopted in the traditional 416

empirical estimate. 417

We now provide posterior assessments of the individual bias 418

components {η j(s) : j = 1, . . . ,6}. These individual compo- 419

nents measure the departure of each climate model bias from 420

the overall common bias µ(s). As compared to µ(s), η j(s) 421

describe model-specific local features. Thus, we use a rela- 422

tively large number of kernels p∗ = 45, which are shown in 423

Figure 3(b). Figure 5 shows the posterior means of {η j(s) : 424

j = 1, . . . ,6}. The values of η j(s) for CCSM4 are overall 425

the smallest among all models in the ensemble, suggest- 426

ing that the most prominent features of CCSM4 go to the 427

overall common bias. This is consistent with our previous 428

result that CCSM4 varies the least about the overall com- 429

mon bias, see Figure 4(d). Similarly, as expected from Fig- 430

ure 4(d), IPSL shows large departures from the overall com- 431

mon bias, followed by GISS. All models show warm errors 432

over the Angola-Benguela front region in their individual 433

bias components. This counterintuitive result is explained 434

by the different location of the peak warm error across the 435

different models, i.e., all models feature a warm bias in the 436

Angola-Benguela front region captured by µ(s), but each 437

with model-distinctive intensity and spatial structure, which 438
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Fig. 4 (a) Posterior mean of the overall common bias µ(s); (b) associated posterior standard deviation of the overall common bias; (c) empirical
estimate of climate model bias, obtained by naively averaging the six climate models assuming the same weight for all of them; (d) Boxplots of
the posterior samples of the standard deviation parameters {τ j : j = 1, . . . ,6} where the bold solid horizontal bars denote the medians, the lower
and upper bars of the boxes indicate the 25th and 75th percentiles respectively.

are captured by η j(s). The extratropical South Atlantic is439

the region where the largest variability in η j(s) value is de-440

tected, particularly due to the large values of opposite sign441

in GISS and BCC.442

4.1 Model assessment443

We now investigate the adequacy of our modeling approach444

to the choices of Gaussian weighting kernels and hyperpa-445

rameters. In particular, we recall that our model fitting re-446

quires specifying (1) the number of weighting kernels, (2)447

the scale of the kernels (Σ ) and (3) the locations or cen-448

ters of the kernels. To assess the robustness of the results449

with respect to these choices, we perform a sensitivity anal-450

ysis for the overall bias µ(s) using three different numbers451

of kernels, that is p ∈ {15,28,48}, three different choices452

of scale of the kernels, that is Σ ∈ {0.1I2,1.2I2,5I2} where453

I2 is the identity matrix on R2, and three different sets of454

kernel locations. Figure 6 presents the contour plots of the455

overall common bias µ(s) associated to the different choices456

of p and Σ . The three panels in the upper row show the con- 457

tour plots of µ(s) fixing Σ = 0.5I2 while varying p. A value 458

of p = 15 results in a smooth pattern of µ(s), which fea- 459

tures a peak warm bias of 1.5 kelvin in the Angola-Benguela 460

front region, which is displaced westward compared to the 461

empirical estimate as well as to Bayesian hierarchical esti- 462

mates obtained with larger p values. The pattern also misses 463

many of the topographic characteristics recognizable from 464

Figure 4. With a larger number of kernels (p = 48), the over- 465

all common bias appears to be more jagged lacking enough 466

smoothness, while it produces a more detailed spatial pat- 467

tern. The choice of p = 28 (panel b) produces smoothed 468

contour lines and a warmer bias of about 3 kelvin in the 469

Angola-Benguela front region, which is closer to the empir- 470

ical average as well as to the Bayesian estimate. The three 471

panels in the lower row display the contour plots for the 472

overall common bias estimated by fixing p = 15 while vary- 473

ing Σ ∈ {0.1I2,1.2I2,5I2}. We use a low value for p = 15 474

in order to amplify the effect of changes in Σ . The choice 475

of Σ seems to have the opposite impact of the choice of p: 476
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Fig. 5 Posterior means of the individual components {η j(s), j = 1, . . . ,6} ( in kelvin) associated to the six GCMs in the ensemble.

smaller Σ values lead to poorly smoothed µ(s) (panel d),477

while larger Σ strongly smooths µ(s) (panel f). Overall, the478

choice of the kernel parameters, and particularly the number479

of kernels p is crucial to capture the inherent spatial bias pro-480

cess. In fact, increasing p brings not only increased spatial481

details but also noticeable changes in the large scale shape482

of the posterior mean of the overall common bias including483

the location and magnitude of bias features in key locations.484

To assess how the choice of kernel locations or centers of485

the kernels influences the results, we compare three different486

sets of kernels that only differ for the location of the centers487

while using the same number of kernels p = 64 and scale488

matrix Σ = 0.5I2. Figure 7 shows the three sets of kernels,489

along with the corresponding surface plots of the posterior490

mean of the overall bias µ(s). The three different sets of ker-491

nels are shown in column (a). In the upper row the centers492

of the kernels are equally-spaced. The middle and the lower 493

rows feature two different sets of unequally-spaced kernel 494

centers. The different kernel locations yield noticeable dif- 495

ferences in the large scale shape of µ(s) (column b) includ- 496

ing the location and magnitude of the bias. The most promi- 497

nent feature is that equally-spaced kernel locations produce 498

a stronger and more extensive warm bias over the Angola- 499

Benguela front region compared to unequally-spaced kernel 500

setups, which is also closer to the bias estimates shown in 501

Figure 4. The unequally-spaced kernels lead to reduced bias 502

in both warm and cold bias regions. 503

We performed a further sensitivity analysis to assess the sen- 504

sitivity of the results to the choice of the parameter θ of the 505

Half-Cauchy (HC) prior for τ1, . . . ,τ6. While the sensitivity 506

analysis could be performed for all prior choices, we only 507

focus on θ as hyperparameters of variance components are 508
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Fig. 6 Assessing the influence of choice of the number p and scale Σ of Gaussian kernels. The upper row shows contour plots of the overall
common bias µ(s) fixing Σ = 0.5I2 while p varies: (a) p = 15; (b) p = 28; (c) p = 48. The lower row shows contour plots of µ(s) fixing p = 15
while Σ varies: (d) Σ = 0.1I2; (e) Σ = 1.2I2; (f) Σ = 5I2.

more sensitive than the hyperparameters of other forms such509

as Gaussian prior for regression coefficients (Gelman 2006).510

Figure 8 illustrates the posterior distributions of τ j for the511

three choices θ ∈ {20,35,40}. The three choices produce512

slightly different posterior distributions, but they reflect the513

same general pattern. The sensitivity to θ differs slightly514

across the ensemble members. For instance, CCSM4 pro-515

vides the smallest variation across all three choices and IPSL516

produces the largest variation. Thus, we consider the results517

to be robust against the specific choice of θ .518

5 Discussion519

We have proposed a Bayesian hierarchical method for the520

probabilistic assessment and quantification of spatially ref-521

erenced climate model biases in a multi-model ensemble.522

The approach synthesizes an overall shared bias as a non-523

stationary spatial field and quantifies the associated uncer-524

tainty. The approach optimizes the way information about525

the bias is combined within the ensemble. Specifically, the526

presented model accounts for the variability of the bias across527

ensemble members, and the contribution of each member to 528

the overall common bias is determined based on the poste- 529

rior inferences on each model’s variability parameter. 530

Application of the model to the case of tropical Atlantic 531

near-surface air temperature from an ensemble of six histor- 532

ical simulations contributing to CMIP5 exemplified how the 533

proposed approach allows to gain deeper insights into cli- 534

mate model bias compared to more traditional assessments: 535

Known common features of the bias in this region are well 536

captured by our statistical model, such as the warm bias over 537

the Angola-Benguela front region. But, our model further 538

reveals that the different GCMs unequally contribute to de- 539

termining this bias, which also results in a variety of model- 540

specific features of the bias over the same area. The pro- 541

posed statistical decomposition of each model’s bias into a 542

shared/common and a model-specific component stimulates 543

additional investigation of the underlying physical processes 544

as well. In our application, for instance, the errors of op- 545

posite sign emerging in the model-specific components of 546

the bias over the near-coastal oceanic waters of equatorial 547

Africa deserve further analysis. 548
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Fig. 7 Comparison of the posterior mean of the overall bias µ(s) for three different choices of kernel locations: (a) Gaussian weighting kernel
locations; (b) the posterior mean surfaces of the overall common bias.
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The basic idea underlying our statistical model is generic549

and could be applied to a wider range of climate models, ge-550

ographical locations and geophysical variables. Indeed this551

will be included in our future work that considers an ex-552

tension to a spatiotemporal model involving a larger set of553

GCM simulations. The challenge will be to formulate a com-554

putationally efficient method for such an extensive approach555

taking into account the spatial and temporal features simul-556

taneously. Another future focus is to consider biases of mul-557

tivariate outputs from GCMs such as temperature and pre-558

cipitation which may provide a broader assessments of cli-559

mate model uncertainties.560

Finally, in section 2.1 we have mentioned that we interpo-561

lated the outputs from the six GCMs to the same observa-562

tional grid to resolve the misalignment between observa-563

tions and model outputs before fitting the Bayesian hierar-564

chical model. The uncertainty associated to the interpola-565

tion can affect the bias estimation in case of strong spatial566

misalignment. In our case study, both reanalysis and climate567

model outputs feature high spatial resolution over the inves-568

tigated domain. We therefore expected interpolation to only569

minimally influence the results, and hence did not explic-570

itly accounted for it in our model. Nonetheless, when there571

is concern of substantial uncertainty due to interpolation,572

it may be desirable to build a model that is able to handle573

such spatial misalignment directly. One possible approach574

is the Bayesian hierarchical method for nested block-level575

realignment (e.g., Banerjee et al. 2014), but this method576

requires the model output to be nested in the observational577

grid (Mugglin and Carlin 1998). A simpler solution is, once578

the outputs are firstly predicted to the observational grid us-579

ing a stochastic model based approach such as the kriging580

method, to rectify the uncertainty that has been introduced581

by inflating the variance of the error ε j(s) in model (2). We582

denote the predicted value from climate model j at spatial583

location s by X̂ j(s). Its variance, δ 2
j (s) = var(X̂ j(s)) is zero584

if the output grid and observation grid coincide in s, other-585

wise it will be positive. Thus we specify586

var(ε j(s)) = σ
2
j + γ jδ

2
j (s),

where the modulating parameter γ j is positive. This slight587

modification adds further parameters to the Bayesian hier-588

archical model for which we can assign prior distributions589

similarly to σ2
j .590
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6 Appendix: choice of priors 596

In this section, we provide details of prior and hyperparamters 597

choices. All priors are approximately non-informative. For 598

the error variances {σ2
ε, j : j = 1 . . . ,6}, we assign the uni- 599

form prior on the standard deviation scale σε, j ∼ Unif(a,b) 600

by choosing a= 0 and b= 102 for each j independently. Ac- 601

cordingly, the error variances, which are proportional to (b− 602

a)2, are very large so that the priors are approximately non- 603

informative. For {τ2
j : j = 1 . . . ,6}, we use a Half-Cauchy 604

(HC) prior, which is a conditionally conjugate family of a 605

half t distribution (Gelman 2006). The Half t distribution 606

corresponds to the absolute value of a Student-t distribution 607

centered at zero, whose probability distribution is propor- 608

tional to 609

(
1+

1
df
(

τ j

θ
)2)−(df+1)/2 (8)

with two parameters: degrees of freedom df and scale pa- 610

rameter θ . We obtain the proper HC probability distribution 611

for τ j as a special case of (8) by setting df = 1, 612

p(τ j) ∝
(
θ

2 + τ
2
j
)−1

, j = 1, . . . ,6

we specify priors for τ j as τ j ∼ HC(θ), independently for 613

each j. Large but finite value of the scale parameter θ rep- 614

resents an approximately non-informative prior distribution. 615

In the limit θ → ∞ this becomes a uniform prior density on 616

p(τ j). For our analysis, we set θ = 30. To choose a prior 617

for the p× p covariance matrix G, the variances G1, . . . ,Gp 618

and the pair-wise covariances Gkl : k, l = 1, . . . , p must be 619

explicitly specified. One way to achieve this is to use the 620

separation technique (Gelman and Hill 2006; O’Malley et 621

al. 2008) 622

G = Γ QΓ

where Γ is the diagonal matrix with diagonal elements ω2
1 , . . . ,ω

2
p623

and Q is new p× p covariance matrix. The role of the new 624

parameters ω2
k and Q is to derive appropriately scaled priors 625

for the variances and pair-wise covariances related to G. We 626

assign proper uniform prior on ω2
k ∼ Unif(0,102) indepen- 627

dently for each k. The covariance component Q is given the 628

inverse Wishart distribution IW(p+1,Ip). The two parame- 629

ters degrees of freedom p+1 and the identity matrix Ip fully 630

determine the distribution. The variances and pair-wise co- 631

variances associated to G are then obtained as Gk = ω2
k Qp 632

and Gkl = ωkωlQkl . To make inference, we require the stan- 633

dard deviations |Gk|1/2 and correlations ρkl 634

|Gk|1/2 = |ωk|
√

Qk and ρkl =
Gkl

|Gk|1/2|Gl |1/2 , k, l = 1, . . . , p
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