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Abstract. The identification of emergent structures in dynamical systems is a 

major challenge in complex systems science. In particular, the formation of in-

termediate-level dynamical structures is of particular interest for what concerns 

biological as well as artificial network models. In this work, we present a new 

technique aimed at identifying clusters of nodes in a network that behave in a 

coherent and coordinated way and that loosely interact with the remainder of 

the system. This method is based on an extension of a measure introduced for 

detecting clusters in biological neural networks.  Even if our results are still pre-

liminary, we have evidence for showing that our approach is able to identify 

these “emerging things” in some artificial network models and that it is way 

more powerful than usual measures based on statistical correlation. This method 

will make it possible to identify mesolevel dynamical structures in network 

models in general, from biological to social networks. 

Keywords: Dynamical systems, emergent dynamical structures, cluster index, 

boolean networks, emergent properties. 

1 Introduction 

Emergent phenomena are among the most intriguing ones in natural as well as in 

artificial systems. Indeed, it can be argued [1] that neural networks represent an at-

tempt at shaping the emergent properties of a set of models in order to perform some 

required tasks. An intriguing aspect is the "sandwiched" nature of most emergent 
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4 M. Villani et al. 

phenomena: while past researches were almost exclusively focused on bottom-up 

emergence in two-level systems (like e.g. Benard-Marangoni convection cells emerg-

ing from the interaction of the water molecules [2]) it is becoming increasingly clear 

that in the most interesting cases the new entities and levels do emerge between pre-

existing ones. The paradigmatic example may be that of organs and tissues in  

multicellular organisms: both the lower (cellular)  level and the upper one (organism) 

predate the appearance of the intermediate structures. Other examples come from the 

physical world (e.g. mesolevel structures in climate) and social systems (e.g. various 

factions within political parties). What is more interesting in the present case is that 

also in artificial systems, like neural networks, one observes the formation of inter-

mediate-level circuits between the single neurons and the global properties. It goes 

without saying that some neural architectures have been devised precisely to stimulate 

the formation of these mesolevel structures, but here we are concerned with structures 

that come into being by spontaneous processes without being explicitly designed from 

the outside (although a certain type of design may ease or prevent the formation of 

these spontaneous structures). 

A central question is then that of identifying the emerging "things": these may be 

either static entities or dynamical patterns, or some mixture of the two. In dynamical 

networks, static emergent structures take the form of topological features, like e.g. 

motifs in genetic networks or communities in a broader context. There is an extensive 

literature on community detection, so we will concentrate here on a different type of 

mesolevel structures, namely those that are created by the dynamical interactions in 

the network. Nodes may work together although they are not directly linked, since the 

dynamical laws may give rise to different parts working together. If the topology were 

regular, these nodes might be identified by visual inspection, but in the case of irregu-

lar topologies this approach seems hopeless. 

In this paper we present a first step towards the development of formalized me-

thods to identify these mesolevel "things": since they may have a topological as well 

as a dynamical nature, we refer to them as mesolevel dynamical structures (MDS). 

The task of identifying MDSs is a formidable one, so we will show here the outline of 

a promising approach and some preliminary results, while remarking that there are 

still more open questions than answers. However, the interest of the task motivates in 

our opinion the opportunity to report our preliminary results. 

In order to escape "bird's eye" detection methods, we will consider different sub-

sets of the network, looking for those whose nodes appear to be well coordinated 

among themselves and have a weaker interaction with the rest of the nodes. For each 

subset of nodes we will measure its so-called cluster index, a measure based on in-

formation theory that had been proposed by Tononi and Edelman [3]. After a suitable 

normalization procedure (see the following for the details) we rank the various sub-

sets in order to identify those that are good candidates for the role of partially inde-

pendent "organs" (note that they not necessarily exist in any network). 

The cluster index has been defined so far for quasi-static systems, and we will  

discuss its extension to nonlinear dynamical systems. We will also show the result of 

the application of this ranking method to some model systems, including some  

synthetic dynamical networks and some genetic regulatory networks proposed by 

marco.villani@unimore.it



 Identifying Emergent Dynamical Structures in Network Models 5 

examining the biological literature. The method draws our attention on subsets that 

are functionally correlated and that represent an interesting hypothesis about possible 

MDSs. In the end we will also comment on the fact that our method, although not yet 

fully developed, already outperforms usual correlation techniques. 

2 Some Useful Definitions 

For the sake of definiteness, let us consider a system U, our "universe" that is a net-

work of N nodes that can change in discrete time, taking one of a finite number l of 

discrete values (in the examples we will choose l=2 for simplicity). The value of node 

i at time t+1, xi(t+1), will depend upon the values of a fixed set of input nodes at time 

t, possibly including the i-th (self-loops are not prohibited). In several cases, networks 

start with a random state and change according to the evolution rules so the initial 

state may bear no relationship to the system itself. Since we are interested in finding 

out some properties of the networks themselves, we will consider their behaviors after 

an adequate relaxation time. For the time being we will also ignore external influ-

ences on some nodes, although these might be easily included. 

The entropy of a single node is estimated from a long time series by taking fre-

quencies fv of observed values in time as proxies for probabilities, and is defined as 
 

=

−=
m

v

vvi ffH
1

log     (1) 

where the sum is taken over all the possible values a node can take. 

If the system is deterministic and is found in a fixed point attractor, Hi=0 for every 

node, since each node takes its value with frequency one. In order to apply entropy-

based methods, Edelman and Tononi considered a system subject to gaussian noise 

around an equilibrium point. In our case it is however appropriate to deal with a richer 

time behavior since nonlinear networks can have several different attractors, each 

attractor contributing to the behavior of the system (though in different times). So our 

"long data series" will be composed by several repetitions of a single attractor, fol-

lowed by repetitions of another one, etc. (ignoring the short transients between two 

attractors) . The number of times a single attractor is represented in the data series 

should be weighted in some way: there are possible several different strategies, de-

pending on the nature of the system we are analyzing. In case of noisy systems a pos-

sibility is that of estimating the weights of the attractors by measuring the persistence 

time of the systems in each of them [4]; deterministic systems might be analyzed by 

weighting attractors with their basins of attraction. For simplicity in the following we 

opt for this second choice. 

Now let us look for interesting sets of nodes (clusters, from now on). A good clus-

ter should be composed by nodes (i) that possess  high integration among themselves 

and (ii) that are more loosely coupled to other nodes of the system. The measure will 

define, called the cluster index, is not a Boolean one, but it provides a measure of 

"clusterness" that can be used to rank various candidate clusters (i.e., emergent inter-

mediate-level sets of coordinated nodes). 
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6 M. Villani et al. 

3 Measuring the Cluster Index 

Following Edelman and Tononi [3], we define the cluster index C(S) of a set of k 

nodes S, as the ratio of a measure of their integration I(S) to a measure of the mutual 

information M(S\U-S) of that cluster with the rest of the system. 

The integration is defined as follows: let H(S) be the entropy (computed with time 

averages) of the elements of S. This means that each element is a vector of k nodes, 

and that the entropies are computed by counting the frequencies of the k-dimensional 

vectors. Then: 

                           ( ) ( ) ( )SHxHSI
Sj

j −=
∈

   (2) 

The first term is the sum of the single-node entropies, the last one is computed us-

ing vectors of length k, so I measures the deviation from statistical independence of 

the k elements in S
1
. The mutual information of S to the rest of the world U-S is also 

defined by generalizing the usual notion of mutual information between nodes to k 

dimensional vectors 

 

( ) ( ) ( ) ( ) ( ) ( )SUSHSUHSHSUSHSHSUSM −−−+=−−≡− ,|;  (3) 

 

where, as usual,  H(A|B) is the conditional entropy and H(A,B) the joint entropy. 

Finally, the cluster index C(S) is defined by 

 

( )
( )

( )SUSM

SI
SC

−
=

;
        (4) 

The cluster index vanishes if I=0, M≠0, and is not defined whenever M=0. For this 

reason, the approach based upon cluster indices does not work properly when the 

mutual information of S with the rest of the system vanishes; these cases, in which S 

is statistically independent from the rest of the system – a significant property because 

they signal particularly strong structures - can be diagnosed in advance. 

In this way, for every subsystem S we will get a measure of its quality as a cluster. 

In order to identify potential MDSs it is necessary to compare the indices of various 

candidate clusters. It is straightforward to compare clusters of the same size using 

C(S), but unfortunately C scales with the size of the subsystem, so that a loosely con-

nected subsystem may have a larger index than a more coherent, smaller one. In order 

to deal with these cases we need to normalize the clusters with respect to their size. 

The analysis may turn out quite cumbersome, but in most cases we found it sufficient 

to use a simple prescription, used by Tononi and Edelman in their original paper, 

which results in the calculation process outlined in the following. 

The first step is to define a “null system”, i.e., a non-clustered homogeneous sys-

tem, from which we sample a series. This system provide us with a null hypothesis 

                                                           
1 H(S) is estimated from the same time series used to calculate the frequencies fv of eq. (1). So, 

to compute H(S) we calculate the frequencies f Sv of the observed values of S seen as a whole. 
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 Identifying Emergent Dynamical Structures in Network Models 7 

and allows us to calculate a set of normalization constants, one for each subsystem 

size. For each subsystem size, we compute average integration <Ih> and mutual in-

formation <Mh> (subscript h stands for “homogeneous”); we can then normalize the 

cluster index value of any subsystem S in it universe U using the appropriate normali-

zation constants dependent on the size of S: 

 

( )
( ) ( )

hh M

SUSM

I

SI
SC

−
=

;
'                      (5) 

We apply this normalization to both the cluster indices in the analyzed system and 

in the null system. 

The definition of “null system” is critical: it could be problem-specific, but we pre-

fer a simple solution which is fairly general: given a series of Boolean vectors, we 

compute the frequency of ones b and generate a new random Boolean series where 

each bit has the same probability b of being one.  This random null hypothesis is easy 

to calculate, related to the original data and parameter-free; moreover we believe it 

satisfies the requirements set by Tononi of homogeneity and cluster-freeness. 

The second step involves the computation of a statistical significance index, called 

Tc, that is used to rank the clusters in the analyzed system. The Tc of a cluster S is: 

 

( )
( )

( )h

h

c
C

CSC
ST

'

''

σ

−
=                (6) 

where <C’h> and σ(C’h) are respectively the average and the standard deviation of 

the population of normalized cluster indices with the same size of S from the null 

system [5]. 

4 A Controlled Case Study 

As a first step, we show the results of the application of our method on simple cases 

in which the systems analyzed have clusters by construction. These experiments make 

it possible to assess the effectiveness of the approach on controlled case studies, in 

which the expected outcome of the analysis is known a priori. Since our method aims 

at finding clusters of nodes which work together --- independently of their connec-

tions --- on the basis of sample trajectories of the system, we directly generated trajec-

tories in which some groups of values behave coherently, i.e., they are the clusters to 

be detected. The trajectories are sequences of binary vectors of length n, 

[x1(t),x2(t),...,xn(t)]. At each time step t, the values of the first c vector positions are 

generated according to the following procedure: x1(t), the leader, is a randomly chosen 

value in {0,1}; the values from position 2 to c, the followers, are a noisy copy of the 

leader, i.e., xi(t)=x1(t) with probability 1-p and xi(t)=~x1(t) otherwise, being p the 

noise rate. Values xc+1(t),...,xn(t) are randomly chosen in {0,1}. This way, the first 

block of the vector is composed of strongly correlated values and it should be clearly 

distinguished from the rest of the positions. Besides series with one cluster, with the 
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8 M. Villani et al. 

same procedure we also generated trajectories with two independent clusters of size c1 

and c2, respectively. In this case, the clusters can be found in positions 1,..,c1 and 

c1+1,...,c1+c2, where leaders are x1 and xc1+1. The trajectories were generated with p in 

{0, 0.01, 0.1}. 

We applied our method based on the calculation of the normalized cluster index 

and we sorted the clusters as a function of the significance index Tc. In all the cases, 

the score based on Tc returns correctly the clusters in the first positions of the ranking. 

As an example, in Figure 1a we show the results of a representative case with two 

clusters with c1=c2=4 in a trajectory with 15 vector positions and p=0.01. The figure 

shows the ten Tc highest values and the corresponding cluster size. The bars are sorted 

in not increasing order of Tc. The highest peaks correspond indeed to the two clusters 

created in the trajectories. Each row of the matrix represents a cluster: white cells are 

the vector positions included in the cluster and they are ranked, from the top, by not 

increasing values of Tc. We can see that the first two clusters detected are indeed the 

ones corresponding to the positions 5,...,8 and  1,...,4 (small differences in Tc between 

the two clusters are due to noise). 

 

  
                                (a)                                                                    (b)  

Fig. 1. (a) Matrix illustrating the elements of the clusters and the corresponding Tc values. The 

first two clusters are the ones introduced in the trajectory. (b) The heatmap shows the correla-

tion values between pairs of vector positions in the trajectory. 

The detected clusters are composed of correlated values, therefore we expect to 

find them also by simply calculating the correlation between every pair of positions. 

The correlation is computed  by taking the value of the Pearson correlation coefficient 

for each pair of variables; in the case of binary variables, this quantity is usually 

called the phi coefficient. Since we are interested indifferently in both positive and 

negative correlations, we take the absolute value of the phi coefficients. Results can 

be plotted as heatmaps, with correlation values associated to colors from blue (lowest) 

to red (highest). An example is given in Figure 1b. As we can observe, the blocks 

composing the clusters are clearly detected and this result holds for all the trajectories 

we analyzed. This result is not surprising, as the vector positions composing a cluster 

are indeed strongly correlated (the only variance is introduced by noise). One might 

then object that the correlation measure is sufficient to detect clusters. In fact, this 

argument is only valid in some simple cases and does not extend to the general case. 

The reason is that correlation is a pairwise measure, while the cluster index accounts 
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for multiple relations.  These first tests enable us to state that our method based on the 

cluster index can be effectively used to capture multiple correlations among variables. 

In the next section, we will show that this approach can be particularly powerful in 

detecting clusters of nodes in networks. 

5 Cluster Indices Applied to Network Models 

The case study we are going to examine consists of three synchronous deterministic 

Boolean Networks (BNs) – the BN being a very interesting case of complex systems 

[6] [7], also applied to relevant biological data [8] [9] [10] and processes [11] [12]. 

The aim of this case study is to check whether CI analysis is capable of recognizing 

special topological cases, such as causally (in)dependent subnetworks and oscillators, 

where the causal relationships are more than binary. Note that in all the following 

cases the phi analysis is ineffective (doesn’t relate any variable, having values differ-

ent from zero only on the diagonal of the matrix). 

The first example is a BN made of two independent sub-networks (RBN1 - Figure 

2a); in this case we expect the analysis to identify the two subsystems. The second 

example (RBN2 - Figure 2b) is a BN made of an oscillator (nodes 0 and 1) and one of 

the subnetworks form the previous example, node 2 has no feedback connections. In 

the last example we simply merge the networks form the previous examples (RBN3 

system).  Figures 3 show the top 5 most relevant clusters according to Tc. CI analysis 

is able to correctly identify the two subnetworks in the first example (first and second 

rows).  The analysis clusters together 5 of 6 nodes of RBN2: those already clustered 

in RBN1, plus nodes 1 and 2 (which negates each other - figure 2b) and the node that 

compute the XOR of the signal coming from the two just mentioned groups. Indeed, 

all these nodes are needed in order to correctly reconstruct the RBN2 series. 

 

   
                    (a)                                                   (b)                                        (c)  

Fig. 2. (a) independent Boolean networks (RBN1); (b) interdependent networks (RBN2); (c) A 

system composed by both the previous networks (RBN3). Beside each boolean node there is 

the boolean function the node is realizing. 

In the third example the top two clusters correspond respectively to the 5 nodes al-

ready recognized in RBN2 and to the whole RBN2 system, while the third and fourth 

rows correspond to the independent subgraphs of RBN1: all MDSs are therefore cor-

rectly identified.  

marco.villani@unimore.it



10 M. Villani et al. 

We would like to point out that CI analysis does not require any knowledge about 

system topology or dynamics. This information is normally unavailable in real cases; 

on the other hand, our methodology just needs a data series. 

 

     
                    (a)                                      (b)                                            (c)  

Fig. 3. Matrix illustrating the elements of the clusters and the corresponding Tc values,  for (a) 

RBN1, (b) RBN2 and (c) RBN3 systems 

As a final note, it is important to point out that covariance analysis is inadequate in 

this scenario as it is not able to identify any cluster. We took the same series we ap-

plied CI analysis upon and computed the correlation matrix between the node va-

riables; the correlation indices between nodes are uniformly low in magnitude. The 

inadequacy of this method can be explained by the fact that correlation only takes into 

account binary linear interactions between variables as opposed to CI, which does not 

necessitate these hypotheses. Experiments performed using asynchronous update 

yielded essentially the same results with respect to both CI and correlation analyses. 

6 Evolved Network: Some Examples 

We have shown that our method makes it possible to discover clusters of coordinated 

nodes in a network. We may then raise the question as to what extent this technique 

can be used to extract meaningful information about clusters in networks subject to 

evolution. This would provide insights both into biological and artificial evolutionary 

processes involving networks. The subject of evolution of clusters is strictly linked to 

the evolution of modularity [13][14] but we conjecture that clusters form only when 

certain conditions are verified in the evolutionary process: in particular, we expect 

that clusters are not needed if the environmental conditions do not require organized 

subsystems (devoted to specific tasks).  

To test this conjecture, we studied cases in which BNs with random topology are 

evolved for maximizing the minimal distance between attractors and for two classifi-

cation tasks [15]. These tasks are static and not intrinsically modular; therefore, we 

expect not to find clusters in these evolved networks. The outcome of our analysis is 

that all these tasks can be optimally solved by BNs possessing only two complemen-

tary attractors. It can be easily shown that in homogeneous cases (systems without 

clusters) the cluster index scales linearly with the number of nodes of the cluster.  

Take a subsystem S and compute I(S); all H(Xi) are equal to 1 (I observes exactly two 

equally probable symbols on every node); moreover, H(S)=H(X)=H(X\S)=1 because 

on any subsystem I again observes only two symbols with equal probability. To sum 

it up:  

marco.villani@unimore.it
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( )
( )

( )
1

1

1

;
−=

−
=

−
= N

N

SXSM

SI
SC    [7] 

where N is the number of nodes in S. 

 
                             (a)                                                                        (b)  

Fig. 4. Distribution of maximum of CI for each cluster dimensions for evolved system, where 

(a) the task is the maximization of the minimal distance between attractors (systems with 70 

nodes) and (b) the task is the Density Classification Problem (DCP), a simple counting problem 

[16] and a paradigmatic example of a problem hardly solvable for decentralized systems (the 

results regard networks with 21 nodes). Essentially, it requires that a binary dynamical system 

recognize whether an initial binary string contains more 0s or more 1s, by reaching a fixed 

attractor composed respectively by only 0s or 1s. 

In figure 4 you can indeed observe this kind of behavior (note that only the aver-

ages have some meaning, because of no Tc has significant value – so, the few excep-

tions to the general behavior on the right side of figure 4b can be discarded.  More 

details are available in [15]).  

These are just preliminary experiments and we are currently studying cases in 

which the formation of clusters is indeed expected. Note however that there are data 

of evolved systems having well defined clusters: indeed, biological evolution is af-

fecting living systems since 3.8 billion years. 

In particular we are analyzing the gene regulatory network shaping the develop-

mental process of Arabidopsis thaliana, a system composed by 15 genes and 10 dif-

ferent asymptotical behaviors [17]: our tool was able to group together the three genes 

core of the system (the first two clusters resulting from Tc ranking): in this case we are 

identifying clusters having Tc values very significant (see [18] for details). 

7 Conclusions 

A central question in distributed dynamical system is that of identifying the emerging 

"things": these may be either static entities or dynamical patterns, or some mixture of 

the two (neural networks representing an attempt at shaping the emergent properties 

of a set of models in order to perform some required tasks). In this paper we present a 

first step towards the development of formalized methods – a research initially started 

within studies on the brain activities [3] - to identify these mesolevel organizations 
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12 M. Villani et al. 

(MDSs in the work), which may have a topological as well as a dynamical nature. As 

examples of application we used time series of simple artificial systems and more 

complex data coming from Boolean Networks and biological gene regulatory systems 

(A.thaliana).  So, the analysis performed by our system is able to identify several 

interesting mesolevel dynamical structures, and we think it could suggest interesting 

new ways in dealing with artificial and biological systems. 
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