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ABSTRACT

In this paper, we present the results of a classification of
Adriatic waters, based on spatial time series of remotely
sensed Chlorophyll type-a. The study was carried out us-
ing a clustering procedure combining quantile smoothing
and an agglomerative clustering algorithms. The smooth-
ing function includes a seasonal term, thus allowing one
to classify areas according to “similar” seasonal evolution,
as well as according to “similar” trends. This method-
ology, which is here applied for the first time to Ocean
Colour data, is more robust with respect to other classical
methods, as it does not require any assumption on the
probability distribution of the data. This approach was
applied to the classification of an eleven year long time
series, from January 2002 to December 2012, of monthly
values of Chlorophyll type-a concentrations covering the
whole Adriatic Sea. The data set was made available by
ACRI (http://hermes.acri.fr) in the framework of the Glob-
Colour Project (http://www.globcolour.info). Data were
obtained by calibrating Ocean Colour data provided by
different satellite missions, such as MERIS, SeaWiFS and
MODIS. The results clearly show the presence of North-
South and West-East gradient in the level of Chlorophyll,
which is consistent with literature findings. This analysis
could provide a sound basis for the identification of “wa-
ter bodies” and of Chlorophyll type-a thresholds which
define their Good Ecological Status, in terms of trophic
level, as required by the implementation of the Marine
Strategy Framework Directive. The forthcoming availabil-
ity of Sentinel-3 OLCI data, in continuity of the previous
missions, and with perspective of more than a 15-year
monitoring system, offers a real opportunity of expansion
of our study as a strong support to the implementation of
both the EU Marine Strategy Framework Directive and the
UNEP-MAP Ecosystem Approach in the Mediterranean.
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1. INTRODUCTION

With the scope to achieving a “good ecological status”
for all bodies of surface water, in the year 2008 the
Marine Strategy Framework Directive (MSFD) prescribes
monitoring from the coast to the Exclusive Economic
Zone (EEZ), which can reach up to 200 nautical miles
from the coast [Olenin et al. (2010)]. The evaluation of
biological, physico-chemical and hydromorphological
quality elements are key activities to evaluate of the
water status. Many Pressures may influence the trophic
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Figure 1. Adriatic Sea(a) and satellite grid-point (b)

status of marine ecosystems, including an excessive
loads of nutrients from human activity (sewage effluents,
aquaculture farms and industrial activities) or natural
causes (river fluxes, lagoon, etc. . .). Nutrient enrichment,
in some instancese, give rise to eutrophication, which
causes many adverse effects for the marine ecosystem.
Chlorophyll type-a (Chl-a) concentration is an indicator
of phytoplankton biomass and a well established indicator
of eutrophication.
Among the European waters, the Adriatic Sea presents
some peculiarities: a) it is an almost land-locked basin
separated from the central Mediterranean by the Strait
of Otranto; b), it encompasses a significant diversity
of properties, from eutrophic or oligotrophic; c) water
quality in the Italian coastal zone is affected by discharges
of several rivers and, in particular, by that of the Po river.
Due these conditions, the Adriatic Sea hosts a variety of
habitats and presents North-South as well as East-West
gradients of nutrient concentrations and physico-chemical
properties, as well as sign of degradation of its environ-
mental status [Giani et al. (2012); Lotze et al. (2006);
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Diaz & Rosenberg (2008)].

The implementation of the MSFD does not strictly require
the definition of reference conditions for each assessment
unit, called “water body”. However, reference conditions
combined with thresholds which define the acceptable
deviation from them are the most common approach to
define the boundary between the “good” or “not good” en-
vironmental status. Identifying water bodies and reference

Figure 2. An example of Chl-a time series with three
different quantile regression curves.

conditions is, in fact, a critical step in the application of
any integrative assessment methodology: in this paper, we
suggest an innovative procedure for guiding this process,
based on an objective classification process, based on the
concept of similarity between the whole time series of
data, rather than on the proximity of summary statistical
indeces. Functional Data Analysis (FDA) is a branch of
statistics where the latent model is given by smooth curves
or continuous functions [James & Sugar (2003)]. We use
Quantile Smoothing Regression (QSR) relaxing assump-
tions on distribution [Koenker et al. (1994)] with a flexible
approach. Chl-a time series shows seasonal variations and
changes in amplitude and this change may elegantly esti-
mates by seasonal modulation model [Eilers et al. (2008)].
The aim of this paper is to present a flexible functional
clustering procedure applied to spatial time series. This
technique includes the quantile regression with a seasonal
modulation component. It was applied to time series from
2002 to 2012 of Chl-a concentrations.

2. FUNCTIONAL CLUSTERING BY QUANTILE
SMOOTHING REGRESSION

Time series could be seen as observations of a continuous
function collected at certain points Ramsay & Silverman
(2005). In some cases, the interest of the researchers
focus on quantiles; the use of quantiles may be dictated
by practical uses (several specifications in environmental
sciences are based on a certain quantile) or the need for a
more robust and flexible approach, free of assumption on
the probability distribution of the variable of interest. In
addition, the quantile regression permits to obtain a curve
with the scope to describe a certain quantile (or a series
of quantiles). Quantile regression [Koenker et al. (1994)]
estimates the considered smoothing curves.
The variable Y is associated to a vector of covariates X
and assuming linear dependence on covariates, the τ -th
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Figure 3. Dendrogram based on the distance matrix of
trend (a) and seasonal coefficients (b). The dashed line
represented the cut-off threshold

quantile regression is defined by QY |X(τ |x) = xT θ and
the regression coefficients θ∗ are obtained by

θ∗ = argminθ E[ρτ (Y −XT θ)|X = x],

where τ is the tilded absolute value function ρτ (x) =
x ∗ (τ − I(x < 0)). We replace the parametric part with a
smoothing function using the generalized regression quan-
tiles [Guo et al. (2015)]. The coefficient estimation is
obtained minimizing the unconditional expect loss func-

tion lτ = argminf E[ρτ (Y −
∑k

i=1
θiβi(x))], where k

is the number of knots and βi(x) are the B-splines basis.
The generalized QSR can be explained as:

θ∗ = argmin
θ

n∑

j=1

(ρτ (yj −

k∑

i=1

θiβi(x)))

Finally, we include in the QSR a truncated Fourier series
[Eilers et al. (2008)]. The previous formula became:

(θ∗, α∗, φ∗) =

= argmin
θ,α,φ

n∑

j=1

ρτ (yj −

k∑

i=1

θiβi(xj)− Si(xj , α, φ)),

where the seasonal part Si(xj , α, φ)) is

Si(xj , α, φ) =

= α(βi(xj)sin(
2π

12
xj)) + φ(βi(xj)cos(

2πg

12
xj)).

The coefficients θ estimates the trend; α and φ describe the
changes in amplitude of the sine and cosine waves, respec-
tively. The clustering procedure is based on a two-stage
approach [Abraham et al. (2003)]: in the first stage we



estimate the coefficients θ, α and φ. In the second step, we
calculate two different distance matrix based on L2-norm,
the first one using the trend coefficients and the second
one considering the seasonal component Si(xj , α, φ)). A
Ward’s agglomerative hierarchical method aggregates sim-
ilar curves and the number of cluster is chosen according
to the tree dendrogram.

3. CLUSTERING CHL-A CONCENTRATIONS
ON THE ADRIATIC SEA

The methodology presented in the previous sections was
applied in the first step to a comprehensive sets of time
series, i.e. the mean monthly values of the Chl-a con-
centrations in the Adriatic Sea (from January, 2002 to
December 2012).

For each month, gridded data with resolution of 192×240
points (4km scale and 46 080 values) are available, but we
rescaled the resolution to 96× 120 points (8km scale and
11 520 values); 2168 time series cover the whole Adriatic
Sea. The presented results were obtained considering
the 0.5 quantile. The dendrograms suggested 5 and 4
clusters for the trend component and the seasonal part,
respectively.

Trend classification - 5 clusters
In the Figure 4 we present the results of clustering
methodology based on the trends behaviour and the
Figure 5 the related estimated curves. The cluster 1
(#1) shows chl-a values are lower because the sites
belonging to this cluster are located far from sources of
land based sources of Nitrogen and Phosphorous. Cluster
2 encompass several areas disseminated in different zones
of the Adriatic Sea: the coastal area in the southern Italy,
the Albanian coast and areas in the northern part of the
Adriatic Sea between 44th and 45th parallel North and
certain areas of the Dalmatian coasts. Although both the
trend is analogue to the first cluster, the values are higher
ranging from 0.1 to 0.7 mg/m3. The cluster 3 covers a
smaller area compared to the previous ones, including
only the coasts of the intermediate Adriatic Sea and a little
portion of the north Adriatic Sea far from the coast. This
cluster presents an average value of about 1.7 mg/m3

with a peak value in the year 2010. Clusters 4 and 5 cover
to the northern part and most of the Italian coastal zone.
Although, the cluster 5 reports around 1.5-fold the values
of the cluster 4, they display a similar temporal behavior
with a pronounced maximum value in the year 2010.

Seasonal classification – 4 clusters
Considering the classification of the seasonal distance
matrix, it suggested the presence of 4 clusters. The Figures
6 and 7 represent the spatial distribution of these 4 clusters
and their seasonal evolution. The first cluster (#1) covers
the 87% of the Adriatic Sea; the seasonal component is
approximately constant over the years with a peak in the
early spring and a minimum in the summer. The cluster
#2 covers to the low-intermediate Adriatic Italian coasts
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Figure 4. Spatial distribution of the classification esti-
mated on the basis of trend in the QSR based on the 0.5
quantile.
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Figure 5. Temporal behaviors estimated by the trend
curves in the QSR based on the 0.5 quantile.
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Figure 6. Spatial distribution of the classification esti-
mated on the basis of seasonality in the QSR based on the
0.5 quantile.

and its oscillation was similar to the previous cluster. The
cluster #3 included the Nothern Adriatic Sea and some
areas near to the Albanian coasts. Changes in amplitude
were observed at the beginning and at the end of the period.
The last cluster (#4) is closed to the Italian coast at south
of the Po river and the Karavasta Lagoon in Albania. The
sites classified in this cluster reported the highest seasonal
oscillation.
The presence of North-South and West-East gradient in
the level of Chlorophyll was consistent with literature
findings. Furthermore, it also highlighted the presence of
a more pronounced seasonality along the Northern Italian
coast, probably driven by the nutrients apportioned by
river discharges.

2002 2004 2006 2008 2010 2012

−
3

−
2

−
1

0
1

2
3

Years

m
g

m
3

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Figure 7. Seasonal curves estimated by QSR based in the
0.5 quantile.

4. DISCUSSIONS

This analysis could provided a sound basis for the identifi-
cation of “water bodies” and of chl-a thresholds which de-
fine their Good Environmental Status, in terms of trophic
level, as required by the implementation of the Marine
Strategy Framework Directive. At present, such thresh-
olds are selected on the basis of mean values, without
taking trend and seasonality into account.
This paper proposes and develops a robust approach to
define similar areas in relation to temporal profile of a vari-
able. The presented technique is applied to glob-colour
data related to chlorophyll type-a concentration in the
Adriatic Sea. This methodology allows to classify time
series taking in to account a modulation in the seasonal
signal and a certain quantile of the parameter distribu-
tion. In many fields and particularly in environmental
policy, threshold values based on percentile were used Re-
ich (2012); Schmidt et al. (2012). In addition the spatial
dependence can be easily incorporated by existing meth-
ods [Giraldo et al. (2012)]. The forthcoming availability
of Sentinel-3 OLCI data, in continuity of the previous
missions, and with perspective of more than a 15-year
monitoring system, offers a real opportunity of expansion
of our study as a strong support to the implementation of
both the EU Marine Strategy Framework Directive and the
UNEP-MAP Ecosystem Approach in the Mediterranean.
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