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Abstract Two agents endowed with different categorisations engage in bargaining to
reach an understanding and agree on a common categorisation. We model the process
as a simple non-cooperative game and demonstrate three results. When the initial
disagreement is focused, the bargaining process has a zero-sum structure. When the
disagreement is widespread, the zero-sum structure disappears and the unique equilib-
rium requires a retraction of consensus: two agents who individually associate a region
with the same category end up rebranding it under a different category. Finally, we
show that this last equilibrium outcome is Pareto dominated by a cooperative solution
that avoids retraction; that is, the unique equilibrium agreement may be inefficient.

Keywords Categorical reasoning · Conceptual spaces · Semantic bargaining ·
Organisational codes · Shared cognitive maps

1 Introduction

It is widely documented that agents organise information by means of categories, with
significant implications over their behaviour (Cohen and Lefebvre 2005). This paper
is a theoretical foray in a strictly related but still poorly explored territory: what kind
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of outcome may emerge when two agents endowed with individual categorisations
interact and develop a common categorisation?

There exist different families of models for categorical reasoning; see Sect. 1 in
Kruschke (2008) for a concise overview. The model developed in this paper borrows
from the theory of conceptual spaces, proposed in Gärdenfors (2000) as an alternative
approach for the modelling of cognitive representations. A tenet of this theory is the
claim that natural concepts may be associated with convex regions of a suitable space
and, in particular, that a conceptual space consists of a collection of convex regions.
This underlying geometric structure resonates with early theories of categorisation
based on prototypes (Rotsch 1975; Mervis and Rotsch 1981), and has recently been
given both evolutionary (Jäger 2007) and game-theoretic foundations (Jäger et al.
2011).

Conceptual spaces, on the other hand, provide a representational framework that
may accommodate different notions. Recently, Gärdenfors (2014) has expanded their
scope towards semantics and the study of meaning. In particular, Warglien and Gär-
denfors (2013) suggest an interpretation of semantics as amapping between individual
conceptual spaces. People negotiate meaning by finding ways to map their own per-
sonal categorisations to a common one; see Warglien and Gärdenfors (2015) for an
insightful discussion with references. A well-known example is the integration of dif-
ferent cultures within an organisation, when different communication codes blend into
a commonly understood language (Wernerfelt 2004).

Warglien and Gärdenfors (2013) rely on the theory of fixed points to argue for the
plausibility of two individuals achieving a “meeting of minds” and sharing a common
conceptual space. Their approach, however, is merely existential and thus offers no
insight in the structure of the possible outcomes associatedwith establishing a common
conceptual space. We shed a constructive light by framing the problem of how two
agents reach a common understanding as the equilibrium outcome of a bargaining
procedure.

We borrow from the theory of conceptual spaces the assumption that agents’ cat-
egorisations correspond to a collection of convex categories or, for short, to a convex
categorisation. However, the neutrality of this latter term is meant to help the reader
keeping in mind that our results are consistent with, but logically independent from,
the theory of conceptual spaces.

We analyse a simple non-cooperative game where two agents, endowed with their
own individual convex categorisations, negotiate over the construction of a common
convex categorisation. Agents exhibit stubbornness as they are reluctant to give up on
their owncategorisation, but they are engaged in a dialectic process thatmust ultimately
lead to a common categorisation. The common convex categorisation emerges as
the (unique) equilibrium of the game, aligning it with the argument that meaning is
constructed and shared via an equilibrating process (Parikh 2010).

We demonstrate two main phenomena, depending on whether the disagreement
between agents’ individual spaces is focused or widespread. Under focused disagree-
ment, the bargaining process has a zero-sum structure: agents’ stubbornness leads to a
unique equilibrium where each concedes as little as possible, and the agents who has
a larger span of control over the process ends up being better off. Under widespread
disagreement, the zero-sum structure disappears and each agent confronts a dilemma:
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Fig. 1 A binary convex
categorisation

L Rl r

t

b

holding on to one of his individual categories weakens his position on another one.
At the unique equilibrium, these conflicting pressures force a retraction of consensus:
two agents who individually agree on a region falling under the same category end up
relabeling it in order to minimise conflict. Moreover, we uncover that convex categori-
sations may be a source of inefficiency: the equilibrium outcome is Pareto dominated
by the Nash bargaining solution without retraction.

The rest of the paper is organized as follows. Section 2 describes our game-theoretic
model. Section 3 defines two forms of disagreement (focused and widespread) and
states our results as theorems. Section 4 provides concluding comments. All proofs
are relegated in the appendix.

2 Model

There are two agents. Each agent i = 1, 2 has his own binary convex categorisation
over the closed unit disk C in R

2. Our qualitative results carry through for any convex
compact region C in R

2, but this specific choice is elegant and analytically advanta-
geous because C is invariant to rotations. Interestingly, Jäger and Van Rooij (2007)
also choose to develop their second case study under the assumption that the meaning
space is circular. Conventionally, we label the two concepts L for Left and R for Right
and use them accordingly in our figures.

The agents agree on the classification of two antipodal points in C : they both label
l = (−1, 0) as L and r = (0, 1) as R, respectively. Intuitively, this implies that the
agents’ categorisations are not incompatible. More formally, define the intersection of
the agents’ initial categorisations as their shared (partial) categorisation. Under our
assumption, the individual categorisations are compatible because the shared categori-
sation is not empty. On the other hand, since in general the individual categorisations
are different, the shared categorisation is only partial. The agents’ problem is to move
from their (partial) shared categorisation to a common (total) categorisation.

The categorisation of Agent i over C consists of two convex regions Li and Ri .
Dropping subscripts for simplicity, this may look like in Fig. 1. Clearly, the represen-
tation is fully characterized by the chord tb separating the two convex regions. The
endpoints t and b for the chord are located in the top and in the bottom semicircum-
ference, respectively. (To avoid trivialities, assume that the antipodal points l and r
are interior.) The two convex regions of the categorisation may differ in extension and
thus the dividing chord need not be a diameter for C .
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L R ⊕ L R ⇒ L R

Primus Secunda Common categorisation

Fig. 2 The search for a common categorisation

Fig. 3 The disagreement area

L R L R

Consider the categorisations of the two agents. Unless t1b1 = t2b2, the regions
representing the concepts are different and the shared categorisation is partial. If the
agents are to reach a common categorisation, they must negotiate an agreement and go
through a bargaining process over categorisations, where each agent presumably tries
to push for preserving asmuch as possible of his ownoriginal individual categorisation.
Figure 2 provides a pictorial representation for the process: Agent 1 (Primus) and
Agent 2 (Secunda) negotiate a common categorisation as a compromise between their
own individual systems of categories.

We provide a simple game–theoretic model for their interaction and study the
equilibrium outcomes.We do not claim any generality for our model, but its simplicity
should help making the robustness of our results transparent.

The two agents play a gamewith complete information, where the endpoints (ti , bi )
of each agent i are commonly known. Without any loss of generality, let Primus be
the agent for whom t1 precedes t2 in the clockwise order. Primus picks a point t in
the arc interval [t1, t2] from the top semicircumference, while Secunda simultaneously
chooses a point b between b1 and b2 from the bottom semicircumference. The resulting
chord tb defines the common categorisation. Under our assumption that the antipodal
points l and r are interior, the agents cannot pick either of them.

Each agent evaluates the common categorisation against his own. Superimposing
these two spaces, there is one region where the common categorisation and the indi-
vidual one agree and (possibly) a second region where they disagree. For instance,
consider the left-hand side of Fig. 3where the solid and the dashed chords represent the
agent’s and the common categorisation, respectively. The two classifications disagree
over the central region, coloured in grey on the right-hand side.

Each agent wants to minimise the disagreement between his own individual and
the common categorisation. For simplicity, assume that the payoff for an agent is the
opposite of the area of the disagreement region D; that is, ui = −λ(Di ) where λ

is the Lebesgue measure. (Our qualitative results carry through for any absolutely
continuous measure μ.) Note that the region D need not be convex: when the chords
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Fig. 4 Focused (left) and
widespread disagreement (right)

L R L R

underlying the agent’s and the common categorisation intersect inside the disc, D
consists of two opposing circular sectors.

3 Results

The study of the equilibria is greatly facilitated if we distinguish three cases. First,
when t1 = t2 and b1 = b2, the two individual categorisations (as well as the initial
shared categorisation) are identical: the unique Nash equilibrium has t∗ = t1 and
b∗ = b2, and the common categorisation agrees with the individual ones. This is a
trivial case, which we consider no further. From now on, we assume that the two
individual categorisations disagree and thus the initial shared categorisation is only
partial; that is, either t1 �= t2 or b1 �= b2 (or both).

The other two cases depend on the shape of the disagreement region D. When t1b1
and t2b2 do not cross inside the disc, then D is a convex set as in the left-hand side of
Fig. 4.We define this situation as focused disagreement, because one agent labels D as
L and the other as R. The disagreement is focused on whether D should be construed
as L or R.

Instead, when t1b1 and t2b2 cross strictly inside the disc, then D is the union of
two circular sectors as in the right-hand side of Fig. 4. This is the case of widespread
disagreement, because the two agents label the two sectors in opposite ways: the top
sector is L for one and R for the other, while the opposite holds for the bottom sector.

3.1 Focused disagreement

Under focused disagreement, t1 precedes t2 and b2 precedes b1 in the clockwise order.
The disagreement region is convex and the interaction is a game of conflict: as Primus’s
choice of t moves clockwise, his disagreement region (with respect to the common
categorisation) increases, while Secunda’s decreases. In particular, under our simpli-
fying assumption that payoffs are the opposites of the disagreement areas, this is a
zero-sum game.

Intuitively, players have opposing interests over giving up on their individual cate-
gorisations. Therefore, we expect that in equilibrium each player concedes as little as
possible. In our model, this leads to the stark result that theymake no concessions at all
over whatever is under their control. That is, they exhibit maximal stubbornness. This
is made precise in the following theorem, that characterises the unique equilibrium.
All proofs are relegated in the appendix.
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Fig. 5 The unique equilibrium
outcome under focused
disagreement

L Ro

t1 t2

b1 b2

Theorem 1 Under focused disagreement, the unique Nash equilibrium is (t∗, b∗) =
(t1, b2). Moreover, the equilibrium strategies are dominant.

Figure 5 illustrates the equilibrium outcome corresponding to the situation depicted
on the left-hand side of Fig. 4. The thick line defines the common categorisation. In
this example, Primus and Secunda give up the small grey area on the left and on the
right of the thick line, respectively. Note how Primus and Secunda stubbornly stick
to their own original t1 and b2. Moreover, Primus gives up a smaller area and thus
ends up being better off than Secunda. This shows that, in spite of its simplicity, the
game is not symmetric. Our next result elucidates which player has the upper hand in
general. Formally, let (t s, bs) be the Nash bargaining solution, with t s and bs being
the midpoints of the two players’ strategy sets. We say that in equilibrium Primus is
stronger than Secunda if u1(t∗, b∗) ≥ u1(t s, bs) = u2(t s, bs) ≥ u2(t∗, b∗).

To gain intuition, consider again Fig. 5. The thick line defining the common cate-
gorisation divides the disagreement region into two sectors S1(t1t2b2) and S2(b2b1t1).
Primus wins S1 and loses S2; so he is stronger when λ(S1) ≥ λ(S2). The area of S1
depends on the angular distance τ = t̂1ot2 controlled by Primus and on the angular
distance θR = t̂2ob2 underlying the arc that is commonly labeled R; similarly, the area
of S2 depends on β = b̂1ob2 and θL = t̂1ob1. Primus is advantaged when τ ≥ β and
θR ≥ θL . The first inequality implies that his span of control is higher. The second
inequality makes the common categorisation for R less contestable than for L, so that
Primus’ stubborn clinging to t1 is more effective than Secunda’s choice of b2. The next
result assumes that a player (say, Primus) has the larger span of control: then Primus is
stronger when his span of control is sufficiently large, or when R is more contestable
than L but the opponent’s span of control is small enough.

Proposition 2 Suppose τ ≥ β. If τ ≥ β + (θL − θR), then Primus is stronger. If
τ < β + (θL − θR), then there exists β such that Primus is stronger if and only if
β ≤ β.

3.2 Widespread disagreement

Under widespread disagreement, t1 precedes t2 and b1 precedes b2 in the clockwise
order. The disagreement region is not convex and the interaction is no longer a zero-
sum game. We simplify the analysis by making the assumption that the two chords
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Fig. 6 The unique equilibrium
outcome under widespread
disagreement

L Ro

t1 t2

b2 b1

characterising the players’ categorisations are diameters. Then the two angular dis-
tances τ = t̂1ot2 and β = b̂1ob2 are equal, the players have the same strength and the
game is symmetric.

Players’ stubbornness now has a double-edged effect, leading to a retraction of
consensus at the unique equilibrium. Before stating it formally, we illustrate this result
with the help of Fig. 6, drawn for the special case τ = β = π/2. The thick line depicts
the common categorisation at the unique equilibrium for this situation.

Consider Primus. Choosing t very close to t1 concedes little on the upper circular
sector, but exposes him to the risk of a substantial loss in the lower sector. This
temperates Primus’ stubbornness and, in equilibrium, leads him to choose a value of
t∗ away from t1. However, as his opponent’s choice makes the loss from the lower
sector smaller than the advantage gained in the upper sector, the best reply t∗ stays
closer to t1 than to t2. An analogous argument holds for Secunda.

A surprising side-effect of these tensions is that, in equilibrium, the common cat-
egorisation labels the small white triangle between the thick line and the origin as
R, in spite of both agents classifying it as L in their own individual systems of cat-
egories. That is, in order to reach an agreement, players retract their consensus on
a small region and agree to recategorize part of their initial shared categorisation.
The following theorem characterise the unique equilibrium by means of the two
angular distances t̂∗ot1 and b̂∗ob2. It is an immediate corollary that the retraction
of consensus always occurs, unless τ = 0 and the two agents start off with identical
categorisations.

Theorem 3 Suppose that the individual categorisations are supported by diameters,
so that τ = β. Under widespread disagreement, there is a unique Nash equilibrium
(t∗, b∗) characterised by

t̂∗ot1 = b̂∗ob2 = arctan

(
sin τ√

2 + 1 + cos τ

)
.

As the equilibrium necessitates a retraction of consensus, it should not be surprising
that we have an efficiency loss that we call the cost of consensus. The equilibrium
strategies lead to payoffs that are Pareto dominated by those obtained under different
strategy profiles. The following result exemplifies the existence of such cost using the
natural benchmark provided by the Nash bargaining solution (t s, bs), with t s and bs

being the midpoints of the respective arc intervals.

123



712 Synthese (2016) 193:705–723

Proposition 4 Suppose that the individual categorisations are supported by diame-
ters. Under widespread disagreement, ui (t∗, b∗) ≤ ui (t s, bs) for each player i = 1, 2,
with the strict inequality holding unless τ = 0.

4 Concluding comments

The game-theoretic model presented and solved in this paper is a mathematically
reduced form, consistent with different interpretations. As discussed in the introduc-
tion, our motivation originates with a few recent contributions about the negotiation
of meaning. Accordingly, we suggest to interpret the convex regions of a conceptual
space as the (simplified) representation of lexical meanings for words (Gärdenfors
2014a). Each agent enters the negotiation with his own mapping between words and
their meaning, and the purpose of their interaction is to generate a common mapping.
This is a first step in the ambitious program of “modelling communication between
agents that have different conceptual models of their current context”, as proposed by
Honkela et al. (2008).

If one also accepts the classical view that concepts have definitional structures, it is
possibile to expand the scope of our model to the negotiation of concepts. However,
we believe that the underlying philosophical difficulties make this a slippery path and
we prefer to confine our discussion to the negotiation of lexical meaning for words.
This places our contribution within the recent literature emphasising a game–theoretic
approach to the analysis of language (Benz et al. 2005; Clark 2012; Parikh 2010).

Finally, we mention some advantages and limitations in our model. The use of
noncooperative game theory highlights the “mixed motives” described in Warglien
and Gärdenfors (2015): the negotiation agents have a common interest in achieving
coordination on a common categorisation, tempered by individual reluctance in giving
up their own categories. This conflict is a channel through which egocentrism affects
pragmatics (Keysar 2007), and we show that it may impair efficiency. On the other
hand, the simplicity of our model leaves aside important issues of context, vagueness
and dynamics in the negotiation of the lexicon (Ludlow 2014).
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Appendix: Proofs

Proof of Theorem 1

Theproof is a bit long, but straightforward. It is convenient to introduce someadditional
notation. The endpoints (ti , bi ) for the two agents’ chords and their choices for t and

123

http://creativecommons.org/licenses/by/4.0/


Synthese (2016) 193:705–723 713

Fig. 7 Visual aids for the proof
of Theorem 1
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b identify six sectors. Proceeding clockwise, these are numbered from 1 to 6 on the
left-hand side of Fig. 7. For each sector i , we denote its central angle by θi ; that is,
we let θ1 = t̂1ot , θ2 = t̂ot2, θ3 = t̂2ob2, θ4 = b̂2ob, θ5 = b̂ob1, and θ6 = b̂1ot1. The
following lemma characterises the disagreement area of each player as a function of
the six central angles.

Lemma 1 The disagreement areas for Primus and Secunda are, respectively:

λ(D1) = θ1 + θ5 + sin θ6 − sin (θ1 + θ5 + θ6)

2
, (1)

and

λ(D2) = θ2 + θ4 + sin θ3 − sin (θ2 + θ3 + θ4)

2
.

Proof The disagreement region D1 for Primus can be decomposed into the two sector-
like regions S1(t1bb1) and S2(t1tb) as shown on the right-hand side of Fig. 7. (The
figure illustrates a special case, but the formulas hold in general.) We compute the
areas λ(S1) and λ(S2), and then add them up to obtain λ(D1).

Consider S1(t1bb1). It can be decomposed into two regions: the circular segment
from b to b1 with central angle θ5, and the triangle T (t1bb1). The area of a circular
segment with central angle θ and radius r is r2(θ −sin θ)/2, which in our case reduces
to (θ5 − sin θ5)/2. Concerning the triangle, the inscribed angle theorem implies that
the angle b̂1t1b = θ5/2; hence, by the law of sines, its area can be written as

t1b × t1b1 × sin(θ5/2)

2
. (2)

Finally, by elementary trigonometry, t1b = 2 sin [(θ5 + θ6)/2] and t1b1 = 2 sin [(θ6)/
2]. Substituting into (2) and adding up the areas of the two regions, we obtain

λ(S1) = θ5 − sin θ5

2
+ 2 sin

(
θ5

2

)
sin

(
θ6

2

)
sin

(
θ5 + θ6

2

)
.
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By a similar argument, we obtain

λ(S2) = θ1 − sin θ1

2
+ 2 sin

(
θ1

2

)
sin

(
θ5 + θ6

2

)
sin

(
θ1 + θ5 + θ6

2

)
.

Summing up λ(S1) and λ(S2), we find

λ(D1) = θ1 − sin θ1

2
+ θ5 − sin θ5

2

+ 2 sin

(
θ5 + θ6

2

) [
sin

(
θ1

2

)
sin

(
θ1+θ5+θ6

2

)
+ sin

(
θ5

2

)
sin

(
θ6

2

)]
.

(3)

After somemanipulations shown separately in the following Lemma 2, this expres-
sion simplifies to

λ(D1) = θ1 + θ5 + sin θ6 − sin (θ1 + θ5 + θ6)

2
.

The derivation of a specular formula for λ(D2) is analogous. ��
Lemma 2 The expression in (3) for λ(D1) can be rewritten as

λ(D1) = θ1 + θ5 + sin θ6 − sin (θ1 + θ5 + θ6)

2
.

Proof Let p = θ5/2 and q = θ6/2. Then

λ(S1) = 2p − sin (2p)

2
+ 2 sin (p) sin (q) sin (p + q)

= 2p − sin (2p)

2
+ 2 sin (p + q) [cos (p − q) − cos (p + q)]

= 2p − sin (2p)

2
+ 2 sin (p + q) cos (p − q) − sin [2 (p + q)]

2

= 2p − sin (2p)

2
+ sin (2p) + sin (2q)

2
− sin [2 (p + q)]

2

= 2p + sin (2q) − sin [2 (p + q)]

2

= θ5 + sin (θ6) − sin (θ5 + θ6)

2
.

An analogous derivation with p = θ1/2 and q = (θ5 + θ6)/2 leads to

λ(S2) = θ1 + sin (θ5 + θ6) − sin [(θ1 + θ5 + θ6)]

2
.

Summing up λ(S1) and λ(S2) we obtain the target formula for λ(D1). ��
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Proof of Theorem 1 We compute Primus’ best reply function. Given t1, b1, t2, b2, and
b, Primus would like to choose t in order to minimise λ(D1). Because of the 1–1
mapping between t and θ1, we can reformulate this problem as the choice of the
optimal angle θ1 and compute his best reply with respect to θ1. Differentiating (1)
from Lemma 1, we find

∂λ(D1)

∂θ1
= 1 − cos(θ1 + θ5 + θ6)

2
> 0

for any argument, because 0 < |θ1 + θ5 + θ6| < 2π under the assumption that l and
r are interior. Since λ(D1) is (strictly) increasing in θ1, minimising θ1 by choosing
t = t1 is a dominant strategy for Primus. By a similar argument, b = b2 is a dominant
strategy for Secunda. Thus, the unique Nash equilibrium (in dominant strategies) is
(t∗, b∗) = (t1, b2). ��

Proof of Proposition 2

We use the same notation of the previous proof. Hence, τ = t̂1ot2 = θ1 + θ2 and
β = b̂1ob2 = θ4 + θ5. Moreover, θR = θ3 and θL = θ6.

Proof The thick line defining the common categorisation divides the disagreement
region into two sectors S1(t1t2b2) and S2(b2b1t1). The area λ(S1) is the difference
between the areas of the circular segment from t1 to b2 with central angle (τ + θ3) and
of the circular segment from t2 to b2 with central angle θ3. Hence,

λ(S1) = τ + sin θ3 − sin(τ + θ3)

2
.

Similarly,

λ(S2) = β + sin θ6 − sin(β + θ6)

2
.

Note that (τ + θ3) + (β + θ6) = 2π ; consequently, sin(τ + θ3) = − sin(β + θ6).
Clearly, Primus is stronger if and only if λ(S1) − λ(S2) ≥ 0. The sign of the

difference

λ(S1) − λ(S2) = τ − β + sin θ3 − sin θ6 − 2 sin(τ + θ3)

2
(4)

is not trivial. We distinguish two cases and study such sign.

(1) Assume τ + θ3 ≥ π ≥ β + θ6. We consider two sub-cases, depending on the sign
of θ6 − θ3. Let us begin with θ6 ≥ θ3. We have

λ(S1) − λ(S2) = τ − β + sin θ3 − sin θ6 − 2 sin(τ + θ3)

2

= 2(τ + θ3 − π) + [(θ6 − sin θ6) − (θ3 − sin θ3)] − 2 sin(τ + θ3)

2
.
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Since τ + θ3 ≥ π by assumption, the first and the last term in the numerator are
positive. Moreover, as the function x−sin x is increasing on (0, π), the term in square
brackets is also positive. Hence, λ(S1) − λ(S2) ≥ 0.

Consider now the sub-case θ6 < θ3. Decomposing S1 into the circular segment
from t1 to t2 with central angle τ and the triangle T (t1t2b2), we obtain

λ(S1) = τ − sin τ

2
+ 2 sin

(
θ3

2

)
sin

(
τ + θ3

2

)
sin

(τ

2

)
,

and similarly,

λ(S2) = β − sin β

2
+ 2 sin

(
θ6

2

)
sin

(
β + θ6

2

)
sin

(
β

2

)
.

Hence,

λ(S1) − λ(S2) = (τ − sin τ) − (β − sin β)

2

+2 sin

(
τ + θ3

2

)[
sin

(
θ3

2

)
sin

(τ

2

)
− sin

(
θ6

2

)
sin

(
β

2

)]
.

The first term is positive by the increasing monotonicity of the function (x − sin x) on
(0, π). We claim that the second term is also positive. If θ3 ≤ π , this follows because
sin x is increasing in (0, π/2), and thus sin(θ3/2) sin(τ/2) ≥ sin(θ3/2) sin(β/2) ≥
sin(θ6/2) sin(β/2). If θ3 > π , then θ6 ≤ τ +β+θ6 = 2π−θ3 < π ; thus, sin (θ6/2) ≤
sin (π − θ3/2) = sin(θ3/2), which suffices to establish the claim. From the positivity
of the two terms, we conclude that λ(S1) ≥ λ(S2).

(2) Assume τ + θ3 < β + θ6. Since by assumption τ ≥ β, we have θ6 ≥ θ3. By (4),
using the identity τ + β + θ3 + θ6 = 2π , we have

2 [λ(S1) − λ(S1)] = τ − β + sin θ3 + sin (τ + β + θ3) − 2 sin(τ + θ3)

and it suffices to study the sign of the right-hand term. Fix t2 and b2. Given τ in (0, π),
consider the function f (β) = τ −β + sin θ3 + sin (τ + β + θ3)− 2 sin(τ + θ3) for β

in (0, π). Since f ′(β) = −1+cos(τ +β +θ3) < 0, the function is strictly decreasing
on [0, τ ]. Moreover,

f (0) = τ + sin θ3 − sin (τ + θ3) = [(τ + θ3) − sin (τ + θ3)] − (θ3 − sin θ3) ≥ 0

by the increasing monotonicity of (x − sin x) on [0, π ]. Finally, we have

f (τ ) = sin θ3 + sin(θ3 + 2τ) − 2 sin(τ + θ3)

= sin(θ3) + [sin(θ3) cos(2τ) + cos(θ3) sin(2τ)]

−2 [sin(τ ) cos(θ3) + cos(τ ) sin(θ3)]

= sin(θ3) [1 + cos(2τ) − 2 cos τ ] + cos(θ3) [sin(2τ) − 2 sin τ ]
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Fig. 8 Visual aids for the proof
of Theorem 3
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Using the identities cos(2τ) = 2 cos2 τ − 1 and sin(2τ) = 2 sin τ cos τ , we obtain

f (τ ) = 2 [cos τ − 1] sin (τ + θ3) ≤ 0.

By the intermediate value theorem, there exists a uniqueβ in [0, τ ] such that f (β) = 0.
For β ≤ β, λ(S1) ≥ λ(S2) and Primus is stronger. For β > β, the opposite inequality
holds and Secunda is stronger. ��

4.1 Proof of Theorem 3

Similarly to the above (except for switching b1 and b2), the endpoints (ti , bi ) for
the two agents’ chords and their choices for t and b identify six sectors. Proceeding
clockwise, these are numbered from 1 to 6 on the left-hand side of Fig. 8.

For each sector i , we denote its central angle by θi . The notation is similar, except
that now θ3 = t̂2ob1, θ4 = b̂1ob, θ5 = b̂ob2, and θ6 = b̂2ot1. Recall that τ = θ1 + θ2
and β = θ4 + θ5; moreover, since the categorisations are characterised by diameters,
τ = β. The following lemma characterises the disagreement area of each player as a
function of the six central angles.

Lemma 3 The disagreement areas for Primus and Secunda are, respectively:

λ(D1) = θ1 − sin θ1

2
+θ4 − sin θ4

2
+2 cos

(
θ1

2

)
cos

(
θ4

2

)
sin2 (θ1/2) + sin2 (θ4/2)

sin (θ1/2 + θ4/2)
,

(5)
and

λ(D2) = θ2−sin θ2

2
+ θ5−sin θ5

2
+ 2 cos

(
θ2

2

)
cos

(
θ5

2

)
sin2 (θ2/2)+sin2 (θ5/2)

sin (θ2/2+θ5/2)
.

Proof The disagreement region D1 for Primus can be decomposed into the two sector-
like regions S1(t1tk) and S2(kb1b) as shown on the right-hand side of Fig. 8. We
compute the areas λ(S1) and λ(S2), and then add them up to obtain λ(D1).

The region S1(t1tk) can be decomposed into two parts: the circular segment from
t1 to t with central angle θ1, and the triangle T (t1tk). The area of the circular segment
is (θ1 − sin θ1)/2. The computation of the area of the triangle needs to take into
account that the position of k depends on t . We use the ASA formula: given the
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length a of one side and the size of its two adjacent angles α and γ , the area is
(a2 sin α sin γ )/ (2 sin(α + γ )). We pick a = t t1, α = k̂t1t , and γ = t̂1tk. By the
inscribed angle theorem, α = (π − θ1)/2 and γ = (π − θ4)/2. Recall that t t1 =
2 sin(θ1/2); moreover, sin α = sin ((π − θ1)/2) = cos(θ1/2) and, similarly, sin γ =
cos(θ4/2). Hence,

λ(T ) = 2 (sin(θ1/2))2 · cos(θ1/2) · cos(θ4/2)
sin (θ1/2 + θ4/2)

.

Adding up the two areas, we obtain

λ(S1) = θ1 − sin θ1

2
+ 2 (sin(θ1/2))2 · cos(θ1/2) · cos(θ4/2)

sin (θ1/2 + θ4/2)
.

By a similar argument,

λ(S2) = θ4 − sin θ4

2
+ 2 (sin(θ4/2))2 · cos(θ1/2) · cos(θ4/2)

sin (θ1/2 + θ4/2)
.

Summing up λ(S1) and λ(S2) provides the formula for λ(D1). The derivation of a
specular formula for λ(D2) is analogous. ��

A direct study of the sign of the derivative ∂λ(D1)/∂θ1 is quite involved, but the
following lemma greatly simplifies it. An analogous result holds for Secunda.

Lemma 4 Let a = cos(θ4/2), b = sin(θ4/2), c = ab = sin(θ4)/2, and x =
tan(θ1/4). Then

sgn

[
∂λ(D1)

∂θ1

]
= sgn [P(x)] , (6)

where

P(x) = −
[
c
(
1 + x2

)2 − 2
(√

2 + 1
)
x

(
1 − x2

) ]
.

Proof Differentiating (5) from Lemma 3 and using a few trigonometric identities, we
obtain

∂λ(D1)

∂θ1
=1 − cos θ1

2
+ 2 sin(θ1/2) cos2(θ1/2) cos(θ4/2)

sin (θ1/2 + θ4/2)

− cos(θ4/2)
[
sin2(θ1/2) + sin2(θ4/2)

]
sin2 (θ1/2 + θ4/2)

×
[
sin(θ1) sin(θ1/2 + θ4/2) + cos(θ1) cos(θ1/2 + θ4/2)

]
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= sin2(θ1/2) + sin(θ1) cos(θ1/2) cos(θ4/2)

sin (θ1/2 + θ4/2)

− cos2(θ4/2)
[
sin2(θ1/2) + sin2(θ4/2)

]
sin2 (θ1/2 + θ4/2)

Let a = cos(θ4/2), b = sin(θ4/2), and x = tan(θ1/4). Recall the double angle
formulas sin(θ1/2) = 2x/(1 + x2) and cos(θ1/2) = (1 − x2)/(1 + x2). Then

sin

(
θ1 + θ4

2

)
= a

(
2x

1 + x2

)
+ b

(
1 − x2

1 + x2

)
= 2ax + b(1 − x2)

1 + x2
.

Substituting with respect to the new variable x , we find

∂λ(D1)

∂θ1
=

(
2x

1 + x2

)2

+ 4ax(1 − x2)2(
1 + x2

)2 [
2ax + b(1 − x)2

] − a2
[
4x2 + b2(1 + x2)2

]
[
2ax + b(1 − x)2

]2
= − N (x)

(1 + x2)2
[
2ax + b(1 − x2)

]2 , (7)

where using the identity a2 + b2 = 1, the polynomial in the numerator can be written
as

N (x) = a2
(
1 + x2

)2 [
4x2 + b2

(
1 + x2

)2] − 4ax
(
1 − x2

)2 [
2ax + b(1 − x2)

]

− 4x2
[
2ax + b(1 − x2)

]2
.

Let c = ab = sin(θ4)/2 and rewrite N (x) after collecting terms with respect to c:

N (x) = c2
(
1 + x2

)4 − 4cx
(
1 − x2

) (
1 + x2

)2 − 4x2
(
1 − x2

)

=
[
c
(
1 + x2

)2 − 2x
(
1 − x2

)]2
−

[
2
√
2x

(
1 − x2

)]2

=
[
c
(
1 + x2

)2 − 2
(√

2 + 1
)
x

(
1 − x2

)]

×
[
c
(
1 + x2

)2 + 2
(√

2 − 1
)
x

(
1 − x2

)]
.

As both θ1 and θ4 are in the open interval (0, π) by construction, we have x =
tan(θ1/4) > 0 and c = sin(θ4)/2 > 0; hence, the second term in the multiplication is
strictly positive. Returning to (7), this implies

sgn

[
∂λ(D1)

∂θ1

]
= − sgn [N (x)] = sgn [P(x)] ,

with P(x) = −
[
c(1 + x2)2 − 2(

√
2 + 1)x(1 − x2)

]
, as it was to be shown. ��
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It is convenient to work with the central angles subtended by the points on the
circumference.Recall that, given t1, t2, b1, andb2, Primus andSecunda simultaneously
choose t and b, respectively. Then Secunda’s choice of b is in a 1-1 mapping with the
angle θ5 = b̂2ob, while Primus’ choice of t has a similar relation to θ1 = t̂1ot .

The following lemma characterizes Primus’ best reply using the central angles θ1
and θ5, rather than the endpoints t and b. As it turns out, such best reply is always
unique; hence, with obvious notation, we denote it as the function θ1 = r1(θ5). Cor-
respondingly, let θ5 = r2(θ1) be the best reply function for Secunda. Finally, recall
our assumption that the individual categorisations are supported by diameters: this
implies that the two angular distances τ = θ1 + θ2 and β = θ4 + θ5 are equal with
0 ≤ τ = β < π ; moreover, players’ initial positions have the same strength and the
game is symmetric.

Lemma 5 The best reply functions for the two players are

r1(θ5) = arcsin

(
sin (β − θ5)√

2 + 1

)
and r2(θ1) = arcsin

(
sin (τ − θ1)√

2 + 1

)
,

with 0 ≤ θ5 ≤ β and 0 ≤ θ1 ≤ τ .

Proof Consider Primus. (The argument for Secunda is identical.) For any θ5 in [0, β],
we search which value of θ1 in [0, τ ] minimises λ(D1). We distinguish two cases.

First, suppose θ5 = β. Then θ4 = 0 and λ(D1) = (θ1 + sin θ1) /2. As this function
is increasing in θ1, the optimal value is θ∗

1 = 0.
Second, suppose θ5 < β.We begin by finding the stationary points of λ(D1). Recall

that we let x = tan(θ1/4). By Lemma 4, ∂λ(D1)/∂θ1 = 0 if and only if P(x) = 0;
that is, if and only if

c =
2

(√
2 + 1

)
x

(
1 − x2

)
(
1 + x2

)2 .

Replacing the double angle formulæ sin(θ1/2) = 2x/(1 + x2) and cos(θ1/2) =
(1 − x2)/(1 + x2), we obtain

c =
(√

2 + 1
)
sin

(
θ1

2

)
cos

(
θ1

2

)
=

(√
2 + 1

) sin θ1

2
.

On the other hand, since c = (sin θ4) /2 by definition and θ4 + θ5 = β, this yields

sin θ1 = sin θ4√
2 + 1

= sin (β − θ5)√
2 + 1

.

Since θ5 ∈ [0, β], the only solutions to this equation are the supplementary angles θ ′
1

and θ ′′
1 = π − θ ′

1 with

θ ′
1 = arcsin

(
sin (β − θ5)√

2 + 1

)
<

π

2
< π − θ ′

1 = θ ′′
1 .

These are the stationary points for λ(D1).
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Clearly, θ ′
1 ≥ 0. We claim that θ ′

1 < τ . If π/2 ≤ τ , this is obvious. Suppose instead
τ < π/2. Since θ4 < β = τ < π/2, we have sin θ ′

1 = (√
2 − 1

)
sin(θ4) < sin θ4 <

sin τ and thus θ ′
1 < τ . We conclude that the stationary point θ ′

1 belongs to the interval[0, τ ].
For θ1 = 0, we have x = 0 and P(x)|x=0 = −c = −(sin θ4)/2 < 0. Therefore,

we have by continuity that P(x) changes sign from negative to positive in θ ′
1 and from

positive to negative in θ ′′
1 . By Lemma 4, this implies that the only local minimisers

for λ(D1) in the compact interval [0, τ ] are θ = θ ′
1 and θ = τ . Comparing the

corresponding values for λ(D1), we find

λ(D1)|θ1=θ ′ < λ(D1)|θ1=0 < λ(D1)|θ1=τ ,

where the first inequality follows from the (strict) negativity of ∂λ(D1)/∂θ1 in [0, θ ′)
and the second inequality from a direct comparison. Hence, the global minimiser is
θ ′. Combining the two cases, it follows that, for any θ5 in [0, β], the unique best reply
is r1(θ5) = arcsin

[
sin

(
β − θ5

)
/
(√

2 + 1
)]
. ��

Proof of Theorem 3 A Nash equilibrium is any fixed point (θ1, θ5) of the map

(
θ1

θ5

)
=

(
r1(θ5)

r2(θ1)

)

from [0, τ ]×[0, β] into itself. Substituting from Lemma 5 and using τ = β, we obtain
the system of equations ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

sin(θ1) = sin (τ − θ5)√
2 + 1

sin(θ5) = sin (τ − θ1)√
2 + 1

(8)

Multiplying across gives

sin(θ1) sin(τ − θ1) = sin(θ5) sin(τ − θ5);

or, using the prosthaphaeresis formula,

cos (2θ1 − τ) − cos τ = cos (2θ5 − τ) − cos τ

from which we get that the only two possible solutions in [0, τ ] are

θ1 = θ5 or θ1 = τ − θ5.

When τ > 0, the second possibility can be discarded because, when replaced in (8),
it would yield the contradiction θ1 = θ5 = τ = 0. (When τ = 0, we trivially obtain
θ1 = −θ5 = τ = 0 as in the first case.) Hence, we are left with θ1 = θ5.
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Substituting in the first Eq. of (8), we obtain

sin(θ1) = sin (τ − θ1)√
2 + 1

= sin τ cos θ1 − cos τ sin θ1√
2 + 1

.

As 0 ≤ θ1 < π/2, dividing by cos θ1 yields

tan(θ1) = sin τ√
2 + 1 + cos τ

and the result follows. ��

4.2 Proof of Proposition 4

Proof Recall that the payoff for an agent is the opposite of the area of the disagreement
region. Consider Primus. (The proof for Secunda is analogous.) Let D∗ and Ds be
the region of disagreement between Primus’ and the common categorisation at the
equilibrium and, respectively, at the Nash cooperative solution. For τ = 0, D∗ = Ds .
Hence, we assume τ �= 0 and show that λ(D∗) − λ(Ds) > 0.

At the Nash bargaining solution, θ s1 = θ s2 = τ/2; replacing these into (6), we find
λ(Ds) = τ/2. At the Nash equilibrium, θ∗

1 = θ∗
5 and thus θ∗

4 = τ − θ∗
1 ; substituting

these into (6) and dropping superscripts and subscripts for simplicity, we obtain

λ(D∗) = τ

2
−

[
sin θ + sin (τ − θ)

2

]

+ 2 cos

(
θ

2

)
cos

(
τ − θ

2

)
sin2 (θ/2) + sin2 ((τ − θ)/2)

sin (τ/2)
.

Hence, using standard trigonometric identities,

λ(D∗) − λ(Ds) = −
[
sin θ + sin (τ − θ)

2

]

+ 2 cos

(
θ

2

)
cos

(
τ − θ

2

)
sin2 (θ/2) + sin2 ((τ − θ)/2)

sin (τ/2)

= − sin
(τ

2

)
cos

(
θ − τ

2

)

+
[

1

sin(τ/2)

] [
cos

(τ

2

)
+ cos

(
θ− τ

2

)] [
1− cos θ

2
− cos(τ −θ)

2

]

= −
[

1

sin(τ/2)

] [
1 − cos2

(τ

2

)]
cos

(
θ − τ

2

)

+
[

1

sin(τ/2)

] [
cos

(τ

2

)
+ cos

(
θ − τ

2

)]
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×
[
1 − cos

(τ

2

)
cos

(
θ − τ

2

)]

=
[
cos(τ/2)

sin(τ/2)

]
sin2

(
θ − τ

2

)
,

from which we obtain

sgn
[
λ(D∗) − λ(Ds)

] = sgn [tan(τ/2)] .

Since 0 < τ < π , tan(τ/2) > 0, and the claim follows. ��
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