
RESEARCH ARTICLE
10.1002/2014WR015521

Cholera in the Lake Kivu region (DRC): Integrating remote
sensing and spatially explicit epidemiological modeling
Flavio Finger1, Allyn Knox1, Enrico Bertuzzo1, Lorenzo Mari1,2, Didier Bompangue3,4,
Marino Gatto2, Ignacio Rodriguez-Iturbe5, and Andrea Rinaldo1,6

1Laboratory of Ecohydrology, Facult�e de l’Environnement Naturel, Architectural et Construit, �Ecole Polytechnique F�ed�erale
de Lausanne, Lausanne, Switzerland, 2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Milano, Italy, 3Laboratoire Chrono-Environnement, UMR6249, CNRS, University of Franche-Comte, Place Leclerc Besançon,
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Abstract Mathematical models of cholera dynamics can not only help in identifying environmental driv-
ers and processes that influence disease transmission, but may also represent valuable tools for the predic-
tion of the epidemiological patterns in time and space as well as for the allocation of health care resources.
Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. They have
been ravaging the shore of Lake Kivu in the east of the country repeatedly during the last decades. Here we
employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight
health zones on the shore of the lake. Remotely sensed data sets of chlorophyll a concentration in the lake,
precipitation and indices of global climate anomalies are used as environmental drivers in addition to base-
line seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a
multiyear data set of reported cholera cases. The best fourteen models, accounting for different environ-
mental drivers, and selected using the Akaike information criterion, are formally compared via proper cross
validation. Among these, the one accounting for seasonality, El Ni~no Southern Oscillation, precipitation and
human mobility outperforms the others in cross validation. Some drivers (such as human mobility and rain-
fall) are retained only by a few models, possibly indicating that the mechanisms through which they influ-
ence cholera dynamics in the area will have to be investigated further.

1. Introduction

The risk, loss, and social disruption brought in by cholera outbreaks can hardly be overestimated and the
global relevance of preventive assessments and controls of cholera spreading is manifest. The recent epi-
demics in Haiti, the Congo river basin, Cuba, Sierra Leone, and the Sahel region [Luque Fern�andez et al.,
2009; Kelvin, 2011; Bompangue et al., 2011; Al-Tawfiq and Memish, 2012; Gaudart et al., 2013] witness the
ongoing, widespread inadequacy of reliable drinking water supply and sanitation infrastructure all over the
developing world. As a result, cholera remains a major cause of morbidity and mortality in developing coun-
tries even to date, despite all public health policies and humanitarian efforts deployed worldwide. As an
example, according to the World Health Organization, as much as 85% increase in the number of reported
cholera cases has been observed globally in 2011 relative to 2010, with 58 countries involved and a total of
589, 854 yearly cases leading to an overall case fatality rate of 1.3% [World Health Organization, 2012].

To promote reliable and timely preventive assessments and controls of cholera spreading, and to evaluate
emergency management alternatives, two main modeling approaches have been followed. One approach
consists of predictive empirical models relying on environmental drivers which possibly influence the ecol-
ogy of Vibrio cholerae [Bouma and Pascual, 2001; Pascual et al., 2002; Lipp et al., 2002; Ruiz-Moreno et al.,
2007; Matsuda et al., 2008], often using remotely acquired information [Lobitz et al., 2000; de Magny et al.,
2008; Ford et al., 2009; Akanda et al., 2009; Jutla et al., 2010, 2013a, 2013b]. Such methods, suited in particu-
lar to regions where cholera is endemic but applied to predict other infectious disease outbreaks as well
[Ford et al., 2009], have been shown to relate significant changes in remotely acquired optical signatures to
interannual and annual cyclic patterns of infections [de Magny et al., 2008; Emch et al., 2008; Matsuda et al.,
2008; Jutla et al., 2013b]. For cholera, such signatures often consist of chlorophyll a, sea surface temperature

Special Section:
Hydroepidemiology: A
pathway to link hydrology
and climate with human
health

Key Points:
� Markov chain model of cholera

dynamics in the Lake Kivu area (DRC)
� Global climate anomalies are the

main drivers, together with rainfall
� The influence of mobility and

remotely sensed chlorophyll a were
also tested

Supporting Information:
� Readme
� Extension of Table 2

Correspondence to:
A. Rinaldo,
andrea.rinaldo@epfl.ch

Citation:
Finger, F., A. Knox, E. Bertuzzo, L. Mari,
D. Bompangue, M. Gatto, I. Rodriguez-
Iturbe, and A. Rinaldo (2014), Cholera
in the Lake Kivu region (DRC):
Integrating remote sensing and
spatially explicit epidemiological
modeling, Water Resour. Res., 50, 5624–
5637, doi:10.1002/2014WR015521.

Received 3 MAR 2014

Accepted 8 JUN 2014

Accepted article online 18 JUN 2014

Published online 9 JUL 2014

FINGER ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 5624

Water Resources Research

PUBLICATIONS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' Foscari

https://core.ac.uk/display/223174361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1002/2014WR015521
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/specialsection/HYDROEP1/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/specialsection/HYDROEP1/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/specialsection/HYDROEP1/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/specialsection/HYDROEP1/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


(SST), sea surface height, precipitation, air temperature, and/or their anomalies (i.e., deviations from interan-
nual averages).

Predictive empirical models have contributed new epidemiological perspectives; however, their use for the
understanding, prediction, and control of waterborne disease outbreaks is challenged by the fact that infec-
tion patterns are influenced by spatial structure and temporal asynchrony. Another type of approach relies
on mechanistic models of disease spread, whether deterministic or stochastic, metacommunity- or
individual-based. Such mathematical models, either spatially implicit [Codeço, 2001; Koelle et al., 2005; Hart-
ley et al., 2006; Riley, 2007; King et al., 2008; Grad et al., 2012] or explicit [Bertuzzo et al., 2008, 2010, 2011,
2012; Tuite et al., 2011; Chao et al., 2011; Mari et al., 2012a, 2012b; Rinaldo et al., 2012; Righetto et al., 2013],
can lend key insights into the course of an ongoing epidemic, provide predictive frameworks and poten-
tially aid real-time emergency management in allocating health care resources, also by anticipating the
impact of alternative interventions. A selection of recent applied cholera models and their main characteris-
tics is presented in Table 1.

A spatially explicit approach, made possible by the now widespread access to data mapping of hydrological
drivers, transportation, and sanitation infrastructure and population distribution, can furthermore address
the spatiotemporal evolution of disease propagation as well as the precise conditions under which a water-
borne disease epidemic grows or dies out. Significantly, it has recently been demonstrated formally [Gatto
et al., 2012, 2013] that spatially implicit stability conditions (based on local reproduction numbers) are nei-
ther necessary nor sufficient for outbreaks to occur owing to spatial effects. In particular, spatial phenomena
are bound to become fundamental when local settlements are connected by networks of primary

Table 1. Summary of Recently Published Applied Cholera Models
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Lobitz et al. [2000] BoBa * * * *
Pascual et al. [2000] BoBa * * * *
Koelle et al. [2005] BoBa * * * *
de Magny et al. [2008] BoBa * * * *
Bertuzzo et al. [2008] S. Africa * * * *
Luque Fern�andez et al. [2009] Zambia * * * *
King et al. [2008] BoBa * * * *
Matsuda et al. [2008] BoBa * * * *
Pascual et al. [2008] BoBa * * * *
Akanda et al. [2009] BoBa * * * *
Islam et al. [2009] BoBa * * * *
Andrews and Basu [2011] Haiti * * * *
Bertuzzo et al. [2011] Haiti * * * *
Chao et al. [2011] Haiti * * * *
Mukandavire et al. [2011] Zimbabwe * * * *
Reyburn et al. [2011] Zanzibar * * * *
Tuite et al. [2011] Haiti * * * *
Rinaldo et al. [2012] Haiti * * * *
Eisenberg et al. [2013] Haiti * * * * *
Jutla et al. [2013a] BoBa * * * *
Jutla et al. [2013b] BoBa * * * *
Mukandavire et al. [2013] Haiti * * * *
Reiner et al. [2012] BoBa * * * * * *
Gatto et al. [2012] Haiti/S. Africa * * * *
Mari et al. [2012a] S. Africa * * * *
Righetto et al. [2013] Haiti * * * *
Sardar et al. [2013] Zimbawe * * * *

aBay of Bengal.
bAttributes refer to the treatment of space by the models. Explicit treatment of space means that the model incorporates terms for

the spatial spread of disease vehiculed by human mobility, waterways, etc.
cAttributes describing the treatment of environmental forcings. Simulated refers to cyclicity based on seasonal and interannual

(ENSO) forcings.
dThe disease is considered endemic if outbreaks appear to occur every year and if the outbreak is not apparently the result of recent

introduction.
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(environmental to human) and secondary (human to human) infection mechanisms. Networked connectiv-
ity models, describing the interplay between hydrology, epidemiology, and social behavior sustaining
human mobility, thus prove to be key tools for prediction and emergency management of waterborne
infections.

Climate variables that have been related to cholera can be categorized into global and local, where global
variables may mediate local ones [de Magny et al., 2006]. Global-scale climate phenomena, such as the El
Ni~no Southern Oscillation (ENSO), have been reported to influence cholera dynamics mostly in endemic
regions such as the Bay of Bengal [Colwell, 1996; Pascual et al., 2000, 2002, 2008; Lipp et al., 2002; Rod�o et al.,
2002; Koelle et al., 2005], but also in African countries [de Magny et al., 2006; Olago et al., 2007; Bompangue
et al., 2011]. However, the causative mechanistic links between ENSO and disease dynamics remains contro-
versial to date. Some authors point out correlations between cholera incidence and suitably delayed phyto-
plankton and zooplankton abundances in coastal waters, which in turn are driven by local climate
anomalies, mediated by ENSO [de Magny et al., 2008; Ford et al., 2009; Jutla et al., 2010, 2013a; Bompangue
et al., 2011; Mishra et al., 2011]. It is in fact known that V. cholerae may attach to zooplankton [Colwell, 1996].
This hypothesis thus places great importance on the role of aquatic environmental reservoirs in maintaining
the disease. Others argue that the local climate anomalies caused by ENSO may as well influence disease
dynamics via other pathways, such as droughts, water salinity, or human behavior and population dynamics
[Pascual et al., 2002; Rod�o et al., 2002; Rebaudet et al., 2013].

While the role of local climatic conditions, rainfall, air temperature, and sea surface temperature (SST) in par-
ticular, on patterns of cholera transmission has long been studied especially in empirical frameworks [Lipp
et al., 2002; Koelle et al., 2005; Altizer et al., 2006; de Magny et al., 2008], spatially explicit mechanistic models
of cholera epidemics have incorporated hydroclimatological drivers only more recently, most notably in
models used to study the course of the Haitian epidemic, starting from the very first months after its out-
break in late 2010 and following disease resurgence (May 2011) in connection with unusually intense tropi-
cal rains [Rinaldo et al., 2012; Eisenberg et al., 2013; Gaudart et al., 2013; Righetto et al., 2013]. Possible
mechanisms of enhanced cholera spread due to heavy rains include increased bacterial concentration in
drinking water due to failure of sanitation systems, washout of open-air defecation sites [Rinaldo et al.,
2012; Gaudart et al., 2013], or the seasonal modification of human water sources and human behavior [Gau-
dart et al., 2013], possibly including enhanced exposure owing to crowding effects.

Here we use a semimechanistic, spatially explicit modeling framework to describe cholera dynamics around
Lake Kivu, Democratic Republic of the Congo (DRC). Our approach builds on the multidimensional inhomo-
geneous Markov chain (MDIMC) method proposed by Reiner et al. [2012]. This method requires the discreti-
zation of the variable to be modeled (i.e., cholera incidence) into a finite number of states, and applies a
semimechanistic description of the transitions between discrete dynamical states. Transition probabilities
vary in time as they account for environmental drivers (estimated through remotely sensed and objectively
manipulated data sets) and human mobility patterns. The case study at hand refers to the regions adjacent
to Lake Kivu (eastern DRC). Routinely collected surveillance data have been used to construct epidemic
curves of cholera cases and map the spatiotemporal progress of the disease [Bompangue et al., 2009]. Data
sets of precipitation, chlorophyll a concentration in Lake Kivu as well as indices of global climate phenom-
ena are used as model input, together with a mechanistic description of human mobility among the health
zones adjacent to the lake. Specifically, the MDIMC model is fed with all possible combinations of environ-
mental drivers, with variable lags. The performances of different model settings are compared using formal
model selection techniques in order to draw conclusions about the relative importance of environmental
drivers for the proliferation of cholera in the study area. Furthermore, cross validation is applied to assess
the possibility of predictive modeling of epidemiological dynamics based on environmental data.

2. Case Study

2.1. Spatial Setting
Lake Kivu is situated in eastern DRC on the border with Rwanda (Figure 1). In this study, we concentrate on
eight health zones (or their aggregations) located on the Congolese shore, which include the two major
cities of Goma and Bukavu, respectively, at the northern and southern ends of the lake. Areas further from

Water Resources Research 10.1002/2014WR015521

FINGER ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 5626



the lake are not considered due to their low number of cholera cases and limited population. The total pop-
ulation size of the study area is of about 1.8 millions.

2.2. Pathogen Transport
The Lake Kivu catchment consists of numerous small subcatchments along steep slopes leading down to
the lake and a northern region characterized by porous volcanic soils that allow for little (to no) surface run-
off. Therefore, we assume that the hydrological transport of the pathogen (in the sense of Bertuzzo et al.
[2010] and Rinaldo et al. [2012]) is negligible at the regional scale. However, rainfall can facilitate local path-
ways of transmission and/or amplify contamination through failure of inappropriate sanitation systems. The
health zones in our model are connected through human mobility fluxes, simulated here by a gravity
model. Given the stark difference in sociopolitical stability between the eastern DRC and neighboring
Rwanda, and the low number of cases reported in Rwanda during the study period, we assume fluxes
between the two countries to be negligible.

2.3. Climate
Local climate in the study area is characterized by a rainy season from October to May [Plisnier
et al., 2000; Bompangue et al., 2009], which is interrupted by a short dry period early in the year.
The annual precipitation corresponds to around 1200 mm . Monthly average temperatures are fairly
constant, close to 20�C throughout the year (available from: http://en.climate-data.org/location/1074/).
Plisnier et al. [2000] reported highly complex and spatially differentiated effects of ENSO on local cli-
mate, such as a positive correlation of ENSO with rainfall, air pressure, and temperature in the area.

Figure 1. Study area. Lake Kivu is one of the African Great Lakes (a), located to the north of Lake Tanganyika and west of Lake Victoria
(b), at the border between the DRC and Rwanda (c). The eight lakeside health zones included in this study (1: Goma, 2: Minova, 3: Kirotshe,
4: Kalehe, 5: Katana, 6: Miti Murhesa, 7: Kabare, 8: Bukavu) as well as Goma and Bukavu, the two main cities on its shore, are shown in
panel (c).
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According to Stager et al. [2007], ENSO also influences lake levels in the African Great Lakes Region.
Marchant et al. [2007] found that the Indian Ocean Dipole (IOD), a cyclic climate phenomenon inde-
pendent of ENSO, influences the rainfall in East Africa too. This is in accordance with Becker et al.
[2010], who revealed an influence of ENSO and IOD on the total water storage in the area. The exact
mechanisms leading to all the above so-called teleconnections are yet to be determined [Plisnier
et al., 2000; Marchant et al., 2007].

2.4. Data
2.4.1. Cholera
Weekly cholera incidence data (2004–2011) were made available through the work of Bompangue et al.
[2009]. Briefly, data were collected from registries at each Cholera Treatment Center, aggregated weekly
and reported to the Ministry of Health officials of each health zone, where they were preserved in electronic
or paper format [Piarroux and Bompangue, 2007; Bompangue et al., 2008, 2009, 2011, 2012; Bompangue,
2009; Piarroux et al., 2009]. For the purpose of this study, we aggregated the data to obtain monthly num-
bers of cases for the eight lakeside health zones described above (Figure 2).

The time scale of this study has been chosen to be monthly because of the level of noise and the number
of missing values in both reported cholera cases and remotely sensed Chlorophyll a concentrations. Note
for instance that in order to get a high-quality time series of Chlorophyll a data, every time step must con-
tain a certain number of cloudless days, which is sometimes difficult to enforce during the rainy season in
the study region.

2.4.2. Demography
A remotely sensed data set of the estimated 2010 population distribution (available from http://
www.worldpop.org.uk) was used to approximate the population of each health zone, serving as a
base to compute monthly cholera incidence (reported cases divided by population abundance of
each health zone).
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Figure 2. Cholera incidence data for the eight health zones considered. Low (state 1), mild (state 2), and high incidence (state 3) are denoted by respectively blue, green, and red color.
Note that in some health zones data are available only during parts of the study period.
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2.4.3. Plankton
The optimization of remotely
sensed plankton biomass esti-
mates for Lake Kivu, described in
Knox et al. [2014], enabled the
selection of the plankton bio-
mass proxy best suited for this
study. Here, we use a chlorophyll
a database generated with the
OC3 bio-optical algorithm and a
coastal atmospheric correction
model with 90% relative humid-
ity, spanning the years 2002–
2012 (Figure 3). Daily data were
spatially averaged across the
entire lake, and monthly aver-
ages were created by weighting
each day by the number of data
yielding pixels.

2.4.4. Precipitation
Daily precipitation fields were
obtained from a remotely sensed
data set by the National Aeronau-
tics and Space Agency (NASA)
[Huffman et al., 2010]. The resolu-

tion of the data set is 0.25 degrees of latitude and longitude. Precipitation estimates were then projected to
each health zone and aggregated monthly (Figure 3). The projection was done by assigning the corre-
sponding precipitation value to each cell in a rasterized version of the health zones delimitation and subse-
quently taking the mean over each health zone.

2.4.5. ENSO and IOD
In order to account for possible relations between global climate anomalies and the dynamics of the dis-
ease in the study region, as reported by Bompangue et al. [2011], we included two additional climatic drivers
in our study (Figure 3). SST anomaly from the Ni~no 3.4 region made available by the National Oceanic and
Atmospheric Administration (NOAA, available online at http://www.cpc.ncep.noaa.gov/data/indices/sstoi.
indices) was used as index for ENSO. For IOD, we used the so called Dipole Mode Index (DMI) [Saji et al.,
1999], a measure of the SST gradient between two regions in the Indian Ocean (available online at http://
www.jamstec.go.jp/frcgc/research/d1/iod/DATA/dmi.monthly.ascii).

In order to quantify correlations between the different environmental drivers (precipitation, chlorophyll a,
ENSO and IOD), we computed their cross-correlation functions. Precipitation and chlorophyll a show low
significant correlations (r � 0:2) between lags 0 and 2 months, whereas DMI and ENSO are weakly corre-
lated at lags around 1 month (r � 0:2) as well as anticorrelated at higher lags. All other combinations do
not show significant correlations (p> 0.05).

3. Model

3.1. Inhomogeneous Markov Chain Model for Endemic Cholera
The theoretical framework adopted here builds on a previous semideterministic modeling approach
(MDIMC) for endemic cholera developed by Reiner et al. [2012] that is based on finite-state Markov chain
modeling. This approach requires cholera incidence data to be categorized into discrete states. It assigns a
probability to the transitions between epidemic states in a given spatial setting and with a defined time
step. The Markov chain model can be made inhomogeneous by allowing transition probabilities to depend
on temporal and spatial environmental drivers, namely precipitation, chlorophyll a concentration in the
lake, ENSO and IOD, as well as on spatial interactions induced by human mobility.
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Figure 3. Environmental drivers. (a) Total monthly precipitation averaged over all consid-
ered health zones. (b) Remotely sensed, spatially averaged chlorophyll a concentration in
Lake Kivu. (c) Global climate anomalies. ENSO SST anomaly in the Ni~no 3.4 region (blue)
and IOD Dipole Mode Index (green). Note that the chlorophyll a and climate anomalies
start 6 months before cholera incidence data in order to allow for lags in the model.
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Following Reiner et al. [2012], we categorize cholera incidence into three discrete states, namely low (state
1), mild (state 2) and high (state 3). We select the monthly incidence thresholds for the definition of the
three discrete states such that half of the records fall in the low incidence category and the remaining
data are equally partitioned into the remaining two categories. Therefore, the thresholds correspond to
the 50th (0.0133% incidence) and the 75th (0.0415%) percentiles of the monthly incidence data,
respectively.

Figure 2 shows cholera incidence in the eight health zones considered, and the category each data point
belongs to. Low (state 1), mild (state 2), and high (state 3) incidences are denoted by blue, green, and red
color, respectively. The categorization of the data into finite classes causes the merging of the events in the
tail of the incidence distribution with less severe ones. Although some information is therefore discarded,
the model focuses on levels of variation that are relevant to public health.

We first define a baseline homogeneous Markov chain model that does not account for environ-
mental drivers and spatial interactions. Let Xk;t51; 2; 3 be the state of health zone k at time t.
According to this model, the generic transition ðXk;t5iÞ ! ðXk;t115jÞ occurs, at any time t, with prob-
ability pi;j . The baseline model is therefore completely defined by the following transition probability
matrix P:

P5

p1;1 ð12p1;12p1;3Þ p1;3

p2;1 ð12p2;12p2;3Þ p2;3

p3;1 ð12p3;12p3;3Þ p3;3

2
664

3
775 (1)

where the probabilities of transition to state 2 are expressed so as to enforce P to be a stochastic matrix
(i.e., rowwise sums equal to 1).

We further assume that environmental drivers and spatial interactions among neighboring human
communities can modify baseline transition probabilities (1). In particular, we hypothesize that these
external drivers can modify, through a multiplicative factor, the probabilities of transition from low/
mild cholera incidence to a worse state (pi;j; i < j), as well as the probability of remaining in the
highest incidence state (p3;3). The resulting transition probabilities p0i;j;k;t are thus site- and time-
specific, as both environmental drivers and cholera incidence patterns vary in space and time. We
adopt the following formulation:

p0i;j;k;t5pi;jð11f rain
k;t Þð11f chl

t Þð11f ENSO
k;t Þð11f IOD

k;t Þð11f mob
k;t Þð11f sea

t Þ for i < j or i5j53 : (2)

The remaining probabilities are adjusted, proportionally to their baseline values, to ensure that matrix P0k;t5
ðp0i;j;k;tÞ is stochastic, i.e.:

p01;1;k;t512p01;2;k;t2p01;3;k;t

p0i;1;k;t5ð12p0i;3;k;tÞ
pi;1

pi;11pi;2
for i52; 3

p0i;2;k;t5ð12p0i;3;k;tÞ
pi;2

pi;11pi;2
for i52; 3 :

(3)

The term f rain
k;t is assumed to be linearly dependent on the actual precipitation intensity f rain

k;t 5aJkðtÞ, where
JkðtÞ is the mean normalized monthly precipitation of health zone k during month t. Precipitation data have
been normalized to span the range [0,1]. Therefore, to enforce p0i;j;k;t > 0 we impose the constraint a � 21.
As an example, if a > 0, rainfall enhances cholera transmission and therefore all the probabilities to make a
transition to a higher incidence state (or to stay at the highest) increase. Consequently, all the other transi-
tion probabilities decrease. Analogously, the potential effect of chlorophyll a concentration on cholera
transmission is modeled as f chl

t 5bC ðt2tCÞ (b � 21), where C(t) is the mean normalized (i.e. rescaled in the
range [0,1]) monthly chlorophyll a concentration of month t. The lag tC is introduced to possibly account for
a delay between the dynamics of phytoplankton and/or zooplankton and favorable conditions for bacteria
survival in the lake. To account for the possible enhancing effect of climatic drivers on disease dynamics, we
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model the terms f ENSO
t and f IOD

t equivalently to f chl
k;t , i.e., f ENSO

t 5/ENSOðt2tENSOÞ and f ENSO
t 5wIODðt2tIODÞ,

where ENSO(t) is the normalized SST anomaly in the Ni~no 3.4 region during month t, IOD(t) is the normal-
ized DMI (see section 2.4.5) during month t, tENSO and tDMI are time lags and / � 21 as well as w � 21 are
proportionality constants.

Cholera transmission in a health zone can also be enhanced by the mobility of people toward health zones
with ongoing outbreaks. This potential effect is accounted for in eq. (2) by the term f mob

k;t , which reads

f mob
k;t 5c

X
z 6¼k

Qkz Xm
z;t;

where Qkz is the probability that a traveller from zone k visits zone z, and c and m are two positive parame-
ters. We model human mobility through a gravity model [Erlander and Stewart, 1990]. Accordingly, connec-
tion probabilities are defined as

Qkz5
Hz e2dkz=DX

n 6¼k

Hne2dkn=D
;

where the attractiveness factor of zone z depends on its population size Hz, while the deterrence factor is
assumed to be dependent on the distance dkz between the two communities and represented by an expo-
nential kernel (with shape factor D). Distances between health zones are measured along the road network.

Finally, the term f sea
k;t in eq. (2) accounts for the seasonality possibly induced by drivers other than those

explicitly considered above. Baseline seasonality is modeled through a simple sinusoidal function:

f sea
t 5d 11sin 2p

t2ts

12

� �� �
;

where d � 21 and ts is the lag of seasonality.

Table 2. Results of the Fitting Procedure Ordered by Increasing AIC Score (First 20 Lines)a

Model Se
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hl
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hy
ll
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EN
SO

IO
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D
eg

re
es

of
fr

ee
do

m
b

lo
g

(L
ik

el
ih

oo
d)

A
IC

D
A

IC

1 1 2 2 2 1 2 11 2470.02 962.03 0
2 1 2 1 2 1 2 12 2469.22 962.45 0.4
3 1 2 2 2 1 1 13 2468.89 963.78 1.6
4 1 2 2 1 1 2 13 2468.95 963.89 1.9
5 1 2 2 2 2 1 11 2471.03 964.05 2.0
6 1 2 1 2 1 1 14 2468.07 964.15 2.1
7 1 2 2 1 2 1 13 2469.26 964.52 2.5
8 1 2 2 2 2 2 9 2473.27 964.53 2.5
9 1 2 1 1 1 2 14 2468.37 964.74 2.7
10 1 2 2 1 1 1 15 2467.38 964.76 2.7
11 1 2 1 2 2 1 12 2470.6 965.2 3.2
12 1 2 1 2 2 2 10 2472.84 965.67 3.6
13 1 1 1 2 1 2 15 2467.84 965.68 3.6
14 1 2 1 1 1 1 16 2466.9 965.79 3.8
15 1 2 1 1 2 1 14 2469.16 966.31 4.3
16 1 1 1 2 2 2 13 2470.27 966.53 4.5
17 1 2 2 1 2 2 11 2472.36 966.72 4.7
18 1 1 2 2 1 2 14 2469.75 967.51 5.5
19 1 1 2 2 2 2 12 2471.85 967.71 5.7
20 1 2 1 1 2 2 12 2471.95 967.89 5.9

aSee supporting information Table 1 for all 64 lines.
bNumber of parameters plus one (residual variance).
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3.2. Model Calibration and Validation
We consider all the 26564 model combinations
obtained by accounting for or neglecting the
effects of rainfall, chlorophyll a, human mobility,
ENSO, IOD, and baseline seasonality. Models are
fitted by maximizing their likelihood. In the
most complex setting, we must optimize the
values of 17 parameters, including the set of
lags (if applicable) up to 6 months that produces
the best fit to data. Under the Markovian
assumption of the model, the transition from 1
month to the next is independent of all other
transitions. Therefore, likelihood can be defined
as the product of the probabilities of the transi-
tions actually observed for each month. We use
the simplex search algorithm proposed by
Nelder and Mead [1965] to maximize the log-
likelihood. We enforce the constraint that each

transition probability must be between 0 and 1 by a barrier method, i.e., we set likelihood to 0 whenever a
transition probability falls outside these limits [Reiner et al., 2012]. Because the Nelder-Mead method can
only ensure the identification of local stationary points of the considered objective function, the optimiza-
tion algorithm is run 100 times with different initial starting points to better approximate the global maxi-
mum of the likelihood function. The best model is then selected out of all candidate model combinations
through the Akaike information criterion (AIC) which evaluates model performance and discounts for
complexity.

The Markovian nature of the model also allows to easily implement a simulation algorithm. Let us consider
a generic health zone k with discretized cholera incidence i at time t, i.e., Xk;t5i. Knowing the epidemic state
of the other health zones and the magnitude of the environmental forcing at the same time t, it is possible
to compute the transition probabilities p0i;j;k;t for j 5 1, 2, 3 through eqs. (2) and (3). A random variable U, uni-
formly distributed in the [0,1] interval, is drawn to determine which transition occurs. If U < p0i;1;k;t , the con-
sidered health zone transitions to the low incidence state in the next month, i.e., Xk;t1151. Otherwise, if
U < p0i;1;k;t1p0i;2;k;t , a transition to a mild cholera state occurs, i.e., Xk;t1152. In the remaining case, the transi-
tion is to a high incidence state, i.e., Xk;t1153. Repeating this procedure for all the health zones gives a 1
month time step simulation. The simulated state can be used to advance the chain for another time step
and so on to simulate the model for any number of time steps.

To evaluate the predictive ability of the different models, we perform a validation analysis. Specifically, we
perform leave-one-out cross validation, i.e., we remove 1 month of data for all the health zones and recali-
brate the model being tested using the remaining data. Starting from the state of the system observed in
the month before the one removed, we simulate the model for one time step, using the newly calibrated
parameter set, and compare model prediction to the removed data. The accuracy of the different models
in validation is estimated by computing the likelihood of the observed state. To that end, we infer the
probability distribution of the predicted state performing 10,000 independent simulations. This procedure
is then sequentially repeated removing, once at a time, all the monthly data points available. We also per-
form a validation analysis removing 2 and 3 contiguous months of data at a time. In this case, the chain is
advanced for 2 and 3 time steps, respectively. Performance is evaluated through the likelihood of the
state observed in the latest month removed. Note that likelihood values evaluated at different lags or
between validation and calibration runs cannot be compared because of different numbers of data
points.

4. Results

Table 2 shows the results of the calibration procedure described above. The 20 best combinations of model
components are shown, ranked according to their AIC score. All 64 possible combinations are shown in

Table 3. Parameter Sets Corresponding to the Best Ranked Models
in Calibration and Cross-Validation (Respectively Models 1 and 13
in Table 2)

Model 1 Model 13

p1;1 0.8841 0.9203
p2;1 0.3822 0.4021
p3;1 0.1151 0.1394
p1;3 0.02575 0.01879
p2;3 0.1366 0.09161
p3;3 0.3736 0.2446
d 0.4029 0.3702
ts 6.358 5.755
c 0.2697
D 30.53
m 0.7578
a 0.5598
/ 0.5014 0.3642
tENSO 0 0
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supporting information Table 1. The best
ranked model accounts for the effects of SST
anomalies and seasonality only (parameters are
shown in Table 3). However, models number 2–
14 have an AIC score close to that of the top-
ranked candidate (DAIC < 4) and thus cannot
be safely discarded [Burnham and Anderson,
2002]. All these models include seasonality. To
test the significance of the individual compo-
nents of models 1–14 (alternative hypothesis)
against the model including seasonality only
(number 8, null hypothesis), we employ a likeli-
hood ratio test. Improvements in likelihood for
models 1 and 2 are significant, and so are the
effects of ENSO alone, as well as ENSO com-
bined with precipitation (p< 0.05). Improve-
ments in likelihood for models 4–7 and 9–14
are not significant at p 5 0.05.

Model validation is performed using the 14 models retained in model selection. Table 4 shows log-
likelihood values obtained by applying cross validation at lags of 1, 2, and 3 months. Model 13 has
the highest likelihood values for all lags. Figure 4 shows the validation of model 13 at respective lags
of 1, 2, and 3 months. Note the decreasing accuracy of the median as predictor of cholera incidence
as well as the higher uncertainty of the simulations as the lag increases. A less formal but more intui-
tive measure of model accuracy is the fraction of times in which the model correctly predicts the
observed cholera incidence state. If we assume the mode of the distribution over 10,000 runs as the
best predictor, model 13 predicts 68% of the state correctly at lag 1 month, 62% at lag 2 months,
and 59% at lag 3 months.

In addition to the results reported above, we also tested the effect of adding the water surface tem-
perature of Lake Kivu [MacCallum and Merchant, 2012; Thiery et al., 2014a, 2014b] as a further
explanatory variable. No significant improvements were found (result not shown for brevity).
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Figure 4. Simulations of model 13, which accounts for mobility, precipitation and SST anomaly in addition to seasonality, at 1 (a), 2 (b),
and 3 (c) months lags using the cross-validation procedure described in section 3.2. The blue line shows the average over the states of the
eight health zones, where each state is represented by its mean incidence. The blue dots show the median of the simulated values and
the gray bars the 5th – 95th percentile range over 10,000 simulations.

Table 4. Log-Likelihood Values Obtained During Validation by Com-
paring 1, 2, or 3 Months in Advance Simulations With Reported
Incidence

Lag (months) 1 2 3

Modela 1 2482.35 2559.28 2583.37
Model 2 2482.79 2558.34 2581.98
Model 3 2476.72 2552.91 2579.46
Model 4 2472.56 2549.97 2573.83
Model 5 2472.78 2548.69 2575.05
Model 6 2470.53 2546.38 2571.45
Model 7 2479.03 2556.25 2583.36
Model 8 2483.40 2563.09 2591.90
Model 9 2477.77 2554.54 2578.10
Model 10 2473.55 2549.05 2575.05
Model 11 2475.61 2552.38 2579.58
Model 12 2485.75 2564.61 2592.76
Model 13 2469.67 2543.63 2569.04
Model 14 2471.28 2547.75 2571.63

aModel numbering corresponds to the rank obtained according
to Table 2.
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5. Discussion

In this work, we have applied a MDIMC-based approach to model cholera dynamics in eight health zones in
the Lake Kivu region (DRC). The semideterministic framework chosen allows for a mechanistic description
of processes such as human mobility or the enhancing effect of rainfall on disease transmission, as well as
for an explicit treatment of space. Its discrete nature allows to characterize spatiotemporal cholera dynamics
robustly, even if the reported case-data available present high uncertainties because of overreporting and
underreporting and missing records. This robustness is especially important in endemic regions such as the
eastern DRC, where incidence is generally lower than in epidemic settings. Conversely, classical SIR-type
models (like, e.g., the one applied in Rinaldo et al. [2012] to describe the Haiti cholera epidemic) do heavily
rely on detailed epidemiological data sets for parameter estimation and are thus very difficult to apply to
the current case at a fine spatial resolution because of the low signal to noise ratio.

Several models were retained during model selection. All of them account for seasonality, which is thus
found to be an important factor to explain endemic cholera transmission in the study area. The model that
performed best according to AIC accounts for the effect of ENSO in addition to seasonality. During valida-
tion, though, a more complex model, including also the effects of mobility and precipitation, proved to per-
form best. This might indicate that higher complexity in this case does not lead to overfitting but to
improved predictive abilities.

Global climate anomalies (ENSO and IOD) seem to be the most important environmental factors, as they
appear in all but two of the best performing models. Because of the known interactions between these
anomalies and local climate [Plisnier et al., 2000; Stager et al., 2007; Marchant et al., 2007], this is not surpris-
ing. The effect of precipitation alone did not prove significant compared to a model with seasonality only.
However, its combination with ENSO and IOD is significant, presumably because of rainfall deteriorating
sanitary conditions.

Chlorophyll a concentration in Lake Kivu as a driver of cholera dynamics was retained only by five of the
models selected in calibration. Apart from the interaction between V. cholerae and plankton, possibly
being more complex than presumed here, significant correlations might be clouded by other environ-
mental factors such as precipitation, or by the fact that the estimates of chlorophyll a concentrations used
here are of insufficient accuracy and/or spatial detail. The subtleties involved in the remote sensing of
chlorophyll a concentrations in lakes indeed deserve further investigations [Knox et al., 2014]. However,
we maintain that the search for remotely sensed proxies for parameters of mechanistic epidemiological
models is an important field of study toward a new concept of mathematical epidemiology.

The effect of human mobility has been retained only by one of the models selected in calibration, which
may be an artifact of our decision to limit the study to the lakeside region of Lake Kivu, with only two dis-
tant population centers separated by mostly rural areas. Indeed, the most important mobility patterns iden-
tified in the eastern DRC are between the lakeside regions and nonlakeside regions [Bompangue et al.,
2009] and are thus not accounted for in this study. In addition, since the description of mobility in the
model includes three parameters, it is penalized in model selection relative to other model components.
Note, however, that the best performing model in validation accounts for human mobility as well, which
thus proves to be important for epidemiological projections.

All models including seasonality have shown to perform better than models not including it. This can be
interpreted as a clear indication that other environmental and/or social factors, which have not been explic-
itly accounted for, might play a major role in the dynamics of the disease in the study area. In particular, the
influence of population movements due to war, civil unrest, or seasonal migrations [Bompangue et al.,
2009], particularly from and to other endemic areas in the country, would merit further investigation.

We have been able to show that cholera incidence in the region is influenced by global (ENSO, IOD) and
local (rainfall) climatic variables. Thus, it seems clear that climatic and environmental conditions play an
important role in the disease dynamics. Our results do not support the hypothesis of phytoplankton and
zooplankton being a major factor for persistence and proliferation of the disease in this area, as indicated
by the lack of any significant effect of chlorophyll a. Alternative explanations exist, such as the influence of
climate on human behavior and metapopulation dynamics [Pascual et al., 2002; Rod�o et al., 2002; Bom-
pangue et al., 2011; Rebaudet et al., 2013].
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Note that, although the framework applied here allows for prediction of epidemic state a few months in
advance, our results did not identify specific environmental drivers with long lead times. Thus, in order to
use the model for the purpose of longer-term predictions, projections of environmental drivers have to be
made first.

Our results provide further evidence that different geographic and social contexts call for different domi-
nant infection mechanisms, and hence for proxies and modeling approaches shifting on a case-dependent
basis. As an example, chlorophyll a acts as a suitable proxy in Bangladesh, whereas rainfall is the most
important environmental driver in Haiti. The proposed modeling framework is flexible and capable of
selecting the dominant infection mechanisms. Thus, it can easily be exported to the study of other regions.

References
Akanda, A. S., S. Jutla, and S. Islam (2009), Dual peak cholera transmission in Bengal Delta: A hydroclimatological explanation, Geophys. Res.

Lett., 36, L19401, doi:10.1029/2009GL039312.
Al-Tawfiq, J., and Z. Memish (2012), The Hajj: Updated health hazards and current recommendations for 2012, Eurosurveillance, 17, 6–10.
Altizer, S., A. Dobson, P. Hosseini, P. Hudson, M. Pascual, and P. Rohani (2006), Seasonality and the dynamics of infectious diseases, Ecol.

Lett., 9, 467–484.
Andrews, J. R., and S. Basu (2011), The transmission dynamics and control of cholera in Haiti: An epidemic model, Lancet, 377, 1248–1255.
Becker, M., W. LLovel, A. Cazenave, A. G€untner, and J.-F. Cr�etaux (2010), Recent hydrological behavior of the east African great lakes region

inferred from GRACE, satellite altimetry and rainfall observations, C. R. Geosci., 342(3), 223–233.
Bertuzzo, E., M. Gatto, A. Maritan, S. Azaele, I. Rodriguez-Iturbe, and A. Rinaldo (2008), On the space-time evolution of a cholera epidemic,

Water Resour. Res., 44, W01424, doi:10.1029/2007WR006211.
Bertuzzo, E., R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe, and A. Rinaldo (2010), On spatially explicit models of cholera epidemics, J. R. Soc.

Interface, 7, 321–333.
Bertuzzo, E., L. Mari, L. Righetto, M. Gatto, R. Casagrandi, M. Blokesch, I. Rodriguez-Iturbe, and A. Rinaldo (2011), Prediction of the spatial

evolution and effects of control measures for the unfolding Haiti cholera outbreak, Geophys. Res. Lett., 38, L06403, doi:10.1029/
2011GL046823.

Bertuzzo, E., L. Mari, L. Righetto, M. Gatto, R. Casagrandi, I. Rodriguez-Iturbe, and A. Rinaldo (2012), Hydroclimatology of dual-peak cholera
epidemics: Inferences from a spatially explicit model, Geophys. Res. Lett., 39, L05403, doi:10.1029/2011GL050723.

Bompangue, D. (2009), Dynamique des epidemies de cholera dans la region des grands lacs africains: Cas de la Republique Democratique
du Congo, PhD thesis, Univ. of Franche-Compte, Besançon, France.
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