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Energy Transfer in Color-Tunable Water-Dispersible Tb-Eu 
codoped CaF2 Nanocrystals 

M. Back,a* R. Marin,a M. Franceschin,a N. Sfar Hancha,a F. Enrichi,b,c E. Trave,a and S. Polizzia,d 

The development of highly luminescent water-dispersible biocompatible nanoparticles is a hot topic in biomedical 

research. Here, we report about the study of the energy transfer process between Tb3+ and Eu3+ in calcium fluoride 

nanoparticles. Water-dispersible RE-doped nanoparticles were prepared by means of a simple synthesis route without the 

need of high temperature, pressure or additional surface functionalization. The structural and morphological properties 

were investigated by means of XRPD and TEM analysis. The optical analysis led information about both the RE ion site 

symmetry in the crystalline host and the Tb3+ and Eu3+ excited state lifetimes, whose remarkable duration is suitable for 

biosensing application. Concerning the energy transfer process, dipole-dipole interaction, with a donor-activator critical 

distance of about 13 Å, was identified as the most probable mechanism. 

 

1. Introduction 

Luminescent nanoparticles have attracted large interest in 

recent years because of the many applications where they are 

superior to their corresponding bulk phase, as for lamps, 

displays optoelectronics and photovoltaics or where 

nanometric size is required, as in surface coatings or 

biolabeling.1-3 For the latter applications, biocompatibility, 

non-toxicity and water dispersibility are also of uttermost 

importance. 

Luminescent biolabeling, through up- or down-conversion, 

may be obtained by organic dyes4 or quantum dots,5,6 but 

most of these materials suffer from a series of intrinsic 

limitations, such as phtodegradation, cytotoxicity, small Stokes 

shift (overlapping of emission and absorption bands), broad 

emission band width. Lanthanide-doped inorganic 

nanoparticles are not subject to these drawbacks and at the 

same time show high luminescent quantum yield and long 

lifetime, allowing one to use time-resolved photoluminescence 

to increase the signal-to-noise ratio and thereby significantly 

improve biodetection.7 In such materials, the crystal structure 

of the inorganic host needs to be apt to accommodate the 

doped ions without introducing defects and to posses as low 

as possible a phonon energy, in order to minimize non-

radiative relaxation processes that cause luminescence 

quenching. 

Fluorides, and in particular CaF2, are considered among the 

best matrix for lanthanide ions because of their low phonon 

energy, high environmental and thermal stability, non-toxicity 

and bio-compatibility. The phonon energy of CaF2 is almost 

328 cm-1, one of the lowest known.8 

In order to be useful for bio-labeling applications, 

nanoparticles need, in addition, to be dispersible in water. 

Since as-prepared CaF2 nanoparticles are usually not easily 

dispersible in water, strategies have been proposed to induce 

dispersibility by surface functionalization (cappant or chelating 

agents). Pedroni et al. obtained water-dispersible lanthanide-

doped CaF2 nanoparticles for up-conversion 

(Ln3+ = Er/Yb, Tm/Yb, Ho/Yb) using an oleate anion or a citrate 

anion as a capping agent in a hydrothermal synthesis.9,10 The 

latter anion was also used by Sasidharan et al. for down-

converting CaF2:Eu3+ nanoparticels, through a simple aqueous 

wet chemical route at room temperature.11 More recently, 

Song et al. obtained down-converting CaF2 nanoparticles 

(Ln3+ = Eu, Tb, Ce/Tb) using PVP as a coating ligand, which also 

demonstrated to act as a sensitizer for the Tb3+ ion.12 Finally, 

Zhao et al. used micro-wave assisted solvothermal synthesis 

using adenosine 5’-triphosphate disodium salt (ATP) as a 

functionalization agent to obtain up-converting CaF2:Yb3+/Er3+ 

nanocrystals.13 

However, already in 2009 J. Wang et al. proposed a very 

facile co-precipitation method in methanol solution for 

obtaining water-dispersible CaF2 nanocrystals, using no specific 

capping agent.14 The dispersibility was attributed to a large 

number of hydroxyl groups either chemically bonded or 

physically adsorbed to the surface and, possibly, to methanol 
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molecules acting as a ligand coordinating with lanthanide ions. 

On the other hand, hydroxyl groups are usually claimed to 

quench luminescence, so that the nevertheless high 

luminescent efficiency of this material suggests that the large 

majority of the lanthanide ions is protected inside the 

structure of the matrix and do not suffer from the influence of 

the deleterious luminescent quenching surface groups. The 

synthesis was used for obtaining down-converting materials 

using Eu3+ or Tb3+ dopants which display intense red and green 

luminescence under ultraviolet excitation, respectively. 

In the present study we used the latter synthesis and 

explored the effect of co-doping with the two lanthanide ions. 

We demonstrate energy transfer from Tb3+ to Eu3+ ions with 

allows one to enhance luminescence and at the same time 

tune the colour of emission using different doping ratios 

and/or different excitation wavelength. Although the 

sensitization effect of Tb3+ ions on Eu3+ luminescence has been 

demonstrated in several systems,15-21 to the best of our 

knowledge the energy transfer between these two ions was 

not previously studied in CaF2 nanocrystals. The only reported 

example of energy transfer in CaF2:Eu,Tb is a “proof-of-

concept” single sample described by Ritter et al. for non-

water-dispersible particles (methanol) obtained using a much 

more complex synthesis,22 in a paper otherwise dedicated to 

separate doping with Eu3+ or Tb3+ ions and the physical mixture 

of differently doped nanoparticles, where energy transfer did 

not take place. 

2. Experimental 

2.1. Chemicals 

CaCl2 (93%), EuCl3*6H2O (99.9%), TbCl3 (99.99%) and Methanol 

were purchased from Sigma-Aldrich while NH4F (98%) and 

Ethanol from Fluka. All chemicals were used without further 

purification. 

2.2. Synthesis of Tb-Eu codoped CaF2 nanocrystals 

Starting from a modification of the procedure reported in J. 

Wang et al.,14 in a typical synthesis 8 mmol of NH4F were 

dissolved in 30 ml of anhydrous methanol at about 75°C, 

stirring the solution for 10 minutes (until the thermalization is 

reached and MeOH starts boiling). Another solution of 4 mmol 

of CaCl2 and dopant salts in 5 ml of methanol was prepared 

and added dropwise to the ammonium fluoride solution. The 

reaction was protracted for 3 h stirring the solution at 75°C. 

Once cooled at room temperature, the product was collected 

by centrifugation at 12000 rpm for 40 min and washed twice 

with ethanol:water 5:1. Finally, the nanocrystals were stored in 

water at a concentration of 1 mg/mL. All samples were 

synthesized by means of the same procedure, with the 

variation of  the Ca2+:Tb3+:Eu3+ content ratio by maintaining the 

total amount of 4 mmol. Samples are labelled as TbXEuY, 

where X and Y are atomic contents. 

 

2.3. Characterization 

In order to investigate the microstructure of the obtained 

nanocrystals by X-ray powder diffraction (XRPD), the solutions 

were dried overnight at 60°C. A Philips diffractometer with a 

PW1319 goniometer and Bragg-Brentano geometry, 

connected to a highly stabilized generator (40 kV), was used. 

The set-up included a focusing graphite monochromator and a 

proportional counter with a pulse-height discriminator. Nickel-

filtered Cu Kα radiation and a step-by-step technique were 

employed (steps of 0.05 in 2ϑ), with collection times of 10 s 

per step. 

Transmission Electron Microscope (TEM) images were 

taken at 300 keV using a JEOL 3010 instrument with an 

ultrahigh resolution (UHR) pole-piece (0.17 nm point 

resolution), equipped with a Gatan slow scan CCD camera 

(model 794). The powders were dispersed in isopropyl alcohol 

by means of sonication and then deposited onto a holey 

carbon film-coated copper grid. 

Photoluminescence analysis (excitation, emission and 

lifetime measurements) were carried out using a Horiba-Jobin 

Yvon Fluorolog 3-21 spectrofluorimeter. The 

photoluminescence spectra were collected exciting the 

samples by means of a xenon arc lamp (450 W), selecting the 

excitation wavelength with a double Czerny-Turner 

monochromator. The excitation and emission spectra were 

recorded in 1 nm bandpass resolution. Time resolved 

photoluminescence measurements were carried out at room 

temperature (RT) under excitation at 355 nm using an Ekspla 

NT 342/3/UVE/AW Q-switched Nd:YAG laser. The detection 

system consists of an iHR300 single grating monochromator 

coupled to an R928 Hamamatsu photomultiplier tube. All 

spectra were recorded at RT  under the same conditions. 

3. Results and discussion 

3.1. Structure and morphology 

As shown in Fig. 1(a), the Fm-3m fluorite-type CaF2 cubic phase 

(PDF 35-0816) was recognized for all of the synthesized 

samples. The absence of other peaks in the XRPD patterns 

confirms the good success of the synthesis and the 

homogeneous inclusion of the Eu3+ and Tb3+ ions in the 

structure. Although the ionic radius of both doping ions is 

smaller than the Ca2+ one, the magnification of the (111) 

reflection (Fig. 1(a) right-hand side) evidences a peak shift to 

lower angles with increasing rare-earth content, indicating a 

cell edge increase. Rietveld refinement allowed us to calculate 

the cell edge and the corresponding cell volume, quantitatively 

confirming the cell edge enlargement with increasing 

lanthanide content (see Fig. 1(b)). As suggested by F. Wang et 

al.,23 this increase of lattice parameters may be ascribed to the 

formation of interstitial F- ions which enlarge the structure. In 

fact, the substitution of an eight-coordinate Ca2+ ion by an 

equally eight-coordinate Eu3+ or Tb3+ dopant ion introduces a 

local charge disequilibrium which can be compensated by a F- 

additional ion in a nearby interstitial site, as depicted in Fig. 1c. 
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Fig. 1   (a) XRPD patterns of the samples (for the sake of clarity, sample Eu5 is not shown) and zoom of the (111) reflection. (b) Cell volume versus total lanthanide content. (c) 

Schematic representation of the charge compensation operated by F- ion in the RE3+ substitution. (d) TEM image of the pure CaF2 sample. 

The small decrease of the average cell edge caused by the 

dopant is counteracted by the larger increase due to the 

interstitial fluorine, leading to the observed cell volume 

increase. On the other hand, the presence of this combination 

of substitutional and interstitial defects introduces a degree of 

structural disorder which is proportional to the lanthanide 

concentration. This explains both the gradual intensity 

decrease and the XRPD peak broadening with the lanthanide 

amount increase, as shown by the enlargement of the (111) 

reflections shown in Fig. 1(a). 

The average crystallite size determined by the line 

broadening analysis of the (111) peak of the un-doped sample 

is about 20 nm. TEM images (see Fig. 1(d)) show particles with 

different shapes and a wide distribution of sizes ranging from 

few nanometers to some tens of nanometers. 

3.2. Optical Properties 

In order to investigate the Tb-Eu energy transfer process, the 

investigation focused on samples with a fixed donor (Tb3+) 

content (2.5 at%), while the acceptor (Eu3+) content was varied 

between 1 and 5 at%, a range in which typically no 

concentration quenching phenomena take place.23 For 

comparison, single-doped Tb (2.5%) and Eu (5%) were also 

synthesized. 

Fig. 2 reports a sketch of the energy level diagram for the two 

interacting lanthanide ions and the corresponding radiative 

transitions that characterize the photoluminescence (PL) 

spectra discussed in the following. 

The typical 5D07Fj (j = 0, 1, 2, 3 and 4) transitions of Eu3+ 

ions characterize the visible PL spectra shown in Fig. 3(a). It is 

well known that the intensity ratio between the 5D07F2 and 

the 5D07F1 transitions can be used to investigate the 

symmetry of the host lattice, due to the different physical 

nature of the two lines: the 5D07F2 transition (of electric 

dipole nature) is very sensitive to the site symmetry of the 

emitting Eu3+ ion, whereas the 5D07F1 one (of magnetic 

dipole nature) is not influenced by the local environment.24 In 

a site without inversion symmetry the 5D07F2 transition 

prevails, while in the opposite case the 5D07F1 transition is 

the most prominent one. In the present case, the latter 

transition at 590 nm is predominant, indicating the high 

symmetry of the Eu3+ local environment. The spectra also 

show that the emission intensities increase linearly with the Eu 

content, as clearly visible in the inset of Fig. 3(a), confirming 

that no quenching concentration and back transfer processes 

to Tb ions take place. In fact, as previously shown,23 

concentration quenching effects usually start to take place in 

fluoride hosts for Eu contents of the order of 15%. 

Fig. 3(b) shows the PL excitation (PLE) spectrum of the 

Tb2.5Eu5 sample, monitoring the emission at 590 nm, and, for 

comparison, those of the Tb2.5 and Eu5 samples at a detection 

wavelength of 545 nm (one of the most intense Tb3+ emission 

lines) and 590 nm, respectively. It is clear that the spectrum of  
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Fig. 2   Energy level diagram and related optical transition for Tb3+ and Eu3+ ions. 

the codoped Tb2.5Eu5 sample includes all spectral features 

detectable for both the single doped Tb2.5 and Eu5 samples, 

and, in fact, the sum of the spectra of the two single doped 

samples perfectly matches the spectrum of the codoped 

system, as evidenced in Fig. S1. The presence of the Tb3+ 

absorption lines among the different photostimulation paths 

for the activation of the Eu3+ 5D07F1 transition at 590 nm can 

be considered as a manifest evidence for the occurrence of an 

energy transfer process between Tb and Eu ions. Moreover, as 

expected, the intensity of the lines related to the Eu3+ 

absorption transitions increases with the Eu content, while the 

intensity of the Tb3+ ones remains constant (see Fig. S2, where 

PLE spectra of all of the samples is compared). 

Fig. 4(a) shows how the energy transfer between Tb3+ and Eu3+ 

allows one to finely tune the colour emission from green to 

orange-red, simply selecting the suitable Tb/Eu ratio. The 

spectra reported therein, obtained by 376 nm sample 

excitation, are characterized by the typical transitions in the 

visible range for both Tb3+ and Eu3+ ions. The impact of the 

Eu3+ incorporation on the activation of the Tb3+ emission lines 

can be appreciate by considering the evolution of the 5D47F5 

transition at 545 nm in the spectra of Fig. 4(a): for this line, we 

observe the decrease of the related intensity by increasing the 

acceptor content, whereas the signal of the Eu3+ transitions 

progressively enhance. This is quantitatively shown in Fig. 4(b), 

where the emission intensities for Tb3+ 5D4→7F5 and Eu3+  

 

 

Fig. 3   (a) PL spectra of Eu and Tb codoped samples under excitation at 393 nm; the 

alphabetical labels denote the series of Eu3+ 5D07Fj transitions, where A corresponds 

to j = 0, B to j = 1, C to j = 2, D to j = 3 and E to j = 4, respectively. Inset: trend of the 

overall integrated PL emission as a function of the Eu content; the red label denotes 

the Tb-free sample doped with 5 at.% of Eu. (b) PL excitation spectra for the emission 

related to the Eu3+ 5D07F1 and the Tb3+ 5D47F5 transitions. 

5D0→7F2 transitions are shown as a function of the Eu/Tb 

content ratio; this trend gives further support to the 

hypothesis of the occurrence of an energy transfer interaction 

between the two lanthanide ions. This is also corroborated by 

the decreasing trend of the absorptive features in the PLE 

spectrum for the Tb3+ 5D4→7F5 at 545 nm when the europium 

content is increased, as shown in Fig. S3. The interesting 

possibility to tune the colour emission by controlling the Tb/Eu 

ratio is underlined by the CIE x,y chromaticity diagram 

displayed in Fig. 5. 

Fig. 6(a) and 6(b) show the time-resolved PL curves 

recorded at 545 nm (main Tb3+ line) and 590 nm (main Eu3+ 

line), respectively. The non-exponential behaviour observed 

for the decay traces can be ascribed to the intrinsic disorder of 

the matrix that determines a local variation in the lanthanide 

environment. As previously discussed, it is well established 

that the substitution of Ca2+ by a trivalent ion is compensated 

by interstitial F- ions, with possible transferring of halogen ions 

into octahedral interstitial sites, thus resulting in several 

different symmetries for the lanthanide sites. Because of the  
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Fig. 4   (a) Evolution of the PL spectrum in the visible range under 376 nm excitation as 

a function of the Eu3+ content; the alphabetical labels denote the series of Tb3+ 5D47Fj  

transition, where A corresponds to j = 6, B to j = 5, C to j = 4 and D to j = 3, respectively. 

(b) Trend of PL intensity as a function of Eu/Tb content ratio for Eu3+ 5D07F1 and the 

Tb3+ 5D47F5 radiative transitions; for all sample the Tb content was set at 2.5 at.%. 

non-exponential nature of the decay curves, the excited state 

lifetime was evaluated as an effective lifetime 𝜏𝑒𝑓𝑓 =

∫ 𝐼(𝑡)𝑡 𝑑𝑡 ∫ 𝐼(𝑡) 𝑑𝑡⁄  equation, where 𝐼(𝑡) represents the 

luminescence intensity at time 𝑡 after the cutoff of the 

pumping light source. 

The observed behaviour for the decay of the Tb PL signal 

shown in Fig. 6(a) is characterized by a progressive shortening 

of the Tb3+ excited state lifetime as the Eu3+ content increases. 

The reduction of the excited state lifetime from about 5 to 3 

ms, as evidenced in the inset of Fig. 6(a), can be ascribed to 

the competitive energy transfer mechanism occurring when 

Eu3+ is present. It is worth noticing that a starting value of 

about 5 ms is in agreement with the typical 5D4 excited state 

lifetime of Tb3+ ions in fluoride hosts.7 

On the other hand, from the Eu PL decay curves in Fig. 6(b), 

a lifetime estimation of about 10 ms for the Eu3+ 5D0 excited 

state is obtained, which is very long compared to the value of 

5.6 ms reported by J. Labéguerie et al. for Eu doped CaF2 

nanoparticles made by a different synthesis procedure,25 

indicating that in the present samples the Eu3+ ions are in a 

more symmetric environment, as observed in other fluoride  

 

 

Fig. 5   CIE chromaticity diagram for the synthesized lanthanide doped samples. 

hosts where similar duration were measured.26 From the inset 

of Fig. 6(b), it can be noticed that the lifetime decreases by 

increasing the Eu content, as expected in virtue of the 

supposed enhancement of the structural disorder level 

pointed out by commenting XRPD data. 

3.3. Energy transfer mechanism 

With the aim of more thoroughly investigating the energy 

transfer mechanism between Tb3+ and Eu3+, the key 

parameters involved in the energy transfer process are 

detailed discussed in the following. 

As a premise, we have to point out that several theoretical 

approaches based on the analysis of the dynamics of the 

fluorescence decay traces were considered in order to model 

the donor-acceptor interaction. We can mention the Inokuti-

Hirayama model,27 based on the assumption of a direct donor-

acceptor energy transfer excluding donor-donor (or acceptor-

acceptor) migration processes, but the simulations strongly 

deviates from the experimental curves probably because of 

some energy migration processes involved. Then, the 

Burshtein and Yokota-Tanimoto models have been tested.28,29 

These models consider that the energy transfer mechanism is 

assisted by energy migration among donors but, depending 

the fits realized on a great number of parameters with no 

literature to draw from, the level of confidence for the 

obtained results is too arbitrary. 

In general, we can consider that the all these models are 

usually adopted in the context of bulky systems and not of 

nanosized environments, where local surface states can 

strongly affect the overall evolution of the fluorescence 

dynamics. Moreover, as reported by Rabouw et al.,30 a random 

substitutional doping leads to an ensemble of donor ions with 

a different number of and separation from nearby acceptors, 

factors not considered by the above mentioned approaches. 

Therefore, while reserving for the future the development 

of fluorescence decay models, in the following we try to 

spread light on the nature of the observed energy transfer 

mechanism by means of studies based on the evolution of the 

donor emission intensity. 
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Fig. 6   PL time decay curves taken at (a) 545 nm (Tb3+ 5D47F5 transition) and (b) 590 

nm (Eu3+ 5D07F1 transition); the excitation wavelength was set at 355 nm. 

The energy-transfer efficiency 𝜂𝐸𝑇  from Tb3+ to Eu3+ can be 

expressed by the following relation:31,32 

(1) 

where 𝐼𝑆0 and 𝐼𝑆 are the luminescence intensity of the 

sensitizer (Tb3+) in absence and in presence of the activator 

(Eu3+), respectively. In Fig. 7(a), the 𝜂𝐸𝑇  trend as a function of 

the Eu content is shown. The ET efficiency increases as the Eu3+ 

content grows up, reaching a maximum value of about 90% for 

the Tb2.5Eu5 sample. 

In order to estimate the critical energy transfer distance 𝑅𝐶  

between Tb3+ and Eu3+, the formula suggested by Blasse was 

used:33 

(2) 

where 𝑉 is the unit cell volume, 𝑁 is the number of Ca2+ in the 

CaF2 unit cell and 𝑥𝐶  is the critical concentration. For CaF2 host, 

𝑉 = 164 Å3, 𝑁 = 4 and the 𝑥𝐶  is of about 0.035 (total 

concentration of Tb3+ and Eu3+ at which the energy transfer 

efficiency is 0.5). According to the above equation, the critical 

energy transfer distance is estimated to be about 13 Å. 

Three different mechanisms can be involved in a donor-

acceptor energy transfer process: exchange interaction, 

 

Fig. 7   (a) Trend of energy transfer efficiency 𝜂𝐸𝑇 as a function of Eu/Tb ratio; the 

dotted line is a guide for the eye. (b) Trend of 𝐼𝑆0 𝐼𝑆⁄  on 𝑥
𝑛
3⁄  by setting 𝑛 = 6, 8 and 10; 

data linear fit are represented by the dashed lines. 

radiative transfer and multipole-multipole interaction. 

However, exchange interaction is characterized by typical 

values of critical distance of about 3-4 Å and can be thus  

excluded.34 Moreover, radiative transfer can be neglected 

because (i) the lifetime of the Tb3+ emission clearly decreases 

as the Eu content is raised and (ii) no spectral dips occur in the 

PL emission spectrum of the sensitizer (Tb3+) that can be linked 

to absorption features of the acceptor (Eu3+). 

Concerning the type of multipolar interaction, on the basis 

of Dexter’s energy-transfer expressions,35 and Reisfeld’s 

approximation,36 the following relation can be obtained: 

(3) 

where 𝜂𝑆0  and 𝜂𝑆 are the luminescence quantum efficiencies 

of Tb3+ in the absence and presence of Eu3+, respectively, 𝑥 is 

the total concentration of the Tb3+ and Eu3+ ions, and 𝑛 = 6, 8 

and 10 correspond to dipole-dipole, dipole-quadrupole, and 

quadrupole-quadrupole interactions, respectively. Moreover, 

the value of 𝜂𝑆0 𝜂𝑆⁄  can be approximately replaced by the ratio 

of the related luminescence intensities 𝐼𝑆0 𝐼𝑆⁄ , so that the 

equation becomes 

(4) 

𝑅𝐶 ≈ 2 [
3𝑉

4𝜋𝑥𝐶𝑁
]
3

 

𝜂𝐸𝑇 = 1 −
𝐼𝑆
𝐼𝑆0

 

𝐼𝑆0
𝐼𝑆

∝ 𝑥
𝑛
3⁄  

𝜂𝑆0
𝜂𝑆

∝ 𝑥
𝑛
3⁄  
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As can be observed in Fig. 7(b), the good linear relationship 

in the 𝐼𝑆0 𝐼𝑆⁄  on 𝑥
𝑛
3⁄  plot by setting 𝑛 = 6 proves that the  

dipole-dipole interaction is the predominant mechanism 

responsible for the energy transfer observed between Tb3+ and 

Eu3+ ions in calcium fluoride nanocrystals. 

The energy transfer behaviour through the multipolar 

interaction can also be analyzed by the concentration effect of 

the acceptor (Eu3+) on the luminescence intensity of the donor 

(Tb3+) as reported by Van Uitert.37 According to the following 

formula: 

 

(5) 

 

where 𝐼 is the intensity of the donor, 𝐼0 the intensity without 

acceptor, 𝐶 the concentration, 𝐶0 the critical transfer 

concentration and 𝛽 is a constant depending on the kind of 

interaction. The value of 𝑛 = 6, 8, 10 corresponds to dipole-

dipole, dipole-quadrupole, and quadrupole-quadrupole 

interactions, respectively. Therefore, the dominant multipolar 

interaction character can be estimated plotting 𝑙𝑜𝑔(𝐼0 𝐼⁄ − 1) 

versus 𝑙𝑜𝑔(𝐶), as reported in Fig. 8. 

The experimental data can be well fit by the Van Uitert’s 

model, where the slope of the linear fit is 𝑛 3⁄  = 2.2 and as a 

  

 
Fig. 8. Linear fitting of log(I0/I-1) versus log(C) based on the Van Uitert’s model.  

consequence 𝑛 = 6.6, indicating the dipole-dipole interaction 

as the dominant in the energy transfer mechanism. This result 

is in agreement with the analysis carried out by means of the 

previous model, based on the Reisfeld’s approximation of the 

Dexter’s energy-transfer expression. 

Conclusions 

Inorganic nanophosphors suitable for applications in biological 

environments was obtained by a very facile co-precipitation 

method. The UV-excited emission of the water-dispersible 

lanthanide-doped nanoparticles can be tuned at any 

wavelength between red and green by a suitable choice of the 

Eu/Tb ratio. Energy transfer from Tb3+ ions to Eu3+ ones was 

demonstrated to take place through dipole-dipole interaction. 

The highly efficient fluorescence activity and its long decay 

time makes this material an excellent candidate for bio-

labelling, especially using time-resolved measurements. 
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