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Abstract In this paper we propose reference priors obtained by maximizing the
average α−divergence from the posterior distribution, when the latter is computed
using a composite likelihood. Composite posterior distributions have already been
considered in [7] and [8], when a full likelihood for the data is too complex or even
not available. The use of a curvature corrected composite posterior distribution, as
in [8], allows to apply the method in [6] for maximizing the asymptotic Bayes risk
associated to an α−divergence. The result is a Jeffreys type prior that is proportional
to the square root of the determinant of the Godambe information matrix.
Abstract In questo lavoro proponiamo un metodo per ottenere una distribuzione a
priori non informativa massimizzando l’α−divergenza media dalla distribuzione a
posteriori, quando quest’ultima viene calcolata a partire da una verosimiglianza
composita. Delle posteriori composite sono già state proposte in [7] e [8], per
trattare casi in cui la verosimiglianza completa sia difficile o addirittura impossibile
da specificare. Il metodo proposto in [6] per la massimizzazione del rischio di Bayes
associato ad un’α−divergenza, si applica facilmente ad una a posteriori composita
opportunamente corretta, introdotta in [8]. Il risultato è una distribuzione a pri-
ori del tipo di Jeffreys, proporzionale alla radice quadrata del determinante della
matrice di informazione di Godambe.
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1 Introduction

In the Bayesian setting, when the full likelihood is too complex and difficult to spec-
ify, [8] and [7] (see also references therein) propose the use of composite likelihoods
to construct posterior distributions. In order to compute these composite posterior
distributions, a prior for the unknown parameter of interest must be elicited. Among
the most useful methods for finding objective priors, here we focus on the construc-
tion of reference priors, firstly suggested by [2]. Reference priors are based on the
maximization of a distance between the posterior and the prior within an appropri-
ate class of priors; for a review see [3] and [5]. Our purpose is to construct reference
priors obtained by maximizing α−divergences, which include as a special case the
Kullback-Leibler divergence, for use in complex models.

The paper unfolds as follows. The second section reviews posterior distributions
based on composite likelihoods. In particular, the composite posterior distribution
obtained from a curvature corrected composite likelihood is introduced. The third
section presents the construction of reference priors based on α−divergences and
suggests a method for finding reference priors when the curvature corrected compos-
ite likelihood is used. A simple example is presented in the fourth section. Finally,
suggestions and comments on further developments can be found in the conclusions.

2 Posterior distributions based on composite likelihood

Let Y be a q-dimensional random vector with joint density p(y|θ), θ ∈Θ , where Θ

is an open subset of Rd , and let y = (y1, . . . ,yn) ∈ Y be a random sample of size
n from the random vector Y . Given a set of measurable events {Ai, i ∈ I ⊂ N}, the
composite likelihood is defined as

Lc(θ) = Lc(θ ;y) =
n

∏
j=1

∏
i∈I

p(y j ∈ Ai;θ)wi ,

where wi are positive weights, i ∈ I.
The maximum composite likelihood estimator θ̂c, if it exists, maximizes the

composite likelihood, namely, θ̂c = argmax θ Lc(θ), or equivalently the compos-
ite log-likelihood θ̂c = argmax θ `c(θ), with `c(θ) = `c(θ ;y) = logLc(θ). Under
broad regularity conditions on the model, see for example [1], θ̂c is consistent and
asymptotically normally distributed, with asymptotic covariance matrix given by
the inverse of the Godambe information matrix G(θ) = H(θ)J(θ)−1H(θ), where
J(θ) = E

(
∇`c(Y ;θ)∇`c(Y ;θ)T

)
, and H(θ) = E

(
∇2`c(Y ;θ)

)
; see [9]. Here ∇ and

∇2 denote the gradient and Hessian operators, respectively.
A composite posterior distribution can be obtained by using a composite likeli-

hood instead of the true likelihood in Bayes’ formula. In particular, here we consider
a composite posterior obtained from the curvature adjustment of the composite like-
lihood, which is defined as
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πc(θ |y) ∝ π(θ)Lc(θ
∗), (1)

with θ ∗ = θ ∗(θ) = θ̂c +C(θ − θ̂c), where C is a d × d fixed matrix such that
CT H(θ)C = G(θ). A possible choice of the matrix C is given by C = M−1MA,
with MT

A MA = G and MT M = H; see [8] and references therein.
Under regularity conditions, as n→ ∞, it can be shown that the composite pos-

terior distribution (1) is, up to order Op(n−1/2), normally distributed with mean θ̂c

and variance K(θ̂c)
−1, i.e.

πc(θ |y)
·∼ Nd(θ̂c,K(θ̂c)

−1), (2)

with K(θ) =CT ∇2`c(θ
∗)C. Note that K(θ̂c)/n converges almost surely to G(θ) as

n→ ∞; see [8].

3 Reference priors obtained by maximizing α−divergences

The information present in a prior distribution may be measured in terms of diver-
gence from the corresponding posterior: the bigger the divergence, the lower the
influence of the prior on the posterior; for a review see [3] and [5]. Minimizing the
information in a prior is equivalent to maximize the expected divergence D between
the prior and the posterior, i.e. the functional

T (π) =
∫

Y
Dπ(y)p(y)dy,

=
∫

Θ

∫
Y
[Dπ(y)p(y|θ)dy] p(θ)dθ , (3)

where Dπ(y) = D(π(·),π(·|y)), with π(·) and π(·|y) denoting prior and posterior
distributions for θ , respectively, and p(·) and p(·|θ) denoting marginal and condi-
tional distributions of Y given θ , respectively.

In particular, as a special instance of divergences between two distributions, we
consider the well-known α−divergences, defined as

Dπ(y) =
1

α(1−α)

∫
Θ

{
1−
(

π(θ)

π(θ |y)

)α}
π(θ |y)dθ ,

which for α → 0 reduces to the Kullback-Liebler divergence.
The general expected α−divergence between the prior and the posterior in (3)

can be written in the following form (see [6], formula (37))

T (π) =
1−

∫
Θ

πα+1(θ)E [π−α(θ |Y )|θ ]dθ

α(1−α)
, (4)

where E(·|θ) denotes the conditional expectation given θ .
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Here we apply the method proposed in [6] to maximize the expected α−divergence
between a prior and the composite posterior distribution defined in (1).

When −1 < α < 0 and 0 < α < 1, using (2) and a shrinkage argument (see
[5] and [6]), it can be shown that the selection of a prior π(θ) corresponds to the
minimization with respect to π(θ) of the functional

1
α(1−α)

∫
π

α+1(θ)|G(θ)|−α/2dθ . (5)

It can be proven that the prior π(θ) which asymptotically minimizes (5) is pro-
portional to |G(θ)|1/2, i.e. the square root of the determinant of the Godambe matrix,
which can be interpreted as a Jeffreys type prior.

4 Example

As an example we consider the equi-correlated multivariate normal model, for
which the analytical expression of the matrix G(θ) is available; see [7].

Let Y be a q−dimensional random vector with mean 0 and covariance matrix Σ ,
with Σrr = 1 and Σrs = ρ for r 6= s, with r,s = 1, . . . ,q and ρ ∈ (−1/(q− 1),1). A
composite posterior distribution for ρ can be obtained by using a curvature adjust-
ment of the pairwise likelihood given by [7].

The reference prior which maximizes the α−divergence from the corresponding
posterior distribution, is proportional to the square root of the determinant of the
Godambe information matrix, i.e.

π(ρ) ∝ |G(ρ)|1/2 =

[
q(q−1)(1+ρ2)2

2(1−ρ)2c(q,ρ)

]1/2

,

with c(q,ρ) =
[
(1−ρ)2(3ρ2 +1)+qρ(−3ρ3 +8ρ2−3ρ +2)+q2ρ2(1−ρ)2

]
. A

prior for the parameter ρ based on a simulated sample of size n = 30 and q = 10 is
depicted in Fig. 1.

5 Conclusions

In this paper reference priors for a vector parameter based on maximizing α−diver-
gences are discussed in the framework of composite likelihoods. Some extensions of
the proposed result can be considered. Firstly, the method can be improved to handle
general pseudo-likelihoods; see for instance [10]. Secondly, for the case α →−1,
which corresponds to the chi-square divergence, it is necessary to consider higher
order terms in the asymptotic expansion of the posterior distribution. Moreover,
the method can be further extended considering the class of monotone and regular
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Fig. 1 Prior distribution for the parameter ρ of the equi-correlated multivariate normal model with
µ = 0 and σ2 = 1 based on a simulated sample of size n = 30 and q = 10.

divergences which is a broad family of divergences asymptotically equivalent to
α−divergences; see [4]. Finally, an interesting line of research appears to be the
investigation of reference priors for a parameter of interest in presence of nuisance
parameters.
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