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ABSTRACT

Stochastic Petri nets are an important formalism used
for the performance evaluation of computer and com-
munication systems as well as other fields like bioin-
formatics and logistics. Despite its high flexibility and
modelling power, one of the problems of quantitative
analyses based on stochastic Petri nets is the state space
explosion, i.e., the high cardinality reached by the state
space of even a structurally small SPN. As a conse-
quence a direct analysis of the Markovian processes un-
derlying the models is not feasible. Product-form Petri
nets are a class of stochastic Petri nets whose invariant
measure can be expressed as a product of functions, each
of which depends only on a marking of a single place.
Nevertheless, for the effective computation of the perfor-
mance indices the computation of the stationary distri-
bution is required. In this paper we propose a classifica-
tion of product-form stochastic Petri nets based on the
availability of algorithms for the computation of their
stationary performance indices. Moreover, in case sim-
ulation is required, we introduce two stopping criteria
that exploit the product-form property of the nets.

INTRODUCTION

Stochastic Petri nets (SPNs) - Molloy (1982), Marsan
et al. (1995) - are an important formalism for assessing
the performances of computer and telecommunication
systems. More recently, they have been used also in
other domains, such as bioinformatics with the aim of
modelling biochemical reactions in organic systems (see
Baldan et al. (2010) for a recent survey). SPNs, as de-
fined in Molloy (1982), are a Markovian modelling for-
malism, in the sense that the stochastic process under-
lying the marking process (the process describing evo-
lution of the model’s state with time) is a Continuous
Time Markov Chain (CTMC). Markovian formalisms
are highly appreciated because they can be analysed by
numerous techniques and algorithms which have been
developed for studying Markov processes in the latest
decades. However, SPNs share with many other high

level formalisms the problem of the state space explo-
sion. Namely, an SPN which is structurally “small” may
have a huge, possibly infinite, state space. As a conse-
quence, although in principle the standard algorithm for
transient or steady-state analysis of CTMCs could be
applied, in practice time and space complexity become
prohibitive and problems concerning numerical stability
often arise.

In order to overcome these problems, product-form
models have been introduced first in queueing net-
works (see Jackson (1963), Baskett et al. (1975)) and
then in other formalisms including SPNs as proposed
in Mairesse and Nguyen (2009), Balsamo et al. (2012),
Marin et al. (2012). Product-form analyses rely on the
idea that the model can be decomposed into a set of
interacting components. When certain conditions are
satisfied, each positive recurrent state of the underlying
CTMC has a stationary equilibrium probability that can
be expressed as a product of equilibrium probabilities of
corresponding states of model components, obtained by
considering the components in isolation. Thus, product-
forms allow analyses to be performed by studying iso-
lated components, and the solution of the system of
global balance equations of the CTMC underlying the
model is not required anymore. Nevertheless, for SPNs
there are still some problems to address before deriving
the stationary performance indices. The first problem
concerns identification of the reachability set of the SPN,
needed to identify the set of aforementioned positive re-
current states of the underlying CTMC. In some cases
(e.g., marked graphs or state machines) the problem of
deciding whether a state is reachable is computationally
efficient, but for general SPNs this problem is known to
belong to the class of EXPSPACE problems. Moreover,
structural conditions imposed on SPN models by the
product-form analysis do not reduce this complexity -
Haddad et al. (2013).

In this paper we review open problems concerning the
effective computation of some stationary performance
indices for product-form SPNs. We show that for some
SPNs, at the state of the art, one has to resort to
stochastic simulation in order to obtain the desired in-
dices, and we discuss how it is possible to exploit the
product-form property to define an efficient criterion to
stop the simulation.
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STOCHASTIC PETRI NETS

In this section we give the definition of Stochastic Petri
Nets (SPNs) and introduce notation used in the paper.
An SPN Molloy (1982) is a 6-tuple

SPN = (P, T , I(·), O(·),W (·),m0)

where P = {P1, . . . , PNP
} is the set of NP > 0 places,

T = {T1, . . . , TNT
} is the set of NT > 0 transitions,

I : T → NNP is a function associating an input vector
with each transition Ti ∈ T and O : T → NNP is a
function associating an output vector with each tran-
sition, m0 ∈ NNP is called initial marking of the net.
Function W : T → R+ assigns a positive real number
to each transition Ti ∈ T . A transition Ti is enabled
by a marking m ∈ NNP if m− I(Ti) ≥ 0, i.e., has only
non-negative components. We define enabling degree
of a transition Ti in marking m by ei(m) = max{k ∈
N : m − kI(Ti) ≥ 0}. In general, a marking m en-
ables zero, one or more transitions. Let E(m) be the
set of transitions enabled by marking m. When a tran-
sition Ti ∈ E(m) fires, the marking changes from m to
m − I(Ti) + O(Ti), i.e., the tokens specified by the in-
put vector are consumed and those specified by the out-
put vector are produced. In Markovian Petri nets (or
simply SPNs), we associate an exponentially distributed
random delay with each transition enabled by a mark-
ing m. Thus, the non-determinism on standard Petri
nets is solved with the race policy among exponential
distributions. We consider two firing semantics:

• Single server semantics: in this case a firing delay
is set when the transition is first enabled and a new
delay is sampled in case the same transition is en-
abled after a firing. In other words, the firing rate
of enabled transition Ti is state independent and its
value is W (Ti);

• Infinite server semantics: in this case every en-
abling set of tokens is processed in parallel as soon
as they arrive at the input places. Each of these
concurrent delays associated with transition Ti are
i.i.d. exponentially distributed random variables
with rate W (Ti). According to the race policy, this
corresponds to a single server semantics in which
the firing rate depends on the marking in the tran-
sition’s input places. More formally, the firing rate
of transition Ti in marking m is ei(m)W (Ti).

Given the initial marking m0, set RS(m0) is the set
of all the possible markings reachable after an arbi-
trary number of transition firings from m0. Reachability
graph of an SPN has the elements of RS(m0) as nodes
and the arcs connect markings which are reachable via
the firing of a transition (directly reachable markings).
The marking process is the stochastic process X(t) as-
sociated with the evolution of the net’s marking for

t ∈ R≥0. It can be proved that for SPNs, X(t) is a Con-
tinuous Time Markov Chain (CTMC) whose transition
graph structure is identical to that of the SPN’s reach-
ability graph. The transition rates are set according to
the definition of function W (·) and the firing semantics
which is adopted. The derivation of the reachability
graph of an SPN is known to belong to the class of EX-
PSPACE problems. Incidence matrix A of an SPN is a
matrix which has a row for each place and a column for
each transition. The column associated with transition
Ti is I(Ti)− O(Ti), and represents the marking change
due to firing of Ti. A T-invariant for an SPN is a vector
X > 0 whose dimension is equal to the number of net’s
transitions, such that:

A ·X = 0 ,

where X = (x1, . . . , xNT
)T and xi ∈ N. A P-invariant

of the net is a vector Y > 0 whose dimension is equal
to the number of places of the SPN, and which satisfies
the following equation:

AT ·Y = 0 ,

where Y = (y1, . . . , yNP
)T and yi ∈ N. Support of a P-

invariant Y is the set of places for which corresponding
components of Y are nonzero, and support is minimal
if there are no P-invariants with smaller (in terms of
subset) support. For each minimal support there is a
unique P-invariant called minimal support P-invariant;
set of minimal support P-invariants forms a basis for all
P-invariants of an SPN.

Some performance indices in SPNs

In this part we review some performance measures for
SPNs in equilibrium. Henceforth we assume that the
CTMCs underling the SPNs we consider are ergodic.
Let π be the function that assigns its equilibrium prob-
ability to each positive recurrent state of the CTMC
underlying the SPN. Then, the expected number of to-
kens in place Pi in steady-state is given by the following
expression:

NPi
=

∑
m

π(m)mi , 1 ≤ i ≤ NP . (1)

The throughput of a single server transition Ti in steady-
state is given by:

XTi
=

∑
m

π(m)δei(m)≥0W (Ti) , (2)

with 1 ≤ i ≤ NT and δ is the indicator function. For
infinite server semantics the throughput is given by:

XTi
=

∑
m

π(m)ei(m)W (Ti) . (3)



Product-form stochastic Petri nets

A subclass of SPNs are known to be in product-form,
i.e., the expression of the equilibrium distribution of the
net’s marking process is such that:

π(m) =
1

G

NP∏
i=1

gi(mi) , (4)

where m is a positive recurrent state of the CTMC, π is
the equilibrium probability function, G is the normalis-
ing constant such that the probabilities sum to 1, and
gi are some positive real functions.
For the sake of simplicity we briefly review the results on
product-form SPNs only for nets whose transitions have
the single server semantics. According to Coleman et al.
(1996) a large class of SPNs in product-form satisfies the
following conditions:

1. Let I, O be the sets of the input and output vectors
of the net transitions, respectively. Then, I = O.

2. No two transitions have the same input vector, i.e.
i 6= k ⇒ I(Ti) 6= I(Tk). Nets which don’t satisfy
this condition can be modified by considering each
set of transitions that share an input vector as a
compound transition, in the following manner. If
more than one transition in the net has the same
input vector I(Ti), we replace the set {Tk : I(Tk) =
I(Ti)} of these transitions with a compound tran-
sition T and we set W (T ) =

∑
k:I(Tk)=I(Ti)

W (Tk).
Firing of the compound transition T in the mod-
ified net represents firing of one of the associated
original transitions in the original net. When the
compound transition T fires, one of the output
vectors of the associated original transitions is se-
lected probabilistically. The selection probabilities
are derived based on the properties of the exponen-
tial distribution so as to preserve the underlying
CTMC of the original net. Thus, we set probability
p(I(Ti), O(Tj)) of generating the tokens specified by
O(Tj) when the compound transition T fires to be
equal to the probability of firing in the original net
the transition Tj given that one of the transitions
with the input vector I(Ti) fires:

p(I(Ti), O(Tj)) =
W (Tj)

W (T )
=

W (Tj)∑
k:I(Tk)=I(Ti)

W (Tk)
.

The discrete-time Markov chain with state space I
and the above transition probabilities is called the
routing process.

3. There exists an invariant measure f : I → R+ of
the routing process such that:

χ(i)f(i) =
∑
j∈I

χ(j)f(j)p(j, i) ,

where χ(k) =
∑

T :I(T )=kW (T ).

Theorem 1 Let C(f) be the vector whose components
correspond to the transitions, and let the component
associated with Ti be equal to log(f(I(Ti))/f(O(Ti))).
Since all invariant measures of the routing process dif-
fer by a positive multiplicative constant we can simply
write C(f) as C. Then, if the equation

−A

 log(y1)
...

log(yNP
)

 = C

has a unique solution then, under ergodicity assumption,
for each positive recurrent state m it holds that

π(m) =
1

G

NP∏
i=1

ymi
i ,

where G is the normalising constant.

In the literature, several other classes of SPNs in
product-form have been proposed such as that based on
Boucherie’s full-blocking Lazar and Robertazzi (1991),
Boucherie (1994), signals in the style of G-networks
Marin et al. (2012) and others Balbo et al. (2003), Bal-
samo and Marin (June, 2007;O).

DERIVING THE PERFORMANCE INDICES
FOR PRODUCT-FORM SPNS

Although Theorem 1 gives the expression for the un-
normalized equilibrium distribution for a class of SPNs,
derivation of the stationary performance indices requires
knowledge of the normalized equilibrium probability dis-
tribution. Therefore, the efficiency of the product-form
approach strongly relies on the capability of computing
the normalising constant G efficiently. In this section we
distinguish three classes of product-form SPNs based on
applicable methods for computing the normalising con-
stant (or possibly directly the performance indices).

Cartesian product-form SPNs

This class of product-form SPNs satisfies the property
that the set RS(m0) of markings reachable from an
initial marking m0 is Cartesian product over places of
reachable markings of places. More formally, for place
indices i ∈ {1, . . . , NP }, let Si(m0) = {k : ∃m ∈
RS(m0) s.t. mi = k} be the reachable markings of
places. Then, an SPN is in Cartesian product-form if
it satisfies the conditions of Theorem 1 and if

RS(m0) = S1(m0)× S2(m0)× · · · × SNP
(m0) .

For this class of SPNs, we can define for each place Pi

a constant Gi =
∑

k∈Si(m0)
yki . Then, it is easy to see

that by Equation (4) we have:

G =

NP∏
i=1

Gi .



P1

P2
P3

P4 P5

P6

T1 T2 T3

T4 T5 T6 T7

T8

T9 T10

Figure 1: Example of Cartesian product-form SPN.

As a consequence, the performance indices can be read-
ily derived. For those who are familiar with queueing
network theory, this is the case for Jackson’s networks
and G-networks - Jackson (1963), Gelenbe (1989). For
this class of models, each queueing stations can have a
state in N and the joint process state space is NQ, with
Q being the number of the network’s stations. Figure 1
shows an example of this class of SPNs: customers ar-
rive from the outside via T1 and T3 at places P2 and P3.
The service of customers can cause a collision (T5 or T6)
causing the customers to be kept in an idle phase (P4,
P5) and then put newly in service (firing of transition
T2). Each place has a marking which belongs to N and
the joint state space is N6.

P-invariant reachable product-form SPNs

This class of SPNs is characterised by the fact that de-
ciding if a marking belongs to the reachability set can
be performed in polynomial time. In fact, we have that
a marking is reachable if and only if given a matrix M of
minimal support P-invariants, a necessary and sufficient
condition for the reachability of any marking m is:

Mm = Mm0 . (5)

This class of product-form SPNs has been introduced in
Coleman et al. (1996) and further studied in Sereno and
Balbo (1997). For these models, in Coleman et al. (1996)
the authors propose a convolution algorithm while in
Sereno and Balbo (1997) a mean value analysis algo-
rithm is proposed. The main problem for the compu-
tation of the performance indices of this class of SPNs
is how to decide if the property stated by Equation (5)
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P5

2
2

2
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T3

T4

T5

Figure 2: Example of P-invariant reachable
product-form SPN.

holds. Indeed, in general one has to derive the reach-
ability set of the net, derive the minimal support P-
invariants and verify Equation (5) for the matrix M of
minimal support P-invariants; alternatively one can re-
sort to some model-dependent proof technique. An ex-
ample of P-invariant reachable SPN taken from Coleman
et al. (1996) is shown in Figure 2.

General product-form SPNs

If the product-form SPN does not belong to any of the
above mentioned classes, the only possibility for carry-
ing out an exact analysis is to derive the whole reach-
ability set and evaluate Equation (4) for each positive
recurrent state. If the state space is finite then the nor-
malisation of the probabilities can be performed. Un-
fortunately, this method tends to be prone to numeri-
cal instability problems and it is time/space expensive
because it requires the construction of the whole state
space whose complexity is EXPSPACE.

SIMULATION OF PRODUCT-FORM SPNs

Although resorting to simulation for product-form SPNs
seems to be a contradiction with the analytical proper-
ties of the product-form models, in some cases it is the
only possible choice. Summing up, the conditions un-
der which one should consider to use the simulation to
study a product-form SPN are:

1. The SPN is neither Cartesian nor P-invariant reach-
able or proving that one of these properties holds
is computationally expensive;

2. The state space of the SPN is so large to make the
brute force approach infeasible. By brute force ap-
proach we mean the application of Equation (4) for
each positive recurrent state and then normalising



the probabilities.

In this section we discuss two possibilities for defining
a stopping criterion for the simulation of product-form
SPNs and we test their performance with a simulator
implemented in Java.

Stopping criteria for the simulation of product-
form SPNs

In the computation of the stationary performance in-
dices, it is important to choose the length of two peri-
ods: the first period is delimited by the epoch at which
the transient period expires and hence we can consider
the model in its stationary behaviour. The second is the
minimum epoch at which the simulation can be stopped
in order to have accurate estimates of the desired per-
formance indices. We have addressed the first problem
by proposing a perfect sampling approach for SPNs in
Balsamo et al. (2015) but several other methods devel-
oped in the literature can be applied (e.g., the Welch’s
procedure presented in Welch (1983)).
In this paper we focus on the definition of a stopping
criterion in the simulation of product-form SPNs. Stan-
dard stopping criteria usually rely on carrying out the
stationary simulation until a certain level of accuracy
of the estimated performance measure is achieved. For
instance, a typical approach is defining a confidence in-
terval and a maximum tolerance on an average mea-
sure such as the expected number of tokens in a certain
SPN’s place. Intuitively, longer simulations should de-
crease the variance of the estimation and hence reduce
the width of the confidence intervals until the desired
accuracy is reached. The drawback of this approach is
that it may be difficult to apply for the estimation of
the probability of rare or unlikely events.

Matrix based stopping criterion

In the simulation of product-form SPNs we exploit the
fact that although we do not know the probability of
an arbitrary reachable state (because of the unknown
normalising constant), from Equation (4) we can derive
exactly the ratio between probabilities of two arbitrary
states. Assume that we have a finite set of reachable
and ergodic markings

U = {m1,m2, . . . ,mU} ,

and let π̃i be the estimation of the stationary probability
for marking mi in a stochastic simulation of the SPN.
Then, we define the matrix Ũ as follows:

Ũ =



π̃1
π̃1

π̃2
π̃1

· · · π̃U
π̃1

π̃1
π̃2

π̃2
π̃2

· · · π̃U
π̃2

...
...

...
π̃1
π̃U

π̃2
π̃U

· · · π̃U
π̃U

 . (6)

We can derive the analytical values for the ratios of Ũ
thanks to the product-form property of the SPN. Let
matrix U be defined as:

U =


π1
π1

π2
π1 · · · πU

π1π1
π2

π2
π2 · · · πU

π2
...

...
...

π1
πU

π2
πU · · · πU

πU

 , (7)

where πi denotes an invariant measure of marking mi ∈
U obtained by Equation (4). Clearly Ũ changes along
the simulation and if the accuracy of the simulation in-
creases we will have that at a certain point Ũ ' U.
More formally, we stop the stationary simulation when:

|Ũ−U| < ε , (8)

where ε is a small positive real number and | · | is the
Frobenius’ norm.

Vector based stopping criterion

Let U be a finite set of positive recurrent markings.
Then, for each mi ∈ U we have:

G =
πi∏NP

j=1 gj(mi,j)
,

where πi is the steady-state probability of mi, gj are the
functions from the product-form expression (4) and mi,j

is the component associated with place Pj in marking
mi. Let π̃i be the estimation of the stationary proba-
bility for marking mi in a simulation run and let

Gi =
πi∏NP

j=1 gj(mi,j)
.

The we can define the vector Ṽ as:

Ṽ = [G1, G2, . . . , GU ] .

Let G be defined as follows:

G =

∑U
i=1Gi

U
,

and let V be a U -dimensional vector defined as:

V = [G, . . . , G] ,

Then the stopping criterion is:

|Ṽ −V| < ε , (9)

where ε is a small positive real number and | · | is the
Frobenius’ norm.
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Figure 3: Example of product-form SPN with finite
state space.

Determining set U

Set U can be determined in several ways. Clearly, if we
are interested in evaluating the stationary probabilities
of some specific markings (e.g., because they are asso-
ciated with some interesting event), we include those
markings in U . However, in general we are interested in
including in U markings with high probability mass. In
order to achieve this we perform a random walk in the
CTMC underlying the SPN and we keep track of the
U reachable markings with highest probabilities. No-
tice that since the SPN is in product-form, once we
visit a marking we can evaluate its stationary proba-
bility modulo a multiplicative positive constant since we
know its unnormalised stationary probability. Hence, we
can compare the stationary probabilities of the reached
markings to choose those with highest stationary prob-
abilities.

EXPERIMENTS

In this section we present the outcomes of the simula-
tions for some product-form stochastic Petri nets. The
purpose is to validate the stopping criteria introduced
in the previous section. In order to achieve this goal
we apply the vector and matrix based stopping criteria
to different nets which belongs to the class of Cartesian
or P-invariant reachable product-form SPNs or whose
state space is tractable with the brute force approach.
Then, we verify if the analytical values of the perfor-
mance indices or state probabilities fall in a confidence
interval of 95% or 99%.

Finite state space SPN with matrix stopping cri-
terion

Let us consider the SPN depicted in Figure 3. The tran-
sition rates are set to 5, 4, 25, 2 for T1, T2, T3 and T4,
respectively. The initial marking is [6, 4]. The net is sim-

ple and its reachability set consists of only 11 states but
it will be useful to validate our approach. We set |U| = 4
and the random walk returns the following markings:

U = {[1, 9], [3, 7], [0, 10], [2, 8]} .

We set ε = 1.5·10−3. We performed 50 independent runs
where the transient phase has been removed according
to the Welch’s method. In the average the simulation
had to process 235 · 103 transition firings to reach the
desired accuracy. For the markings in U we obtain the
following values, where ∆i represents the width of the
confidence interval for the 95% confidence level:

Marking π̃i πi ∆i

[1, 9] 0.240037 0.240010 3.56190 · 10−4

[3, 7] 0.038401 0.038401 4.70516 · 10−4

[0, 10] 0.600029 0.600025 2.37797 · 10−4

[2, 8] 0.0960075 0.096004 3.95243 · 10−4

We observe that all the analytical values of the marking
probabilities fall in the confidence interval even though
it is very small.

Infinite state space SPN with matrix stopping
criterion

We consider the Cartesian product-form SPN depicted
in Figure 4 where the rates are 1.0, 5.0, 9.0, 3.0, 7.0,
4.0, 1.7, 3.8 for the transitions T1, . . . , T8. The initial
marking is [1, 1, 0, 1, 0] and |U| = 4. We perform 50 in-
dependent simulation runs. The algorithm constructing
set U returns the following markings:

U = {[0, 0, 0, 0, 0], [0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [1, 0, 0, 0, 0]} .

By setting ε = 3 · 10−3 and a confidence level of 95% we
obtain the following estimates for the stationary state
probabilities:

Marking π̃i πi ∆i

[0, 0, 0, 0, 0] 0.011779 0.011772 4.3 · 10−5

[0, 0, 0, 0, 1] 0.006931 0.006924 2.3 · 10−5

[0, 0, 0, 1, 0] 0.007235 0.007228 2.7 · 10−5

[1, 0, 0, 0, 0] 0.007070 0.007063 2.5 · 10−5

Finite state space SPN with vector stopping cri-
terion

Let us consider again the SPN depicted in Figure 3. In
this case the rates are 10, 1, 25, 2, for T1, . . . , T4, respec-
tively and the initial marking is [5, 3]. We set |U| = 4
and the random walk returns the following markings:

U = {[3, 5], [1, 7], [0, 8], [2, 6]}

We performed 50 independent runs where ε = 1 · 10−6.
The expected number of processed events to reach the
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Figure 4: Example of product-form SPN with infinite
state space.

desired accuracy are 485 · 103. We obtain the follow-
ing estimates for the stationary probabilities for a con-
fidence level of 99%:

Marking π̃i πi ∆i

[3, 5] 0.006399 0.00640 4 · 10−6

[1, 7] 0.16005 0.16 6.1 · 10−5

[0, 8] 0.79997 0.8 5.5 · 10−5

[2, 6] 0.031996 0.032 1.3 · 10−5

Also in this case all the analytical values for the station-
ary state probabilities fall in the confidence interval.

Infinite state space SPN with vector stopping
criterion

We consider again the SPN of Figure 4 with transition
rates 1.0, 5.0, 9.0, 3.0, 7.0, 4.0, 1.7, 3.8 for T1, . . . , T8,
respectively. We set ε = 2 · 10−8 and |U| = 11. The
initial marking is [1, 1, 0, 1]. The markings identified by
the random walk algorithm are:

U = {[0, 0, 1, 1, 0], [0, 0, 0, 0, 0], [0, 0, 0, 1, 0], [1, 0, 0, 1, 0],

[2, 0, 0, 0, 0], [0, 0, 0, 2, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 1],

[0, 1, 0, 0, 0], [1, 0, 0, 0, 0], [0, 0, 0, 0, 1]}

We obtain the following estimates for the stationary
probabilities for a confidence level of 95%:

Marking π̃i πi ∆i

[0, 0, 1, 1, 0] 0.004216 0.004216 1.1E − 5
[0, 0, 0, 0, 0] 0.011756 0.011772 3− 9E − 5
[0, 0, 0, 1, 0] 0.007238 0.007228 2.4E − 5
[1, 0, 0, 1, 0] 0.004339 0.004337 1.2E − 5
[2, 0, 0, 0, 0] 0.004237 0.004238 1.2E − 5
[0, 0, 0, 2, 0] 0.004439 0.004438 1.3E − 5
[0, 0, 1, 0, 0] 0.006871 0.006867 2.3E − 5
[0, 0, 0, 1, 1] 0.004254 0.004252 1.2E − 5
[0, 1, 0, 0, 0] 0.006534 0.006540 2.4E − 5
[1, 0, 0, 0, 0] 0.007067 0.007063 2.4E − 5
[0, 0, 0, 0, 1] 0.006914 0.006924 2.1E − 5

Also in this case the analytical values for the stationary
state probabilities fall in the confidence intervals.

Expected number of tokens in a place for infinite
state space SPN

In this section we study again the SPN of Figure 4 but
we are interested in estimating the expected number of
tokens in P5 rather then the stationary probability for
a marking. We compare the accuracy of the estima-
tion with that provided by Timenet Zimmermann et al.
(2000). The Transition rates are 1.5, 3.0, 11.0, 19.0, 9.0,
2.0, 1.6, 3.0 for the transitions T1, . . ., T8, respectively.
The initial marking is [1, 1, 0, 1, 0]. We choose |U| = 4.
The analytical value for the expected number of tokens
in P5 is 15. We execute different tests in order to have
an approximate relative width of the confidence interval
of 5%, 4%, 3%, 2% and 1%. We used the matrix based
stopping criterion where the values for ε have been set
in order to obtain the same relative width of the confi-
dence interval. As for the product-form simulation we
obtain the following table:

Rel. width Estimate Rel. Err.
0.05297 15.127683 0.85%
0.04636 14.893279 0.71%
0.03384 14.930198 0.46%
0.02559 14.997131 0.02%
0.01620 15.002821 0.018%

As for the simulation estimates obtain with Timenet we
have the following outcomes:

Rel. width Estimate Rel. Err.
0.05032 15.188676 1.25%
0.04213 15.156485 1.04%
0.03383 15.097450 0.65%
0.02732 15.006833 0.04%
0.01187 15.002978 0.019%

We observe that the relative error obtained with the
stopping criterion based on the product-form property
of the SPN is always lower than the relative error
obtained with stopping criteria applicable for general
SPNs.

CONCLUSIONS

In this paper we have reviewed the problems concern-
ing the effective computation of the performance in-
dices or the stationary state probabilities in product-
form stochastic Petri nets. Indeed, although this class
of models admits a separable solution for the station-
ary distribution that potentially allows for an analytical
tractability of the performance measures, the problem
of the efficient computation of the normalising constant
is still open. We identified two classes of product-form
SPNs for which determining the normalising constant



and hence the stationary performance indices is compu-
tationally feasible. For the product-form SPNs that do
not belong to this class, if the state space is too large for
brute-force normalisation of the probabilities, one has to
resort to simulation. To the best of our knowledge, at
the state of the art, there does not exist any algorithm
that exploits the product-form property of the SPN in
its simulation. In this paper we have proposed to use
this property in the definition of two criteria for stop-
ping the simulation. We have validated the two criteria
on some SPNs and compared the accuracy of the es-
timates with those obtained by using halting criteria
for general SPN. We showed that the proposed criteria
improve the accuracy of the estimates. Future works
include the application of the proposed approach to es-
timate the performances of sampling and game-theory
based algorithms Albarelli et al. (2011), Torsello et al.
(2011).
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