Development of security extensions based on Chrome APIs

Riccardo Focardi and Mauro Tempesta

Dipartimento di Scienze Ambientali, Informatica e Statistica
Universita Ca’ Foscari, Venezia, Italy
focardiQunive.it, 8274000@stud.unive. it

Abstract

Client-side attacks against web sessions are a real concern for many applications. Realizing protection
mechanisms on the client side, e.g. as browser extensions, has become a popular approach for securing
the Web. In this paper we report on our experience in the implementation of SESSINT, an extension
for Google Chrome that protects users against a variety of client-side attacks, and we discuss some
limitations of the browser APIs that negatively impacted on the design process.

Introduction

In the last years, the Internet has become an integral part of our life. Everyday activities are
more and more digitalized and made available on-line, including critical ones such as financial
operations or health data management, and need to be adequately protected to prevent a variety
of cyber-criminals from stealing confidential data and impersonating legitimate users.

A relevant subset of web security incidents is represented by client-side attacks against web
sessions [1], i.e. attacks that corrupt activities or communications performed by honest user
clients. For instance, in a cross-site request forgery attack (CSRF), a malicious site may force
the browser into creating arbitrary requests to a trusted website. These requests are considered
part of the victim’s interaction with that site and may have severe effects on the integrity of
the ongoing session.

While web application frameworks allow to realize secure websites, developers often misuse
them or are reluctant to adopt recommended security practices: enforcing protection at the
client side has thus become a popular way for securing the Web.

A convenient approach, often adopted in the literature [2, 3, 4, 5], is to realize the secu-
rity mechanisms as web browsers extensions: this simplifies both the implementation and the
deployment of the solution, as the developer does not need to inspect and modify the source
code of the browser, while the user is just required to install the extension in the browser he
habitually uses. A drawback of this choice is that the implementation phase may be hindered
by some restrictions of the API exposed to extensions developers.

In the following sections, we give an overview on Google Chrome extensions and discuss
some limitations we have met when implementing SESSINT [5, 6], a security-oriented extension
aimed at protecting the integrity of web sessions against a number of existing client-side attacks,
including CSRF, session fixation, reflected cross-site scripting (XSS) and password theft.

Overview on Chrome extensions

An extension is basically a bundle of files (e.g. JavaScript, HTML, CSS) that adds function-
ality to the Google Chrome browser [7]. From a functional perspective, the components of an
extension can be divided into content scripts and background pages (cf. Figure 1).

Content scripts are pieces of JavaScript code executed in the context of a page that has been
loaded into the browser. They have read and write access to the DOM of the page where they



Parent extension

background.js
other pages...

Message Passing
— e

contentscript.js

Figure 1: Overview of the architecture of a typical Google Chrome extension.

are injected, but they can neither manipulate any JavaScript variables or functions created by
the page nor invoke most of the APIs offered by Chrome.

The background page, instead, is a page running in a separate context without access to the
DOM of the pages that are opened in the browser. The background page typically holds the
main logic of the extension. Depending on the capabilities granted at install time, background
pages can rely on a number of APIs to access the cookie jar of the browser, create or modify
the existing tabs and analyze, modify or block network traffic on the fly [8]. Content scripts
and the background page can communicate via the message passing API [9].

Most of the methods offered by the Chrome APIs are asynchronous, i.e. they return im-
mediately without waiting for the requested routine to complete. The developer can specify
a callback function that is invoked when the outcome of the operation is available. Listing 1
shows how to use the asynchronous method getAll in order to retrieve all the cookies satisfying
a specified criterion. This method takes, as first parameter, the information to filter the cookies
being retrieved and, as second parameter, a callback function which is fed with all the existing,
unexpired cookies that match the given filter. In this specific example we filter cookies and log
only the ones with httpOnly flag set.

Listing 1: prints on the browser console all the httpOnly cookies set for www.google. com.

chrome. cookies.getAll(
{ url: "http://www.google.com/" 3},
function (cookies) {
var http_only = cookies.filter(function (c) { return c.httpOnly; });
console.log(http_only);
}
)

Some methods and events are instead synchronous. For example, the onBeforeSendHeaders
event handler allows to modify the HT'TP headers of an outgoing request: it is enough to let
the method return an object containing an array of headers with the desired values, as shown
in Listing 2. The first parameter is a function that processes the requests by stripping the
Referer header. The second parameter declares that the listener is invoked on all the HTTP(S)
requests. The third parameter specifies that the listener is synchronous (blocking) and requires
the presence of HT'TP headers in the request object provided to the listener (requestHeaders).


www.google.com

Listing 2: strips the Referer header from outgoing HTTP(S) requests.

chrome.webRequest .onBeforeSendHeaders.addListener (
function (req) {
for (var i = 0; i < req.requestHeaders.length; i++)

if (req.requestHeaders[i] .name === "Referer") {
req.requestHeaders.splice(i, 1);
break;
}
return {requestHeaders: req.requestHeaders};

},
{ urls: ["http://*/*", "https://*/*"] },
["blocking", "requestHeaders"]

)

Limits of Chrome APIs

The APIs offered by Google Chrome, although powerful enough for general purpose extensions,
lack some functionalities or exhibit characteristics that hamper the development of security-
oriented extensions. The main limitations we have found during the development of SESSINT
are either due to the asynchronous behavior of methods and events offered by the APIs or to
an insufficient level of detail of the information it exposes.

Example 1: issues with asynchronous behavior. In a session fixation, the attacker sets
an authentication cookie to a value that he knows so to hijack next sessions. The attack works if
the server does not refresh the cookie during a login. In order to prevent session fixation attacks
performed by exploiting a script injection vulnerability, SESSINT attaches authentication cookies
to HTTP(S) requests only if the HttpOnly attribute is set. To implement this behavior we
need to rely on the onBeforeSendHeaders event handler, since we need to modify the Cookie
header of outgoing requests. However, we cannot use getAll to retrieve the cookies, because
the execution may reach the return statement of the event handler before the callback function
supplied to the method getAll is executed.

The only way to solve this issue is to keep in the extension a copy of the browser’s cookie
jar and take care of the operations of insertion or removal of cookies. A reasonable way to
proceed seems to be the following: we load all the cookies when the extension is started and
then we rely on the onChanged method, which is triggered when the cookie jar is modified, to
keep the copy up to date. However, we can still have problems due to the fact that events can
be raised in an unexpected order, e.g. events related to updates of cookies can be raised after
the event of a new network request triggered by the response including those cookies. This is
critical when the user successfully authenticates on a website and is redirected to a new page,
since the request must attach the authentication cookies that have just been set to maintain
the session.

The solution we have been “forced” to adopt in SESSINT is to inspect incoming responses
for cookies that are set via HTTP headers and to rely on the onChanged method for cookies set
via JavaScript, which can be safely handled in an asynchronous way. This requires a significant
effort to implement our security mechanism for fixation attacks that, at first sight, seems to be
quite easy to achieve.



Example 2: insufficient granularity of APIs. To prevent CSRF attacks, SESSINT auto-
matically strips authentication cookies when cross-origin operations are performed. However
we may be interested in enforcing different policies depending on the event that has triggered
the request: for instance, we may decide to attach cookies if the request is caused by an inter-
action of the user with the page, but not if it is caused by JavaScript. Unfortunately, it is not
possible to realize this behavior in a safe way: in fact, one may use a content script to register
event listeners for clicks on all links inside a page, however the APIs do not provide a way to
distinguish between a click of the user and one generated by a malicious piece of JavaScript
code that invokes the click method on the node in the DOM associated to a link.

Other examples of limitations include the fact that the APIs do not provide any means to
access the code of the page before it is rendered, neither a way to execute a content script
before inline scripts inside the page are evaluated. Moreover, detecting the interaction with
the address bar is a bit quirky, as the user is forced to insert a particular keyword before the
extension is allowed to capture his input.

Our opinion is that current Chrome APIs are not very well suited to develop security
extensions as they basically give a rather poor control of what content can be processed, when
it is possible to process it and how processing can be performed, due to the asynchronous
implementation of APIs. We believe that the APIs could be improved with limited effort on
these aspects to ease the development of security extension.

References

[1] OWASP. Top 10 Security Threats. https://www.owasp.org/index.php/Top_10_2013-Top_10,
2013.

[2] Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens. Automatic and Precise
Client-Side Protection against CSRF Attacks. In Furopean Symposium on Research in Computer
Security (ESORICS), pages 100-116, 2011.

[3] Philippe De Ryck, Nick Nikiforakis, Lieven Desmet, Frank Piessens, and Wouter Joosen. Serene:
Self-Reliant Client-Side Protection against Session Fixation. In Distributed Applications and Inter-
operable Systems - 12th IFIP WG 6.1 International Conference, DAIS 2012, Stockholm, Sweden,
June 13-16, 2012. Proceedings, pages 59-72, 2012.

[4] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat Khan. Automatic and Robust
Client-Side Protection for Cookie-Based Sessions. In Engineering Secure Software and Systems -
6th International Symposium, ESSoS 2014, Munich, Germany, February 26-28, 2014, Proceedings,
pages 161-178, 2014.

[5] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, Wilayat Khan, and Mauro Tempesta. Prov-
ably Sound Browser-Based Enforcement of Web Session Integrity. In IEEE 27th Computer Security
Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 201/, pages 366-380, 2014.

[6] Mauro Tempesta. Enforcing Session Integrity in the World “Wild” Web. Master’s thesis, Universita
Ca’ Foscari, Venezia, 2015.

[7] Google. Overview of Google Chrome Extensions. https://developer.chrome.com/extensions/
overview.

[8] Google. Google Chrome Extensions APIs. https://developer.chrome.com/extensions/api_
index.

[9] Google. Message passing. https://developer.chrome.com/extensions/messaging.


https://www.owasp.org/index.php/Top_10_2013-Top_10
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/api_index
https://developer.chrome.com/extensions/api_index
https://developer.chrome.com/extensions/messaging

