
Localizing Security for Distributed Firewalls

Pedro Adão1, Riccardo Focardi2,
Joshua D. Guttman3, and Flaminia L. Luccio4

1 Instituto Superior Técnico, Universidade de Lisboa and
SQIG, Instituto de Telecomunicações

2 University Ca’ Foscari, Venice and Cryptosense
3 The MITRE Corporation and Worcester Polytechnic Institute

4 University Ca’ Foscari, Venice

Abstract. In complex networks, filters may be applied at different nodes
to control how packets flow. In this paper, we study how to locate filtering
functionality within a network. We show how to enforce a set of security
goals while allowing maximal service subject to the security constraints.
Our contributions include a way to specify security goals for how packets
traverse the network and an algorithm to distribute filtering functionality
to different nodes in the network to enforce a given set of security goals.

1 Introduction

Organizations have big and complicated networks. A university may have a net-
work partitioned into dozens of subnets, separated either physically or as vlans.
Although many of those subnets are very similar, for instance in requiring similar
protection, others are quite distinct, for instance those that contain the univer-
sity’s human resources servers. These require far tighter protection. As another
example, consider a corporation: Some subnets contain public-facing machines
such as web servers or email servers; others support an engineering department
or a sales department; and yet others contain the process-control systems that
keep a factory operating. Thus, they should be governed by entirely different
policies for what network flows can reach them, and from where.

Indeed, a network is a graph, in which the packets flow over the edges, and
the nodes may represent routers, end systems, and so forth. The security goals
we would like to enforce reflect this graph structure. They are essentially about
trajectories, i.e. about where packets travel to get where they are going. For
instance, a packet that reaches the process control system in the factory should
not have originated in the public internet. After all, some adversary may use
it to insert a destructive command, regardless of how benign its source address
header field looks when it arrives. Similarly, a packet that originates in the human
resources department should not traverse the public internet en route to the sales
department. It could be inspected while there, compromising information about
salaries within the company. A security goal may also restrict which packets may
take a particular trajectory, for instance only packet addresses to port 80 or 443
on a web server.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' Foscari

https://core.ac.uk/display/223172504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Our contribution. In this summary of ongoing work, we describe theories and
tools that are under development to protect complex networks by enforcing secu-
rity policies that control the trajectories of packets through them. Our approach
is motivated by some of our own previous work. We have previously studied
trajectory-based security goals [3], developing techniques to determine whether
existing configurations enforce them correctly. We formalize the network graphs
and their possible executions in our frame model [4].

We will here describe the outlines of an approach that starts with a network
topology together with a set of security goals to enforce. These security goals
constrain which packets may follow a trajectory. The analysis uses the topology
to determine what enforcement should be applied at which locations in the
network. Our methods are designed to apply also in the case of network operation
that transform packets as they pass; we have particularly focused on network
address translation (nat).

In future work we will connect the resulting enforcement strategy to our
declarative, order-independent language Mignis which can be compiled to gen-
erate concrete implementations under Netfilter [1].

2 Model and Security Goals

2.1 System model

We work within our frame model [4]. Suppose given three domains LO, CH,D,
to which we will refer as the locations, channels, and data, resp. Each channel
will be a unidirectional conduit between the locations that are its endpoints. In
a networking context, where flows are frequently bidirectional, these channels
can be grouped into pairs.

An event e occurs on a channel chan(e) ∈ CH and carries some data msg(e) ∈
D. Each channel c ∈ CH may be connected to two locations sender(c) and
rcpt(c) ∈ LO.

A frame is a directed graph where the nodes are locations ` ∈ LO, and
the arcs are channels c ∈ CH connecting sender(c) to rcpt(c); moreover, each
location is equipped with a labeled transition system. In particular ` ∈ LO has
a transition s

e
;` s

′ only if ` = sender(c) or ` = rcpt(c). Thus, every location has
a set of traces involving transmissions and receptions on the channels connected
to it.

An execution A = E ,� of a frame is a well-founded partially ordered set
of events such that, for every ` ∈ LO, the set of events occurring on channels
connected to the single location ` are in fact linearly ordered by �, and form
a possible trace of `. That is, the events involving that location are a possible
trace, ordered by the sequence in which they occur.

In [4] we argue that frames and their executions allow effective reasoning
about information flow and limited disclosure in distributed systems.

There are many ways to represent networks by frames. We will generally as-
sume that the locations represent routers, end hosts, or network regions. We will

2



generally assume a pair of arcs, and (in the example) write a single undirected
edge. Usually the state of a router or network region includes a set of received
but not yet forwarded packets. A state transition in a router may add a new
packet; remove and discard a packet (filtering); remove and transmit a packet
on a particular edge; or remove, transform, and transmit a packet as in a nat
translation. For simplicity in our example, we assume that a router does not
change its filtering rules. Network regions transmit packets but do not filter or
transform them.

A trajectory in an execution A is a �-increasing sequence of events of A that
track a single packet as it is transferred from location to location, and possibly
transformed by nat rules.

By a property φ of packets, we mean a set of packets. Generally, these are
characterized by one or more headers of the packets, i.e. as the set of all packets
that have specified values for these headers, or unions of such sets.

2.2 Security Goals

We focus on what we will call three-region policy statements as security goals.
We refer to them as region control statements. These take the following form, in
which the region variables B,E,R each refer to a network location, and ψB , ψE ,
and φ refer to sets of packets. These predicates refer to the header fields of the
packet at that step in the trajectory, which may vary from its header fields at
other steps, in cases such as nat:

Region control ψB@B → φ@R→ ψE@E: For every trajectory τ ,

if τ starts at location B with a packet that satisfies ψB ,
and τ ends at location E with a packet that satisfies ψE ,
then if location R is traversed in τ , the packet satisfies φ while at R.

In these region control statements, the sets ψB , ψE restrict the applicability of
the security goal: They constrain a trajectory only if the packet satisfies ψB , ψE

as it exists at the beginning and end respectively. By contrast, φ is imposing a
requirement, since the network must ensure it is satisfied when the trajectory
reaches R.

We can express many useful properties by suitable choices of φ. For instance,
we may want to ensure that a packet passing from B to E undergoes network
address translation properly, so that its source address at the time it traverses
R is a routable address rather than a private address. We may want to assure
that packets from public regions B to a protected corporate region E have been
properly filtered by the time they reach the corporate entry network R; thus,
they should be tcp packets whose destinations are the publicly accessible web
and email servers, and whose destination ports are the corresponding well-known
ports. These provide examples of region control statements.

We will always assume that B 6= E, but there are many useful cases in which
the intermediate region R equals one of the endpoints, i.e. B = R or R = E.
We refer to these as two-region statements, since they just restrict the packets

3



that can travel from B to E. When R = E, the statement says that whenever
a packet travels from B to R, it must satisfy φ. Generally speaking, when the
purpose of the statement is to protect R from potentially harmful packets from
B, this form of the statement is useful; the property φ specifies which packets
are safe. The two-region formulas may also be used with R = B to protect B
against disclosure of certain packets to E. In this case, the property φ specifies
which packets are non-sensitive.

Most typical firewall rules are formalized in our framework as two-region
rules.

Also of interest are traversal control statements ψB@B � φ@R � ψE@E.
The traversal control statement says that every trajectory from B to E must
traverse R and packets must satisfy φ while at R; its applicability is restricted
to packets that satisfy ψB and ψE at the beginning and end, resp.

Traversal control ψB@B � φ@R� ψE@E: For every trajectory τ ,

if τ starts at location B with a packet that satisfies ψB ,

and τ ends at location E with a packet that satisfies ψE ,

then location R is traversed in τ and packets satisfy φ while at R.

For instance, consider a corporate network that has packet inspection in a partic-
ular region R. Then we may want to ensure that packets from public sources B to
internal destinations E traverse R. The reverse is also important in most cases,
i.e. that packets from internal sources to public destinations should traverse R.

Given a particular network graph, one strategy to enforce a traversal control
statement is using region control statements. We may select a suitable cut set C
of nodes between B and E where R ∈ C. We can then enforce a traversal control
statement by stipulating the region control statements that for trajectories from
B to E: if the packets traverse R they satisfy φ; if the packets traverse any
member of C \ {R}, then they satisfy the always-false header property false.
That is, we have the following family of statements:

ψB@B → φ@R→ ψE@E
ψB@B → false@R′ → ψE@E ∀R′ ∈ C \ {R}

Given this, we will focus our attention on region control statements ψB@B →
φ@R→ ψE@E.

A trajectory violates a region control statement if it has the correct beginning
and end points, but violates the property φ while at R.

Functionality Goals. Unlike security goals, which are mandatory, functional-
ity may be a matter of degree. We choose to measure functionality by the set of
packets that have a successful trajectory. A successful trajectory is one in which
a packet travels from a non-spoofing producer to a consumer actually located at
the destination address of the packet. We focus on successful trajectories because
we regard spoofing originators as intrinsically hostile, which is also the case for
promiscuous hosts that consume packets not addressed to them.

4



We regard one system as at least as successful functionally as another system
over the same network graph iff, for every successful trajectory permitted by the
latter, the same trajectory is permitted by the former.

Given an underlying network topology, formalized as a graph, and a set of
security goals, the acceptable systems are those that allow no counterexamples to
the security goals. Among those, one would like to construct a frame (specifying
the filtering behavior) that is maximal in the ordering of successful functionality.

3 Localizing filtering to enforce goals

Suppose that we are given a set of goal formulas, each a region control statement
ψB@B → φ0@R → ψE@E. We assume a bit of bookkeeping for the forms of
each statement. Namely, we assume that each statement concerns either only
successful trajectories or else only unsuccessful trajectories. The goal concerns
only successful trajectories if ψB ⇒ sa(p) ∈ IP(B) and ψE ⇒ da(p) ∈ IP(E),
meaning that the source address of any relevant packet at the start is one of the
IP addresses of its actual starting point B, and its destination address at the end
is one of the IP addresses of its actual endpoint E. That is, it is not created with
a spoofed source address, and it is not consumed by a promiscuous interface to
which it is not addressed. By replicating rules, we can rewrite them in a form
such that any one rule applies only to non-spoofed, non-promiscuous packets, or
alternatively only to packets that are either spoofed or promiscuously delivered.
We call these success rules and promiscuity rules resp.

We first assume that the network involves no nat rules.
We call this process localizing the rules, because we determine which locations

to use to enforce those rules.

Localizing success rules without NATs. When the network uses no nat
rules, packets remain the same throughout their trajectories. Thus, in any region
R, all of the packets that may traverse R as part of a successful trajectory from
B1 to E1 will have source address in B1 and destination address in E1. They can
never be confused with any packets that are in a successful trajectory from B2

to E2 when B1 6= B2 or E1 6= E2. This observation allows us to compute which
packets are useful to keep (for success trajectories) on R separately for each pair
of endpoints B,E; the packets for any other pair are distinguished from them by
addresses. Thus, we will do separate computations and then take unions later.

The key intuition is that, for endpoints B,E, we would like to keep those
packets at R which:

– are permitted by all the B,E goals to be at R;
– have a path from B to R touching only permissible regions; and
– have a path from R to E touching only permissible regions.

This is the keep set for R, given B,E. We can compute keep sets using a matrix
computation in the ring of sets of packets, where the ring addition is set union
and the ring multiplication is set intersection. This computation is tractable

5



when the sets are represented via Binary Decision Diagrams, as we found previ-
ously [3].

The computation reaches a fixed point because a non-simple path never al-
lows more flow than the simple subpath it contains. Each node may decrease the
set of surviving packets by filtering, but cannot increase it.

We must consider all B,E pairs, where a pair that lacks goals is understood
as permitting any packets at intermediate nodes. When we have completed the
pairs, we have computed all of the packets that should be kept in each region
R, because those packets have a route traversing R from their unspoofed source
address to their intended destination. We call this value KEEP(R). An appro-
priate filtering rule for an interface R′ → R to R from an adjacent R′ may
discard any packets not in KEEP(R). For instance, assuming that the packets
in R′ will be either generated there or else in its KEEP(·) set, we may filter
(gen(R′) ∪ KEEP(R′)) \ KEEP(R) on the interface R′ → R.

This computation is optimal in functionality, because it allows all success
trajectories that are compatible with the chosen security goals.

Localizing success rules with NATs. Curiously, the computation for the
case where the network has nat rules is very similar, but is performed in a
different ring. Namely, we are no longer interested in a set of packets, but in
a relation between packets in their state at a previous location and packets
in their state at a later location. Thus, the matrices A will contain, in entry
Ai,j , a relation between packets that may have occurred at location i and their
resulting state when reaching location j. The addition in this ring is union.
The multiplication is relational product. That is, the “product” of the binary
relations S(x, y) and S′(y, z) is the binary relation ∃y . S(x, y) ∧ S′(y, z). Thus,
we are no longer working in a commutative ring. However, we have simply lifted
the set-based computation to a relation-based computation.

Binary Decision Diagrams may still be used, although the relative prod-
uct computation for ∃y . S(x, y) ∧ S′(y, z) requires taking cases on the boolean
variables that contributing to the projected variable y. We do not yet have an
estimate of the cost of this computation.

There is an assumption to be made here, to ensure the analogue to the
independence of the packets for different beginnings and endpoints. When a
number of beginnings are behind the same source nat, the security goals for
regions R beyond the nat should treat them the same way. Nothing else can
be enforced, since they will be indistinguishable beyond the nat. Destinations
behind the same destination nat must be treated uniformly for a similar reason.

A second contrast with the no-nat case concerns the simple path assumption.
nats can be arranged so that a non-simple path would produce new packets,
although this is contrary to the main purposes for which nats are used. Thus,
we terminate when the computation reaches its fixed point. Some modifications
would not reach a fixed point in limited time. For instance, suppose a router
applied a bizarre form of NAT in which it increments the source address of the
packet. If the network might cause that packet to traverse the router repeatedly,
then its source address will be incremented repeatedly. However, for reasonable

6



transformations, although the fixed point is not guaranteed to happen quickly,
it is extremely likely in fact to do so.

Simple paths. If one desires, one can adapt the above computations to be
based only on simple paths. A classical technique [7], adapted to our context, is
to tag sets of packets with the set of locations that have figured in the relevant
paths. When combining paths say B →+ R and R →+ E, one checks that R
is the only location they have both visited. This further complicates the data
structure and requires the computation to handle more cases separately, namely
all those where paths traverse different set of locations. However, this tagging
scheme actually lifts a ring to a more complex ring, thus allowing the same
structure for the core computations.

Localizing promiscuity rules. Once we have computed the filtering for the
success rules, the promiscuity rules may already be satisfied. This will happen
whenever the intermediate locations needed for success trajectories are disjoint
from the suspicious locations that the promiscuity rules are protecting against.

Otherwise, there is genuine conflict between functionality for permitted suc-
cess trajectories and security concerns for messages that might be spoofed in
locations they traverse. There is not always a canonical, best-functionality solu-
tion to this problem. However, we can always enforce a set of promiscuity rules
by using another matrix computation. We find the set of promiscuous trajec-
tories that are permitted by the existing, success-based filtering rules. For all
packets that can traverse a trajectory, we then update the filters on a link of
the trajectory to discard these packets. An attractive heuristic is that for anti-
spoofing goals, we should discard the packets as early as possible: We do not
want them to get anywhere. However, for anti-promiscuous delivery goals, we
should discard them as late as possible. These packets, if safely routed, will be
useful.

Simplifying the network topology. The computations we are describing are
tractable, because in fact we can simplfy the topology of networks. In particular,
given a large network with a set of filtering locations identified, we can shrink the
network by identifying devices that are in similar positions relative to the filtering
locations. In particular, two devices should be mapped to the same region when
they have simple paths to exactly the same set of filtering locations, where these
paths traverse no intermediate filtering locations.

Using this idea, complicated networks actually furnish small graphs for our
algorithms to work with.

4 Case study

We consider the case study depicted in Figure 1 composed of three subnetworks:
Sensitive, Trusted and Untrusted. Sensitive subnetwork contains impor-
tant servers and data and is connected to the Internet through the firewall
router fw1 and then gateway gw1; Trusted subnetwork is composed of trusted

7



Fig. 1. A simple network with two firewall routers fw1 and fw2.

hosts that, for example, can access services hosted in the Sensitive subnetwork;
Untrusted is a wifi subnetwork providing a controlled access to the Internet

but not to services hosted in Sensitive. Both Trusted and Untrusted are con-
nected to the firewall router fw2 which in turn is connected to the other firewall
router fw1, and to the Internet through gateway gw2.

We now define security goals for the example network.

Success rules. The following rules apply only to non-spoofed, non-promiscuous
packets. This can be easily enforced by assuming ψB and ψE respectively check
if sa(p) ∈ IP(B) and da(p) ∈ IP(E). For the sake of readability we omit to write
these checks in the rules and and we leave them implicit.

Firewalls usually keep track of established connections so that packets be-
longing to the same connections are not filtered. This is particularly useful to
enable bidirectional communication without necessarily opening the firewall bidi-
rectionally to new connection: it is enough to open the firewall in one direction
and let established packets come back. In the following we write est to note that
a packet is established. While specifying rules, we proceed pair by pair so to
define rules and their established counterpart (when needed) at the same time.

Hosts in the Sensitive and Trusted subnetworks should never connect to
Untrusted and vice-versa. This is naturally expressed through two-region state-
ments in which R corresponds to B or E (cf. Section 2.2):

Sensitive→ false@Sensitive→ Untrusted

Untrusted→ false@Sensitive→ Sensitive

Trusted→ false@Trusted → Untrusted

Untrusted→ false@Trusted → Trusted

8



Hosts in the Sensitive subnetwork should never connect to Trusted, while hosts
from Trusted network can access Sensitive via ssh through fw1 without passing
through the Internet as this would unnecessarily expose network connections
to attacks. Notice that we filter packets from Sensitive to Trusted only if
they do not belong to established ssh connections. This is achieved by adding a
precondition on the start point in the second rule below:

Trusted→ dport = 22@Sensitive→ Sensitive

¬(sport = 22 ∧ est)@Sensitive→ false@Sensitive → Trusted

Trusted→ false@gw1, gw2 → Sensitive

Sensitive→ false@gw1, gw2 → Trusted

Sensitive should access the Internet only via https (destination port should
be 443), while Internet hosts should never connect to Sensitive:

Sensitive→ dport = 443@Sensitive→ Internet

¬(sport = 443 ∧ est)@Internet→ false@Sensitive → Sensitive

Trusted has full access to the Internet and from the Internet we give access
to Trusted only via ssh (port 22):

¬est@Internet→ dport = 22@Trusted→ Trusted

Untrusted should access the Internet exclusively through gw1 under filter φ.
This is a form of traversal control that can be compiled into region control rules
by taking cut {gw1, gw2} and forbidding traversal of everything but gw1, i.e.,
gw2 (cf. Section 2.2). In a real setting, this might be motivated by the fact fw1

is more powerful than fw2 being able to handle complex (stateful) protocols
covered by φ and offering logging capabilities that are useful to check what the
untrusted users do. Internet should never access Untrusted. We let φ̄ denote
the counterpart of φ holding on established packets (e.g., swapping source and
destination ports):

Untrusted→ φ@gw1 → Internet

¬(φ̄ ∧ est)@Internet→ false@gw1→ Untrusted

Untrusted→ false@gw2→ Internet

Internet→ false@gw2→ Untrusted

Promiscuity rules. We assume that subnetworks Sensitive and Trusted do
not spoof or promiscuously deliver packets. Let N ∈ {Sensitive, Trusted, Internet}
and N′ ∈ {Sensitive, Trusted, Untrusted}. The following rules prevent spoof-
ing from Unstrusted and Internet:

sa 6∈ IP(Untrusted)@Untrusted→ false@Unstrusted→ N

sa 6∈ IP(Internet)@Internet→ false@Internet → N′

while the following ones prevent promiscuous deliver to Unstrusted and Internet:

N→ false@Untrusted→ da 6∈ IP(Untrusted)@Untrusted

N′ → false@Internet → da 6∈ IP(Internet)@Internet

9



Localizing filtering. We show how some of the above goals are localized. We
first consider the case of completely forbidden communication from Sensitive

to Untrusted:

Sensitive→ false@Sensitive→ Untrusted

By performing a matrix computation we easily obtain that KEEP(.) = ∅ for each
node in the network. Indeed, the rule forbids any packet from Sensitive to
Untrusted directly at the source. Since we have

gen(Sensitive) = {p | sa(p) ∈ IP(Sensitive), da(p) ∈ IP(Untrusted)}

then we only need to filter (gen(Sensitive)∪KEEP(Sensitive))\KEEP(fw1) =
gen(Sensitive) on the interface Sensitive→ fw1. All packets from Sensitive

to Untrusted will be dropped as early as possible in fw1 and no filtering will be
done in fw2.

We now consider the more interesting situation of traversal control from
Untrusted to the Internet imposing packets to go through fw1:

Untrusted→ φ@gw1 → Internet

Untrusted→ false@gw2→ Internet

In this case we obtain that KEEP(.) is equal to gen(Untrusted) for Untrusted,
Sensitive, fw1, fw2; it is equal to φ for gw1, Internet; it is the emptyset for
gw2. We thus need to filter gen(Untrusted) on the interface fw2 → gw2 and
gen(Untrusted) \ φ on the interface fw1 → gw1. Intuitively, fw1 will filter all
generated packets that do not belong to the set of permitted packets φ while
fw2 will filter any (generated) packet, enforcing traversal control.

In a similar way, we can filter spoofing and promiscuous delivery. For example:

sa 6∈ IP(Untrusted)@Untrusted→ false@Unstrusted→ Sensitive

will produce a filter on interface Untrusted → fw2 dropping any packet origi-
nated in Untrusted with a spoofed IP (not in IP(Untrusted)) and directed to
Sensitive. Notice that filtering happens as soon as possible. Dually rule:

Sensitive→ false@Untrusted→ da 6∈ IP(Untrusted)@Untrusted

will produce a filter on interface fw2 → Untrusted dropping any packet orig-
inated in Sensitive and promiscuously delivered to Untrusted to an IP not
in IP(Untrusted). Notice that in this case filtering happens as late as possible,
only in case the packet is (wrongly) routed to Untrusted.

5 Conclusion

Our localization strategy does not generate concrete rule-sets for actual devices.
However, we plan to generate rules in the declarative, order-independent lan-
guage of Mignis [1]; the semantically motivated Mignis compiler then generates

10



concrete rule-sets for Netfilter. This will complete the task of generating seman-
tically correct network configurations from security goal statements.

Our work is distinguished by its focus on clear behavioral security specifi-
cations. In this it contrasts with otherwise very strong work, for instance on
security using programming language techniques as in NetKAT [2]. Zhang et
al. [8] focus more on the possible conflicts among policies at different organiza-
tional levels, and less on their consequences given the topology of the network.
Much work has been devoted to firewall analysis, e.g. Margrave [6], which again
lacks the distributed behavior of the network.

Kurshid et al. [5] demonstrate that it is possible, in a software defined net-
working context, to check dynamically to ensure that global, behavioral prop-
erties are maintained as invariants, for instance reachability for certain sorts of
packets. We instead make no claims of real-time, on-line feasibility, but we offer
a more systematic way to solve well-defined security problems at design time.

References

1. P. Adao, C. Bozzato, R. Focardi G. Dei Rossi, and F.L. Luccio. Mignis: A semantic
based tool for firewall configuration. In IEEE Computer Security Foundations, pages
351–365. IEEE CS Press, July 2014.

2. C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and
D. Walker. NetKAT: Semantic foundations for networks. In Proc. of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2014). ACM, 2014.

3. J.D. Guttman and A.L. Herzog. Rigorous automated network security management.
International Journal for Information Security, 5(1–2):29–48, 2005.

4. J.D. Guttman and P.D. Rowe. A cut principle for information flow. In IEEE
Computer Security Foundations, pages 107–121. IEEE CS Press, July 2015.

5. Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and PB Godfrey. Veriflow:
verifying network-wide invariants in real time. ACM SIGCOMM Computer Com-
munication Review, 42(4):467–472, 2012.

6. T. Nelson, C. Barratt, D.J. Dougherty, K. Fisler, and S. Krishnamurthi. The mar-
grave tool for firewall analysis. In Proceedings of the 24th International Conference
on Large Installation System Administration (LISA’10), pages 1–8, Berkeley, CA,
USA, 2010. USENIX Association.

7. F. Rubin. Enumerating all simple paths in a graph. IEEE Trans. Circuits and
Systems, 25(8):641–642, 1978.

8. B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher. Specifications of a
high-level conflict-free firewall policy language for multi-domain networks. In Proc.
of ACM Symposium on Access Control Models and Technologies (SACMAT 2007).
ACM, 2007.

11


