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Sic transit, et non

Marco LiCalzi

1 Introduction

People are formidable seekers of patterns. This propensity may bring an evolution-
ary advantage. A caveman able to guess that the moving grass is hiding a predator
in ambush will survive to tell his tale, and may pass this life-saving ability to his
progeny. The counterpart of a propensity to discern patterns is the tendency to spot
them even in random events. A wind breeze may be exchanged for a hiding tiger.
Coincidences may easily turn into conspiracies. But, until false positives tend to
carry less dramatic consequences than false negatives (as they say, “better safe than
sorry”), pattern-seeking will not disappear.

This paper recounts the story for a pattern that mathematicians call transitivity.
There are myriads of situations where pairwise comparisons can be efficiently com-
municated and understood as transitive relations. People have become attuned to
expecting transitivity, and may be surprised (or misled) when their expectations are
not met. Let us enter a corner of the transitive jungle, with an eye to telling tigers
apart from breezes [1, 2].

Social networks are a good place to start. Currently, Bob and Carol are friends
with Ann. We show friendship as a link between adjoining nodes, on the left side
of Fig. 1. A common principle in sociology states that Bob and Carol are likely
to become friends themselves in the future. This new relationship would form a
triangle, as shown on the right side of Fig. 1 where the third link B-C closes the
triangle left open by A-B and A-C. Sociologists calls this a triadic closure.

There are three reasons to expect triadic closure. One is based on opportunity: if
Ann enjoys her time with both Bob and Carol, the latter ones will get a chance to
meet and become friends. A second facilitating factor is trust: when Bob and Carol
know that each of them is one of Ann’s friends, they share a stronger motive for
developing a mutual trust. The third reason is that Ann may actively encourage Bob
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Fig. 1 Triadic closure

and Carol to become friends and reduce the latent stress arising from their being
unconnected.

Clearly, triadic closure is not a necessary consequence, but simply an intuitively
natural regularity. Our own experience may suggest positive and negative examples
of triadic closure. What is of interest to us is that the pattern underlying a triadic
closure is the same as the mathematical notion of transitivity.

A binary relation > on a set S describes which pairs from § share a link. We
write A > B when A links to B and put an arrow from A to B. Note that the arrow
is directional: B b A stands for an arrow that goes from B to A. Assuming that
friendship is bilateral, our former example combines two arrows in a straight link.

Transitivity states that if B > A and A < C, then it must be true that B < C. Fig. 2
shows the premise on the left, and the conclusion on the right, using dashed arrows.
As in a triadic closure, the presence of a relation between two pairs entails a relation

Fig. 2 Transitivity

for the third pair. There is a hint of magic here: the two arrows going through A
seem to force the third arrow to appear from nowhere. (It was there to start with,
indeed: transitivity makes you sure to find it.) The Sic transit in the title is Latin for
“Thus passes”. Transitivity is the property that whatever passes between B and A,
and between A and C, it also goes between B and C.

Transitivity is the common thread for some of the most important families of
binary relations. Mathematicians subsume them under the name of weak orders.
The leading examples are two. One is equality: replace b with =, and you get that
A =B and B = C must imply A = C. The other is superiority: replace > with >,
and you see that A > B and B > C entails A > C. (No generality is lost using >
instead of <.)

The difference between equality and superiority is akin to that one between re-
quited and unrequited love: it goes both ways, or it does not. In visual terms, equality
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can be represented with plain links, as in Fig. 1; superiority calls for arrows, as in
Fig. 2.

Intuitively, when facing a relation reminiscent of equality or superiority, we tend
to expect transitivity. For instance, suppose that > stands for “faster than™: if a
cheetah is faster than a giraffe, and a giraffe is faster than a tortoise, it is no surprise
to anybody that a cheetah is faster than a tortoise. Or, replace > with “beats”: in the
game of poker, a full house beats a flush and a flush beats a two pair, so a full house
should also beat a two pair. The analogical mapping with > for these two relations
comes natural to almost everyone.

However, language is slippery, and thus we may be surprised or misled. The
philosopher Eubulides of Miletus (4th century BCE) is famous for a few paradoxes
that build on the ambiguities underlying some (alleged) forms of transitivity. The
paradox of the bald man argues that a man with a full head of hair is not bald. Let x
the number of hair on his head. Removing a single hair will not make it bald: hence,
x~(x—1)and (x—1) = (x—2) imply x = (x —2). A man with two less hair is
still not bald. But taking away enough hair eventually results in baldness. Hence,
the long chain x = (x — 1) & ... &~ 1 ~ 0 must break somewhere, and it is unclear
where. The sorites (in Ancient Greek: heap) paradox is of the same nature: a single
grain of sand does not form a heap, and the addition of a single grain cannot turn a
non-heap into a heap; however, adding a sufficient number of grains will eventually
create a heap. How does transitivity falls apart?

2 Circular ambiguities

When the binary relation is about superiority, its directionality reinforces the expec-
tations underlying transitivity. Here is an example. Consider a finite set S endowed
with a binary relation > (to be read “beats”): for any x and y in S, it holds that either
x > yory > x. It only seems natural to expect that some element in S should emerge
as the champion beating every other element. Yet, this is not always so, as the game
Rock-paper-scissors (RPS) demonstrates.

RPS is the best known representative of Sansukumi-ken, a category of East Asian
hand games based on three hand gestures. The rules for jan-ken or RPS state: paper
beats rock; rock beats scissors; and scissors beats paper. When we put these on a
triangle, we find the cycle shown on the left of Fig. 3, and transitivity fails. We call

Fig. 3 Circular ambiguities
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this case a (ternary) cycle, but it is known under several names. One is so delightfully
evocative that “circular ambiguities” was chosen as the title of this section. The
non-transitive situations discussed in the rest of this section are instances of circular
ambiguities.

A famous example is the Condorcet paradox in voting theory. In its simplest
form, the paradox requires three candidates (Ann, Bob, Carol) and three electors
(Dan, Ken, Paula). Each elector has a transitive preference over candidates. Dan
ranks them A > B > C; Ken orders them B > C > A; and Paula’s ranking is C >
A > B. If we ask electors to compare two candidates by voting over which of the
two is better, A beats B for 2 votes against 1, B beats C (2 to 1), and C beats A (2 to
1); see the right-hand side of Fig. 3.

Each elector has an individual transitive preference and his own most preferred
candidate, but the electorate as a whole is trapped in a cycle and cannot decide a
winner. If the election is based on successive pairwise ballots, their arrangement
affects which candidate may be declared a winner. For instance, if Ann is to be
favoured, it suffices to pit Bob against Carol at first, let Bob emerge as the first-
round winner, and then let him advance to a second and final ballot against Ann.

A variant of the Condorcet paradox arises when a single person evaluates (at
least) three alternatives with respect to three different criteria. A classic example is
the time-honoured fable of the princess who is mulling over three possible suitors.
They fare differently over three criteria of equal importance to her. For brawn, Bob
beats Dan who beats Ken; for riches, Dan beats Ken who beats Bob; for brain,
Ken beats Bob who beats Dan. After a pairwise comparisons of the candidates, the
princess finds herself trapped in a circular ambiguity, because each candidate loses
to another who scores better in two counts out of three.

The emergence of a cycle upsetting the transitivity of “beats” is not limited to
games or fables. In the coast range of California, the reproductive success of three
morphs of side-blotched lizards follows a non-transitive pattern, where each morph
invades another morph when rare, and is in turn invaded by another morph when
common [3]. The changes in morph fitnesses match the cycle associated with RPS.

If a binary relation exhibits a cycle, a circular ambiguity arises and the binary
relation is not transitive. A cycle need not be ternary, as it may take more than
three elements to form one. Moreover, there may be cycles of different length.
In the realm of gesture-based games, S. Kass and K. Bryla have proposed a five-
gesture variant of RPS called “Rock-paper-scissors-Spock-Lizard” (RPSSL), that
has made a guest appearance in Episode 8 of the second season of The Big Bang The-
ory; see http://www.samkass.com/theories/RPSSL.html. For lovers
of extreme sports, D.C. Lovelace has assembled a version called RPS101 with 101
different gestures; see http://www.umop.com/rpsl101l.htm.

We are ready to explore a few surprising results, amenable to an (unexpected)
lack of transitivity. Consider three teams formed by three tennis players. The teams
are named A, B, C. Players are ranked. A higher ranked player always beats some-
one with a lower rank. The matrix below lists the ranks for the three players in
each team. Each pair of teams plays a round-robin competition, based on 3 x 3 =9
matches. When A plays against B, A wins 5 matches out of 9 because A (rank &)
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A|8|1|6
B(3|5|7
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Fig. 4 A magic square

wins all his matches and A3 (rank 6) beats B (rank 3) and B, (rank 5). At the end
of the tournament, each team beats a second one 5-4 and loses to the third team 4-5:
there is a circular ambiguity, yielding the picture on the left of Fig. 3 with the score
2-1 replaced by 5-4. We are unable to conclude which team is strongest, in spite of
knowing players’ ranks.

The arrangement of ranks for the players forms a magic square, where the num-
bers add up to the same value in each row, column, and diagonal. In particular, our
3 x 3 square carries a sum of 15, and is equivalent to a pattern known in the Chinese
literature as the Lo Shu square since 650 BCE. Western Occultism refers to it as
the Magic Square of Saturn. More mundane gamblers rely on it for constructing a
biased bet.

Replace A, B, C with the three suits #, &, O and players’ ranks with correspond-
ing cards. The gambler asks his victim to choose a suit, and afterwards picks one
of the other two. Each player uncovers a random card from his suit, and the highest
rank receives €1 from the loser. Since each pair of cards is equally likely, choosing
the right suit in the cycle gives the gambler odds of 5-4 and an (expected) margin of
11% on each bet. This is a clever application of the Steinhaus-Trybula paradox [4],
by which we can construct three random variables X,Y, and Z such that P(X >Y),
P(Y >Z), and P(Z > X) all exceed 1/2.

It is reasonable for a gambler to propose bets biased in his favour, and one should
be wary of accepting bets that look too good to be true. Consider the sparring over
a bet between two famous (and arguably smart) celebrities such as Bill Gates and
Warren Buffett. Here is what Gates narrates on the Jan.-Feb. 1996 issue of the Har-
vard Business Review:

One area in which we do joust now and then is mathematics. Once Warren presented me
with four unusual dice, each with a unique combination of numbers (from O to 12) on its
sides. He proposed that we each choose one of the dice, discard the third and fourth, and
wager on who would roll the highest number most often. He graciously offered to let me
choose my die first.

“Okay,” Warren said, “because you get to pick first, what kind of odds will you give
me?”

I knew something was up. “Let me look at those dice,” I said.

After studying the numbers on their faces for a moment, I said, “This is a losing propo-
sition. You choose first.”

Once he chose a die, it took me a couple of minutes to figure out which of the three
remaining dice to choose in response. Because of the careful selection of the numbers on
each die, they were non-transitive. Each of the four dice could be beaten by one of the
others: die A would tend to beat die B, die B would tend to beat die C, die C would tend to
beat die D, and die D would tend to beat die A. This meant that there was no winning first
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choice of a die, only a winning second choice. It was counterintuitive, like a lot of things in
the business world.

Buffett confirms the story in a interview published on Zime in June 2001:

I showed him a set of four dice with numbers arranged in a complex way so that any one
of them would on average beat one of the others. He was one of three people I ever showed
them to who figured this out and saw the way to win was to make me choose first which
one I'd roll.

We are not told which set of dice was in the billionaires’ hands, but they would
not work differently from a set named after his inventor — Bradley Efron, best
known for the bootstrap resampling technique. The values on the faces of the four
Efron’s dice are as follows.

0[0]4 3|3|3 2|2(2 1111
44|14 31313 216|6 515
A B C D

Each die beats the following one in the list, with a probability of 2/3, creating the
4-wise cycle shown below.

2/3 2/3
2/3 2/3

Varieties of non-transitive dice abound, but space prevents a thorough report.
However, we mention two different kinds of dice to entice the reader’s curiosity
about these fascinating cubes that epitomise randomness. Sicherman’s dice are the
only pair of 6-sided dice different from the standard ones and carrying positive
integers on their faces that exhibit the same probability distribution for their sum
as generated by two standard dice. If you only bet on the sum of two dice, standard
or Sicherman’s makes no difference.

Lake Wobegon Dice [5] are named after the “News from Lake Wobegon” of
the radio show A Prairie Home Companion, “where all the women are strong, all
the men are good looking, and all the children are above average.” A set of Lake
Wobegon Dice has the property that, after a simultaneous toss, each die has a higher
probability of scoring above the resulting average than below. Roughly speaking,
each die tends to be above average. The simplest example is a set of three 3-sided
dice with values (1,2,2). After a simultaneous toss, each die has probability 10/27
to beat the average, 8/27 to be beaten, and 9/27 to match it.

Our last foray among circular ambiguities shift the focus from dice to coins. Pen-
ney’s game [6] is played as follows. Ann and Bob toss a fair coin until a sequence of
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fixed length appears. Ann chooses a specific sequence of heads and tails. Then Bob
picks another sequence of the same length, and bets that it will appear before Ann’s.
This game is non-transitive: for any sequence of length at least three, there is another
sequence with a higher probability of occurring first. To fix ideas, consider any of
the eight sequences of length three (HHH, HHT, ..., TTT): the optimal choice for
Bob is the sequence that starts with the opposite of Ann’s middle choice, followed
by the first two items in her choice. For instance, if Ann picks HTT, Bob should
choose HHT. This rule gives Bob a substantial edge: for any of Ann’s choices, his
optimal choice ensures a winning probability of at least 2/3.

3 Many ratings, one ranking

Up to minor quibbles, the signature of a transitive relation of the superiority kind
is the ranking associated with it. In tournaments based on pairwise matches (or
comparisons), including the case of three suitors chasing the princess’ hand, we
may find a cycle i > j > k > i. This circular ambiguity prevents the emergence of a
ranking.

To circumvent these difficulties, a common approach is to introduce ratings and
bypass pairwise comparisons. A rating attributes a score to a candidate. Compar-
isons among scores naturally respect transitivity, and candidates are accordingly
ranked. Well-known examples are the practice to assess students by grading a fi-
nal exam or to rank runners by clocking their time to cover a distance. Whenever a
candidate can be scored on a single dimension, transitivity is ensured and a ranking
may follow.

It may sometimes be difficult (if not impossible) to interpret a rating as the score
measuring a performance. However, as far as any candidate can be consistently as-
sociated with a rating, a ranking still follows. For instance, a vast (but relatively
unknown) family of spectral methods rate each candidate by a distinct number ex-
tracted from the eigenvector of a matrix [7]. The most celebrated case is the Page-
Rank algorithm originally used by Google to answer a search query: the technique
(and its subsequent variants) rates millions of webpages, and the ratings are used to
return a list of links ranked by their relevance for the submitted query [8]. Spectral
methods can be given elegant alternative interpretations [9].

We focus on a different issue: how to combine multiple ratings into a single rank-
ing. This problem arises when candidates are scored over multiple dimensions, or
evaluated by different raters. For instance, returning to Condorcet’s paradox, sup-
pose that each of three electors scores the three candidates over the scale 3-2-1.
Dan rates A=3, B=2, C=1; Ken gives scores B=3, C=2, A=1; and Paula assigns
C=3, A=2, B=1. The vectors of scores for each candidates, up to permutations, are
the same: A=(3,2,1); B=(2,1,3); C=(1,3,2). How shall we aggregate the individual
ratings and produce the single final rating used to rank them?

In a well-known dispute with Condorcet over voting methods, Jean-Charles de
Borda (1733-1799) proposed to sum up the individual ratings. Following Borda’s
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count, each of the three candidates obtains 6 as final score. Leaving open the prac-
tical question (who is the winner of the election?), this approach solves the circular
ambiguity by declaring a tie. However, different rules may yield different answers.
For a trivial example, suppose that Dan is given the scale 4-2-1; applying the Borda
count makes A a single winner with a final score of 7. Similarly, a matchmaker
could sway the princess’ heart towards a candidate by modifying the scoring scale
for one of the three attributes she is considering.

There is no established consensus on how to aggregate multiple ratings. Often,
people follow long-established conventions that are perceived as valid rules. Their
intrinsic merits are rarely questioned, and there is little awareness of the perils in-
volved. Sometimes, a novel approach is touted as the panacea by extolling its ad-
vantages and keeping mum on its weak points. Creative solutions are encouraged
by the seeming facility associated with processing scores, and by the huge variety
of details that differentiate situations where multiple ratings are aggregated.

The only principle that goes unchallenged is dominance: if each score for A is
greater than the corresponding score for B, then A should be ranked higher than
B. If Ann has higher grades than Bob in every subject at school, dominance expects
Ann to rank above Bob. Dominance is transitive: if A dominates B, and B dominates
C, then A dominates C. If dominance is present, circular ambiguities can be easily
avoided. However, dominance is rare: the case where A has higher scores than B
in some subjects, and lower in others, is much more common. When dominance
fails, we can usually come up with seemingly natural aggregation methods that lead
to opposing conclusions: A may be ranked above, equal to, or below B. Absent
dominance, the choice of the method may upset the final ranking of two candidates.

A well-known example is the (unsporting) controversy between U.S.A. and
China over the 2008 Summer Olympics. The U.S. press ranked countries by tal-
lying all medals (equivalent to mapping gold, silver, and bronze on a scale 1-1-1).
The Chinese opted for counting only the gold medals (1-0-0). Each country cham-
pioned the aggregation method that gave them the top position in a global country
ranking, in spite of the Olympic Charter stating that the games “are competitions
between athletes in individual or team events and not between countries”. Sensible
suggestions based on more balanced scales (e.g., 4-2-1 or 5-3-1) have not attracted
many followers.

Among the aggregation methods that respect dominance, scoring systems are
commonly used in sport competitions. In many football leagues, the champion is
chosen by having each team play against every other team in a round-robin tourna-
ment. Each match delivers a score on a scale 3-1-0 (for win-tie-lose), and scores are
aggregated by taking their sum. At the end of a season, the highest ranking team is
declared the champion. It is not difficult to find examples where a different set of
scores W>T>L would select a different winner, while respecting dominance. FIFA
ruled out these alternatives, by formally adopting the 3-1-0 scale in 1995.

In a round-robin tournament, the basic scheme for a scoring system has an indi-
vidual current rating r for each player (or team). Following a new match, the player
obtains a score s and the rating is updated to ' = r + 5. The score s obtained after
a match does not depend on the ranking or strength of the opponent. Beating the
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current leader or the bottom-ranked one yields the same increment s to a player’s
current rating. Another restriction is that the system requires a round-robin tourna-
ment to ensure consistency over the final ratings.

Arpad Elo (1903-1992) introduced to chess a system that takes into account the
relative quality of the opponents, and applies even if participants play a different
number of matches. Roughly speaking, the Elo system computes an expected score e
for the match between i and the other player, based on their current individual scores.
Given the actual score s obtained in the match, the individual rating for i is updated
by adding the difference between his current and expected score: r; = r; + (s —e).
The most important consequence of this approach is that the unusual outcome of
a low-ranked player beating a top-ranked one yields substantially bigger variations
in their ratings. The Elo method is adopted by FIDE and other organisations, with
some controversy over the calibration for the formula computing the expected score.

FIFA requires a ranking for national teams to arrange the draw for the final tour-
nament in the World Cup. This ranking, however, cannot be based on the same
system as the football leagues because national teams do not play round-robin tour-
naments. This bears similarity with the situation in world chess. FIFA has devised
its own procedure for ranking men’s national teams, based on the average score of
recent matches and on their importance, as well as on the strength of the teams and
of the confederation they belong to. The formula used by FIFA inevitably attracts
its fair share of criticisms, that may partly reflect vested economic interests associ-
ated with football. (Interestingly, FIFA’s women’s ratings are based on a different
method, closer to Elo’s.)

It is possible to evaluate the effectiveness of FIFA’s system against Elo’s method
by comparing the official ranking against the (unofficial) Elo’s ranking at http:
//www.eloratings.net. The table below lists the top ten football teams in the
Elo ranking as of 5 November 2015, along with the corresponding FIFA ranks. The
third column reports the Elo points; to appreciate the order of magnitude, it may be
helpful to know that, when Germany (then rated 2098) beat Brazil (then rated 2100)
in the semifinal of the 2014 World Cup by 7 goals to 1, 82 points were transferred
from the latter to the former.

Elo Rank|Team Elo Points|FIFA Rank |Difference
1 Germany | 2046 2 -1
2 Brazil 2012 8 -6
3 Argentina| 2006 3 =
4 Spain 1982 6 -2
5 Chile 1954 5 =
6 Colombia| 1935 7 -1
7 England 1934 9 -2
8 France 1931 24 -16
9 Uruguay 1927 12 -3
10  |Belgium 1903 1 +9

The scoring system for the Formula One World Championship works on a differ-
ent premise. Each race involves several drivers simultaneously. Since 2010, the first
ten classified drivers in each race receives a score out of a fixed scale (with a few
minor exceptions). The first three positions are rated 25-18-15; hence, one first and
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one third place give a total score of 40 and generate a higher rank than the 36 points
from two second places. A similar principle rules the 1968 Olympic scoring system
for sailing competitions.

4 Some pitfalls

Ratings usually reflect a varying degree of subjectivity. This is substantial in sports
such as skating or gymnastics, where judges have a lot of latitude; however, as many
fans will attest, referees’ decisions may influence the outcome of a match or a com-
petition. Subjectivity lurks behind common practices as grading exams, or rating
wines, books, hotels, and so on. It is probably impossibile to ensure that differ-
ent raters yield perfectly comparable scores. Even in highly standardised situations,
there will be some variability. Several academic studies confirm that grading is dis-
putable. The 2004 Guide to the new SAT essay states that the College Entrance
Examination Board expects that more than 92% of all scored essays will receive
ratings within 1 point of each other on the 6-point SAT essay scale.

A ranking obtained by aggregating ratings from different people appeal to our
instincts because it is transitive. However, the variability in subjective evaluations
should make us wary. This section takes no stance on the psychological issues, pre-
ferring to point out how common techniques mar the (pseudo-)objective validity of
these rankings. The fine print behind an aggregation method matters almost as much
as its input.

We begin with a paradox for grading systems [10]. Assume that raters use a scale
with more than two grades. Let the average-grade (AG) winner be the candidate with
the highest average grade, and the superior-grade (SG) winner the candidate who
receives more superior grades in pairwise comparisons. The paradox states that the
AG winner may be different from the SG winner and, moreover, every rater except
one may grade the SG winner higher than the AG winner. For instance, suppose that
Ann, Bob, and Carol are students in the same class. Dan rates A=4, B=1, C=1 in
Physical Education; Ken gives grades A=3, B=4, C=4 in History; Paula gives A=1,
B=2, C=2 in Mathematics. The average grade is 8/3 for Ann, and 7/3 for Bob and
Carol; so Ann is the AG winner who (in many schools) would be considered the
best students of the three. However, Bob and Carol receive higher grades than Ann
in two subjects out of three: they are the SG winners, and might stake a reasonable
claim for being considered better students than Ann.

Subjective ratings that are over-rated (pun intended!) concern wines. The evi-
dence about the consistency of wine critics under blind testing is disappointing. In
1978, Robert M. Parker Jr. began to rate wines on a 50-point scale along with the
usual review. The numbers gave consumers a tool to quickly gauge the (alleged)
quality of their purchases, and spawned a revolution in the industry of wine re-
porting. Nowadays, similar adornments are published for a variety of goods and
experiences. While a single critic only has to worry about the consistency of his



Sic transit, et non 11

own judgments, modern aggregators let users provide their ratings and attempt to
combine these into a single ranking.

A favorite example of mine is the Paris Wine Tasting Competition held in 1976.
Skipping many juicy details for lack of space, the core of the story is that nine French
judges rated ten quality red wines from France and California under blind tasting.
Every judge independently rated each wine over a 20-point scale. The final score
for each wine was the average of the ratings it received. To the surprise of many,
including the organiser himself, the top ranked selection was a California wine. The
final scores for the top three wines were 14.17 for the 1973 vintage of Stag’s Leap
Wine Cellars, 14.00 for the 1970 Chateau Mouton-Rothschild, and 13.94 for the
1970 Chateau Haut-Brion.

Looking at the data suggests some of the typical issues that usually go unnoticed
by the rankings’ users. The paradox of grading systems applies: the AG winner was
judged worse than the third wine by five critics out of nine. A majority of experts
agrees that a wine is better than another, but the average score favours this latter.
In simple words, a minority of strong negative opinions may overtake a majority of
milder positive opinions. There is great variability in the critics’ ratings: the average
score per critic ranges from 9.2 to 13.5. Shall we correct for differences in critics’
standards? Note that a 1-point difference between two ratings from the same critic is
worth more than 0.11 points in the final average, so two per-critic points are enough
to switch the first and second positions. How significant is the conclusion? If one
of the nine critics is not invited to participate, the final score would be different: if
we pick one of the them randomly, the probability that the winner would be another
wine is 2/3. One of the critics gave scores using half-points, thereby implicitly
doubling (and changing) the official scale. His scores were accepted, but should the
other judges have been given a chance to revise their grades using half-points?

Our last example deals with the attempt to take care of differences in scoring
scales by normalising the values [11]. Suppose that Ann, Bob, and Carol are rated
by three different criteria, and are given the scores listed in the magic square of
Fig. 4. Then the average score for each candidate is 5, and they are all tied. Someone
points out that the range for each criterion is different (§ —3 =5 for 1,9 —1 = 8§ for
2,and 7 —2 =5 for 3) and suggests to normalise scores by a linear transformation
mapping each of them onto [0, 1] before taking the average.

The normalisation is easily accomplished by computing x’' = Fo—
column. This gives the table on the left of Fig. 5, with average scores A= 4/7,
B=1/2, and C= 3/7. The final rank is A>B>C. Now, suppose that the score for

—min_ for each

1 2 3 1 2 3
A[T 0 [5/7 A[T0]5/7
B[O [1/2] 1 B[ 0 [4/5] 1
Cl2/7[ 1 Cl2/7[T]0

Fig. 5 Normalised scores for the magic square

C in the second column goes down from 9 to 6. Since this pejorative change affects
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only C that is ranked last, it is natural to expect no changes between the ranks of A
and B. However, after normalisation, the second column changes as shown on the
right of Fig. 5. The new average scores are A=4/7, B=3/5, and C=3/7 giving a
new rank B>A>C. A worse score for C bumps B up from second to first place!
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