High performance encapsulation in Casanova 2

Mohamed Abbadi, Francesco Di Giacomo,
Agostino Cortesi
Ca’Foscari University
Venice, Italy
mohamed.abbadi,francesco.digiacomo,cortesi @unive.it

Abstract—Encapsulation is a programming technique
that helps developers keeping code readable and main-
tainable. However, encapsulation in modern object ori-
ented languages often causes significant runtime overhead.
Developers must choose between clean encapsulated code
or fast code. In the application domain of computer
games, speed of execution is of utmost importance, which
means that the choice between clean and fast usually is
decided in favor of the latter. In this paper we discuss
how encapsulation is embedded in the Casanova 2 game
development language, and show how Casanova 2 allows
developers to write encapsulated game code which, thanks
to extensive optimization, achieves at the same time high
levels of performance.

I. INTRODUCTION

The video games industry is an ever growing sector
with sales surpassing 20 billion dollars in 2014 [2].
Video games are not only built for entertainment pur-
poses, but they are also used for Edutainment, Higher
Education, Health Care, Corporate, Military, Research,
and other [1], [12]. These so-called serious games
usually do not enjoy the budgets available in the enter-
tainment industry [15]. Therefore, developers of serious
games are interested in tools capable of overcoming
the coding difficulties associated with the complexity
of games, and reducing the long development times.

Video games are composed of several inter-operating
components, which accomplish different and coordi-
nated tasks, such as drawing game objects, running
the physics simulation of bodies, and moving non-
playable characters using artificial intelligence. These
components are periodically activated in turn to up-
date the game state and draw the scene. When game
complexity increases, this leads to an increase in size
and complexity of components, which, in turn, leads
to an increase in the complexity of developing and
maintaining them, and thus an increase of development
costs.

A possible approach to reduce development costs
is to use game development tools (e.g., GameMaker,
Unity3D, or UnrealEngine [11]), but these tend to
produce simple games in a specific genre, that are
hard to customize. Therefore, most game developers
rely on a general-purpose language (GPL) to create
games [9]. Such languages, however, lack the domain-
specific abstractions and optimizations of games [13],

Costantini Giulia,
Giuseppe Maggiore
Hogeschool Rotterdam

Pieter Spronck

Tilburg University

Tilburg, The Netherlands Rotterdam, The Netherlands

p.spronck @uvt.nl costg,maggg @hr.nl
[16], leading to highly complex code that is expensive
to maintain.

Software development techniques have been studied
in the past years to improve software maintainability
and tackle software complexity. Encapsulation, which
is a software development technique that consists of
isolating a set of data and operations on those data
within a module and providing precise specifications for
the module [8], is a typical technique used to increase
code readability and maintainability [5].

Games feature many small entities that interact with
each other. Encapsulation forces those entities to inter-
act through specific interfaces. Therefore, when calling
methods of the interfaces, overhead is added due to
dynamic dispatching. Such overhead ultimately affects
the performance of games at runtime negatively. Per-
formance is of high importance for games, since it
is strictly connected to game smoothness, i.e., to the
game’s framerate, where a frame consists of a complete
update of all the entities present in the game. Smooth-
ness strongly influences the perceived quality of a game
[4].

Our goal is to develop techniques for taming the
complexity of games by means of encapsulation, in-
creasing code readability and maintainability, without
losing performance. In this paper we present a solution
to the loss of performance in encapsulated programs.
We will show a domain specific language for games,
named “Casanova 2”, which allows developers to write
high quality games at reduced development costs. Our
solution allows developers to write encapsulated code
which, through extensive automated optimization, turns
source code into high-performance executable code.

We start with a discussion of encapsulation and
typical optimizations (which break encapsulation) and
their complexity, by introducing a case study. We use
the case study to identify issues in using both encapsula-
tion and faster implementation for games (Section II).
We introduce our idea for dealing with encapsulation
without losing performance (Section III). We propose a
specific implementation, with corresponding semantics,
within the Casanova 2 language (Section IV). We then
evaluate the effectiveness of our approach in terms of
performance and compactness (Section V), and round
off with conclusions (Section VI).

II. ENCAPSULATION IN GAMES

In this section we introduce a short example to
explain the problem of encapsulation in games. We
then discuss the advantages and disadvantages of using
encapsulation when designing a game.

Running example: To illustrate the discussions
hereafter, we now present a game that contains typical
elements that are often encountered in game develop-
ment. The game consists of a set of planets linked
together by routes. A player can move fleets from his
planets to attack and conquer enemy planets. Fleets
reach other planets by using the provided routes. When-
ever a fleet gets close enough to an enemy planet it starts
fighting the defending fleets orbiting the planet. The
game can be considered the basis for a typical Planet
Wars strategy game (such as Galcon [3]). We define a
frame to be a single update cycle of all the game’s data
structures.

In our running example, we assume that a Route is
represented by a data structure containing (i) the start
and end point as references to Planets, and (i) a list
of Fleets traveling via such route. Planet is a data
structure containing (7) a list of defending Fleets, (ii)
a list of attacking Fleets, and (iii) an Owner. Each
fleet has an owner as well. Each data structure contains
a method called Update which updates the state of
its associated object at every frame. Furthermore, we
assume that all the game objects have direct access to
the global game state which contains the list of all routes
in the game scenario.

According to the definition of encapsulation, data and
operations on them must be isolated within a module
and a precise interface must be provided. Moreover,
each entity is responsible for updating its own fields
in such a way that it maintains its own invariant.

Design techniques and operations: In our running
example the modules are the Planet and Route
classes defined above, data are their fields.

To support encapsulation, in the following implemen-
tation each entity is responsible for updating its fields
with respect to the world dynamics. The operations
for each entity are the following: i) Planet: Takes
the enemy fleets traveling along its incoming routes
which are close to the planet, and moves them into the
attacking fleets list; ii) Route: Removes the traveling
fleets which have been placed in the attacking fleets of
the destination planet from the list of traveling fleets.

void Update()
foreach route in GetState().Routes
if route.End = this then
foreach fleet in route.TravellingFleets
if distance(fleet.Position, this.Position) < min_dist && fleet.
Owner != this.Owner then
this.AttackingFleets.Add(fleet)

An alternative design, which does not use encapsu-
lation, allows the route to move the fleets close to the
destination planet directly into the attacking fleets by
writing into the planet fields. In this scenario the route
is modifying data related to the planet and the route is
writing into a reference to a planet.

class Route

Planet Start, Planet End,

List<Fleet> TravellingFleets

void Update()

foreach fleet in this.TravellingFleets
if distance(fleet.Position, this.Position) < min_dist && fleet.
Owner != End.Owner then

this.TravellingFleets.Remove(fleet)
End.AttackingFleets.Add(fleet)

class Route
Planet Start, Planet End
List<Fleet> TravellingFleets,
Player Owner
void Update()
foreach fleet in TravellingFleets
if End.AttackingFleets.Contains(fleet)
this.TravellingFleets.Remove(fleet)
class Planet
List<Fleet> DefendingFleets,
List<Fleet> AttackingFleets

Discussion: In our running example a programmer
is left with the choice of (i) either using the paradigm
of encapsulation which improves the understandability
of programs and eases their modification [14], or (if)
breaking encapsulation by writing directly into the
planet fields from an external class, which, as we will
show below, is more efficient but potentially dangerous
[7].

As far as performance is concerned, in the encap-
sulated version, the planet queries the game state to
obtain all routes which endpoints are the planet itself,
and for every route selects the enemy traveling fleets
that are close enough to the planet. At the same time, a
Route checks the list of attacking fleets of its endpoints
and removes the fleets which are contained in both
lists from the traveling fleets. If we consider a scenario
containing m planets, n routes, and at most k traveling
fleets per route, each planet should check the distance
condition for O(nk) ships, thus the overall complexity
is O(mnk). The non-encapsulated version checks for
each route the distance for a maximum of k ships
and then directly moves those close to the planet, for
which the overall complexity is O(nk). Therefore, the
performance on the non-encapsulated version is better.

As far as maintainability is concerned, in a game
containing planets, many entities might need to interact
with each planet (such as fleets, upgrades, and special
weapons). Assume that a special action freezes all the
activities of a planet. We have to propagate this behavior
into the code of all the entities in the game that may
interact with a planet, disabling such interactions when
the planet is frozen. In the encapsulated version of the
code, such behavior needs only be implemented in one
place, namely in the planet. In the non-encapsulated
version, it must be implemented in each and every
entity that may interact with a planet. Moreover, if the
developer forgets to make this change even in just one

of the entities, the game no longer functions correctly;
i.e., bugs associated with planets might actually find
their cause in other entities. It is clear that the maintain-
ability of the encapsulated version of the code is much
better than the maintainability of the non-encapsulated
version.

The main advantage of using encapsulation is related
to the maintainability of code, because encapsulated
operations that alter the state of an entity are strictly
defined within the entity definition. This helps to reduce
the amount of code to maintain in case the entity
changes the normal behavior of an entity. In our sce-
nario all the activities that alter the planet are inside the
planet, so if we remove (or disable) a planet then all its
operations are suspended.

What we desire to achieve is the maintainability
of encapsulated game code, combined with the per-
formance of non-encapsulated code. In the following
sections, we show how this can be achieved with
Casanova.

III. OPTIMIZING ENCAPSULATION

In this section we introduce the idea of a code
transformation technique that changes encapsulated pro-
grams into semantically equivalent but more efficient
implementations.

Optimizing lookup: In our running example, the
main drawback of the encapsulated version is that each
planet has to check all the fleets to see if they are
close enough to move into the list of attacking fleets.
An optimization can be achieved by maintaining an
index FleetIndex in Planet, containing a list of
those Fleets that satisfy the attacking property, i.e.,
being owned by a different player and close enough
to the planet. When an enemy Fleet is close enough
to a Planet, it is moved into FleetIndex by the
Route, which stores a list of traveling fleets. When
FleetIndex changes, it notifies Planet, so that
Planet can update AttackingFleets.

A predicate is a conditional statement based on one or
more fields of an object of a class A. We can generalize
the aforementioned situation by saying that encapsu-
lation suffers from loss of performance whenever an
object B needs to update one of its fields depending
on a predicate. B stores an index [4 which is used to
keep track of all possible objects of class A satisfying
the predicate. Any object of A has a reference to B and
is tasked with updating the index I4 of B. B checks
I 4 every time it needs to interact with the instances of
A satisfying the predicate.

Optimizing temporal/local predicates: 1f we take
into consideration the fact that predicates belong to (po-
tentially hundreds or thousands) entities in a simulation
that exhibit similar behaviors (ships, bullets, asteroids,

etc.) [6], we can expect that some predicates will exhibit
some sort of temporal locality on their values. We can
group those predicates, and their respective block of
code, and apply an optimization that (i) keeps their
code block inactive in a fast wake-up collection, and
(if) activate only those blocks of which the predicate
has changed. In general, this would yield a higher
performance without asking developers to write the
optimization code themselves.

Language level integration: The process described
above can be automated at the compiler level as code
transformation, since the index creation and manage-
ment always follows the same pattern, and thus the
compiler itself can create and update the required
data structures. Casanova 2, which is a game devel-
opment oriented language, ensures that variables are
only changed through specific statements; this makes
it possible for the Casanova 2 compiler to identify
patterns in code which are suitable for optimization. The
Casanova 2 compiler applies transformations to the code
that preserve the program semantics and optimize the
encapsulated implementation by creating and maintain-
ing the required indices. This way the code written by
the programmer will gain the benefits of readability and
maintainability that encapsulated code brings, without
suffering from loss of performance or the necessity to
break encapsulation to manage the optimization data
structures. In the next session we present the compiler
architecture and the transformation rules.

IV. IMPLEMENTATION DETAILS

In this section we introduce the syntax of the
Casanova 2 language and show how to select the
predicates and the associated blocks of code which can
be optimized.

Most games represent simulations of some sort. A
property of simulations is a certain temporal locality
of behaviors [6]. This translates to the fact that some
predicates tend to have a high chance of no value change
between frames. To reduce the amount of interactions
and achieve better performance, we optimize those
predicates that exhibit temporal locality (the selection
is based on manual annotation).

We will refer to a predicate on fields that do not
change at every frame as Interesting Conditions (ICs).
These predicates are stored in a data structure called the
Interesting Condition Data Structure (ICDS).

Dealing with ICs adds an additional layer of com-
plexity to the game. The execution of game mechanics
tends to be very frequent (we may expect that some
mechanics will be executed potentially hundreds of
times per second), so interacting frequently with ICs
affects the game performance due to the complexity of
the data structure.

ICs are used to identify which blocks of code can be
suspended and resumed with little overhead. We use ICs
at compile time to generate code that is able (through
the support of specific data-structure) to suspend and
wake up with little overhead. This is schematically
shown in Figure 1.

Run-time Cym—
p Casanove;;code ._,—\ State |'Y
N) i (t

1 f | Fast/Wakeup
&7 Code analysis E K 4/
! Game loop J

collection
)
Code 1(BL3f Atomic Rules @
generation | ! i
Active Rules (®
\T/

Fig. 1: System Configuration
Casanova overview: Casanova is a Domain Spe-

cific Language oriented towards game development. A
program in Casanova is a set of entities organized in
a tree hierarchy, of which the root is marked as world.
Each entity contains a set of fields, a set of rules, and
a constructor. An extensive description of the formal
grammar and semantics of Casanova can be found in
[10]. Casanova 2 (which we use) is a recent iteration
of the original Casanova, which does not introduce
changes to syntax or semantics.

In Casanova the state of a game changes only upon
the execution of a rule. A rule is a block of code acting
on a subset of the entity fields called domain, which has
at least one yield statement and zero or more wait
statements. The former updates the value of the fields
of an entity, the latter suspends the evaluation of the
rule until its condition is met, temporally affecting the
fields update. The rule body is re-executed once the end
is reached.

An example of a rule that illustrates the wait
statement (which specifies that a shield is repaired when
it gets damaged) is the following :

i
Transformed | |

Casanova code -
T

rule Shields = wait Shields < 0; ...; yield Shields + 1

Compilation - Recognizing ICs in Casanova: From
here on we will refer to the wait predicate as an
IC, since its value affects the update of an entity with
respect to the flow of time.

We also include query conditions in our IC taxonomy.
We can think of a query as an entity containing a list of
valid query elements that satisfy the where condition.
An element adds itself to the valid query elements only
if it satisfies the query where condition (this is done by
adding to its rules a rule that starts with a wait on the
query condition and ends with a yield that appends
itself to the valid query elements).

An example of a rule with a query (which selects
ships that are not destroyed) is the following:

rule Ships = yield from s in Ships do
where s.Life > 0
select s

The effect of a yield is to suspend the execution
of the rule for one frame and to assign the selected

query elements to the selected field. To achieve the
optimization as described in the previous section, the
compiler uses an optimization analyzer (composed by a
code analyzer and a code generator as shown in Figure
1(h)), which requires the identification of ICs in code.
This is discussed next.

Casanova allows interaction with external libraries
and frameworks such as the .NET framework. Because
the analyzer cannot infer the temporal behavior of
external libraries, we add the restriction that an IC
must be fully dependent on Casanova data types. The
restriction is necessary because the analysis will lead to
alterations in the structure of the game code and field
creation, update, and access.

Given the informal considerations above, we in-
troduce the following definitions: i) A suspendable
statement is either a wait or a yield; ii) a suspend-
able rule is a rule containing a suspendable statement.
A suspendable rule is interesting (ISR) if the wait
argument is an IC or a yield on a query. iii) An
atomic rule is a rule which does not contain suspendable
statements.

We now present two algorithms that respectively
check if a predicate is affected by an atomic rule
(Algorithm 1) and to build the ICDS (Algorithm 2).
For brevity we do not present the procedure to check if
a rule is an ISR, which can be done by simply looking
at the syntax tree of the rule body.

Algorithm 1 Check if a predicate is affected by an atomic rule

function ATOMIC(p)

E is the set of entities.
DFA < 0
for e € E do

R is the set of rules in e

for » € R do

if 7 is an atomic rule then
for f € r.domain do
DFAU {(e,)}

D < setof (entity, field) in the predicate p.
return 3z € D : x € DFA.

Algorithm 2 ICDS construction

function BUILDICDS()
ICDS «+ 0
E is the set of entities.
for e € E do
R is the set of rules in e
for » € R do
if 7 is an ISR then
p is the first interesting condition of
if not AToMIC(p) then
ICDS U {(e, r.index, r.domain, p)}
return ICD S

Given a Casanova program, we build the ICDS data
structure as follows: we iterate over every entity; for
every rule in each entity, if the rule is suspendable,
interesting and the predicate does not contain fields that
are affected by an atomic rule, we add the entity, the
rule index, the rule domain, and the predicate to the
ICDS (See Figure 1(c)).

We now focus on the identification of interesting
conditions that exhibit temporal locality.

Run-time efficient sleep/wake-up system: We use
the data structure generated by the analyzer to produce

two distinct kinds of rules: atomic rules (see Figure
1(b)) that are run every frame, and suspendable rules
(see Figure 1(g)). Every suspendable rule depends on
an IC. Because of the property of temporal locality of
rules that contain ICs, they do not need to run at every
frame. Therefore the game program should activate and
deactivate rules as needed at run time. The game needs
to: (i) activate a suspendable rule when its IC changes
value, and (ii) deactivate a suspendable rule when its
IC is not satisfied (i.e., when it is false). The game
keeps a rule active as long as the evaluation of its IC
is true. Suspendable rules differ from classic atomic
rules in Casanova since suspendable rules may become
inactive, i.e., they do not run during every update in the
game loop.

We define the Object Set (OBS) as the set of pairs
made of an instance of an entity and its field, that appear
as arguments in an IC. Information used to build an OBS
is collected by using the ICDS. The idea behind the
optimization is that, whenever the field of an element
of OBS changes during the game loop (see Figure 1(f)),
we activate the corresponding Interesting Suspendable

Rule (ISR) R by triggering it (see Figure 1(e)).
We implement the previous behavior by means of

dictionaries that keep track of the dependencies among
OBS and R. We use dictionaries in this implementation
since they exhibit the best asymptotic complexity with
respect to the following operations: check, add, remove,
and iterate. From now on we will refer these dictionaries
as Dictionary of Entity-Predicate DEP.

We use the static information from the ICDS (see
Figure 1(c)) to refer to the appropriate dictionary, based
on the shape of the IC, to generate unique names for
dictionaries. For every field in the predicate, we com-
bine the name of the type of the object containing the
field, the name of the field itself, the entity containing
the ISR, and the ISR index.

As key we use a pair made of the reference to the
object containing the field of the IC and the field itself.
As value we store a collection of pairs made of the
instance of the entity containing the ISR and the ISR
index. We use a collection because it might be the case
that one or more instances of the same entity type are
pending on the same specific object field. In the example
below the rule in E waits on a field X in the world,
and the wor1ld contains a collection of instances of E.
When X changes, all the rules of each instance of E
waiting for X must be resumed.

world W = X @ int; L : List<E>
rule X = wait 10; yield X + 1

entity E = ...
rule Y = wait world.X % 2 = 0; ...

An entry of the dictionary in the example would be
(world,X), (L[O0],rule Y).

Suspendable rules instantiate, destroy, and update:
In order to maintain the suspendable rules we identify
three stages that represent the life cycle of a suspendable
rule: i) On creation: when we instantiate an element
of which a field appears in one of the pairs of OBS, we
use the instance and the field itself as a key to populate
all its DEPs with an empty collection as value. When
we instantiate an entity of which rules are targeted by
an IC, we add the pair made of the entity instance and
each targeted rule as a value in its DEPs; ii) On destroy:
when an instance which appears either as a value or a
key in one of DEPs, we remove all the occurrences of
the instance in DEPs; iii) On update: when a field of
an IC changes we notify the entities pending on it. After
generating the IC data structure, we can safely refer to
the dictionaries relying on the fact that the generated
code is sound and will not produce errors at run-time.
As a consequence of a notification, the ISRs involved in
the notification will be activated during the next frame
(if they were inactive). We add them to a collection
representing the active rules of the entity containing the
involved ISRs (see Figure 1(d)). We group instances of
the same target type into the same collection to achieve
better performance (we iterate the active rules all at
the same time per type instead of iterating them while
iterating each entity). We store a collection in the world
that contains per entity all the suspended rules that are
run during a game iteration.

Rules in Casanova are translated at compile time into
a series of switches without nesting within functions
which return void. ISRs return Done when the evalu-
ation of their IC is false (stay inactive) or Working
when the evaluation of their IC is true (go active) or
we are still busy with the execution of the block after
the IC. When a suspendable rule gets suspended, i.e.,
its evaluation returns Done, we simply remove it from
the active rules collection (see Figure 1(a)).

Query interpretation: We transform a query into
semantically equivalent code where every entity appear-
ing in the from expression (source) adds or removes
itself from an index stored in the entity containing the
query (target). We add or remove a source entity in the
target index only if the condition is t rue. This is done
by generating a rule that waits for the condition to be
true in the target entity. Applying our optimization to
queries means that we do not need to iterate conditions
every frame: we keep the rule suspended until the
condition changes its value.

V. EVALUATION

In this section we evaluate the performance of our
approach. A comparison on the same Casanova game
code between the not optimized implementation and the
optimized one, and an implementation in C#, will be

shown and discussed in terms of run time performance
and code complexity.

Experimental setup: In order to get a systematic
evaluation of the proposed approach to encapsulation, a
generic game is considered, in which a group of entities
are spawned every K seconds and stay inactive for a
random amount of time, between 5 and 10 seconds.
Then they are activated and start moving for a randomly
determined amount of random time, between 4 and 8
seconds. Finally, they are destroyed, by triggering a
condition in the entities. For the evaluation additional
conditions are added (with different timers), in order
to make the simulation dynamics more articulated and
“heavy” in terms of amount of code to run.

In this experiment we compare the code generated by
the Casanova compiler, versus our optimization built in
the Casanova compiler, and an idiomatic implementa-
tion in the C# language (a commonly-used language
for building games). We also ran the games with two
different front ends, namely Unity3D and MonoGame,
both using .NET. For each test we measure the time
(in milliseconds) that the game takes to fully complete
a game iteration (i.e., updating all the entities in the
game). We did not include the time it takes to render
the game screen, since rendering is not affected by our
optimization, though it might affect the performance
measure.

Performance evaluation: Table 11 shows the per-
formance results. As we can see in both cases the
performance of our optimized Casanova 2 code is higher
than the one of non-optimized implementation, and
the idiomatic C# implementation. Using Unity3D the
optimized code is one order of magnitude faster with
respect to the non-optimized code. Using MonoGame
the optimization is linearly faster. The difference is due
to the implementation of the underlying frameworks.

TABLE I: Code lines comparison

Original language Optimized code Lines
Casanova - - 45
Casanova C# No 139
Casanova C# Yes 327

C# - - 88

Generated language

TABLE II: Running time comparison

Platform Language Optimized Performance

Casanova No 0.0159 ms

Monogame Casanova Yes 0.0098 ms
C# - 0.0147 ms

Casanova No 0.0257 ms

Unity3D Casanova Yes 0.0085 ms

C# - 0.1642 ms

Code size evaluation: Table 1 shows the code
length for each implementation. Casanova 2 game code
needs about half the lines of code compared to the
idiomatic C# implementation. The intermediate code
that the Casanova 2 compiler creates (which is C# code)
is considerably longer due to the presence of the support
data structures. With increasing code complexity, we
may expect the original Casanova 2 code to remain
compact, while the generated code will increase rapidly

in size, with additional data structures and associated
logic code. Writing such optimized code by hand is a
daunting and expensive task.

VI. CONCLUSIONS

Game developers often have to choose between main-
tainability of their code and speed of execution, a choice
which more often than not favors speed over main-
tainability. By using encapsulation, game code may be
written in a maintainable way, but compilation of encap-
sulated code in general-purpose languages often leads
to slower games. We proposed a solution to the loss of
performance in encapsulated programs using automated
optimization at compile-time. We presented an imple-
mentation of this solution in the Casanova 2 language.
We showed that our approach transforms encapsulated
code, through extensive automated optimization, into
a high-performance executable, that easily rivals the
speed of a C# implementation. Moreover, we showed
that Casanova 2 code needs about half the lines of code
as the C# implementation. We therefore conclude that
our approach allows game developers to write high-
performance code without losing maintainability.

REFERENCES

[1] CMP Media Game Developers Conference, 2004.

[2] Essential facts about the computer and video game indus-
try. http://www.theesa.com/wp-content/uploads/2015/04/ESA-
Essential-Facts-2015.pdf, 2015.

[3] Galcon. https://www.galcon.com/, 2015.

[4] M. Claypool and K. Claypool. Perspectives, frame rates and
resolutions: it’s all in the game. In International Conference on
Foundations of Digital Games. ACM, 2009.

[5] E. Collar Jr and R. Valerdi. Role of software readability on
software development cost. 2006.

[6] J. Courtney. Using ant colonization optimization to control
difficulty in video game ai. Undergraduate Honors Theses,
2010.

[7]1 J. Eder, G. Kappel, and M. Schrefl. Coupling and cohesion
in object-oriented systems. Technical Report, University of
Klagenfurt, Austria, 1994.

[8] ISO/IEC/IEEE. ISO/IEC/IEEE 24765 - Systems and software
engineering - Vocabulary. Technical report, 2010.

[9]1 M. Lewis and J. Jacobson. Game engines. Communications of
the ACM, 2002.

[10] G. Maggiore.
2013.

[11] P. Petridis, I. Dunwell, S. De Freitas, and D. Panzoli. An engine
selection methodology for high fidelity serious games. In Games
and Virtual Worlds for Serious Applications. IEEE, 2010.

[12] M. Prensky. Computer games and learning: Digital game-based
learning. Handbook of computer game studies, 2005.

[13] K. Rocki, M. Burtscher, and R. Suda. The future of accelerator
programming: Abstraction, performance or can we have both?
Symposium on Applied Computing. ACM, 2014.

[14] A. Snyder. Encapsulation and inheritance in object-oriented
programming languages. In ACM Sigplan Notices, 1986.

[15] A. J. Stapleton. Serious games: Serious opportunities. In
Australian Game Developers Conference, Academic Summit,
Melbourne, 2004.

[16] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi,
M. Odersky, and K. Olukotun. Delite: A compiler architecture
for performance-oriented embedded domain-specific languages.
Transactions on Embedded Computing Systems, 2014.

Casanova: a language for game development.

