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Entropy and systemic risk measures

Entropia e misure di rischio sistemico

Monica Billio, Roberto Casarin, Michele Costola, Andrea Pasqualini

Abstract The aim of this paper is the construction of an early warning indicator for

systemic risk using entropy measures. The analysis is based on the cross-sectional

distribution of marginal systemic risk measures such as Marginal Expected Short-

fall, Delta CoVaR and network connectedness. These measures are conceived at a

single institution for the financial industry in the Euro area. Entropy indicators show

forecasting abilities in predicting banking crises revealing to be an effective tool as

early warning indicator.

Abstract Lo scopo di questo lavoro é la costruzione di un indicatore di preallarme

per il rischio sistemico attraverso misure di entropia. L’analisi si basa sulla dis-

tribuzione cross-sezionale di misure di rischio sistemico come Marginal Expected

Shortfall, Delta-CoVaR e misure di network. Queste misure sono ottenute a livello

di singola istituzione finanziaria della zona euro. Le misure di entropia mostrano

promettenti abilitá di previsione delle crisi bancarie rivelando di essere uno stru-

mento di preallerta efficace.
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1.1 Introduction

The relevance of latest financial crises deserved much attention in modeling sys-

temic events which represent a potential threats to financial stability of an intercon-

nected economic and financial system. Given the endogenous nature of systemic

risk, its measurement represents a complex task which involves different financial

and macroeconomic aspects. In fact, the implications of systemic risk is relevant

both in the macro and micro perspectives. At macro level, the aim of policy makers

such as European Central Bank (ECB), European Systemic Risk Board (ESRB) and

Federal Reserve (FED) is to guarantee the stability of the banking system. Bisias

et al. (2012) presents a good survey on systemic risk measures in literature. The

motivation of our study relies on the capability to detect and predict likeness of sys-

temic events defined as financial distress condition. We apply here the approach re-

cently developed in Billio et al. (2015). Our aggregation relies on the use of entropy

applied to a feature distribution estimated on the market such as the cross-sectional

systemic risk measures at a given time. In fact, movements of entropy built on these

measures may reveal first signs of changes on systemic risk.

1.2 System Entropy

The novel feature of our application in finance is to apply entropy on systemic risk.

Intuitively, in the proximity of a systemic event, the financial institutions that are

those that cause this event, because they are the systemic relevant or frail, may be

the first to react and thus to provoke a structural change in the cross-sectional distri-

bution. In this regard, entropy can detect structural changes in the (cross-sectional)

distribution of these measures. In many applications the object of interest is a func-

tion of the probability distribution which summarizes the information content of the

distribution. One of the most used probability functional is the entropy.

Let πt = (π1t , . . . ,πmt), t = 1, . . . ,T , be a sequence of vector of probabilities as-

sociated to the cross-section distribution of a given feature of the financial assets

measured over time t on the market. In this paper we apply entropy to πt using

different proposals for entropy presented in the literature.

The Shannon entropy (Shannon, 1948), also known as Gibbs-Boltzman-Shannon,

is defined as

HS(π t) =−
m

∑
j=1

π jt logπ jt (1.1)

where m < ∞.
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1.3 Features of financial market participants

Our systemic risk variables of interest xit used in the entropy calculation are the

Marginal Expected Shortfall (MES), the ∆ -CoVar and the network connectedness.

As regards the MES, we follow Acharya et al. (2010) and starting from a series

of asset returns rit , t = 1, . . . ,T , where i denotes the asset, MESit is defined as the

expected value of rit when a reference asset (or a reference market) is in its “worst

state” and is experiencing losses. This state is identified when the return of the ref-

erence asset rmt is below a given quantile qk. That is, for k = 0.05,

MESit = E{rit |rmt < q5%}. (1.2)

As it turns out, MES filters data in order to pick loss cascades during market down-

turns, thus allowing for a specific analysis of tail events.

The ∆ -CoVar proposed by Adrian and Brunnermeier (2011) represents the value at

risk (VaR) of the financial system conditional on institutions being under distress.

Let us define the VaR and CoVar as follows The authors define a contribution of a

given institution to systemic risk as the difference between the CoVaR conditional

on the institution being under distress and the CoVaR in the median of the institution

(∆ -CoVaR), that is

∆CoVaRmit,q =CoVaRmit,q −CoVaRmit,0.5, (1.3)

where rit is the asset return value of the institution i, rmt represents the system and

the CoVaR is defined as P(r jt ≤ CoVaR jit,q|rit = VaRit,q) = q. CoVaRmit,0.5 repre-

sents the VaR of the system at time t when returns of asset i are at 50th percentile.

Following Billio et al. (2012), we extract a network from the financial asset re-

turns and then focus on some features of this network.

A network is defined as a set of nodes Vt = {1,2, . . . ,nt} and directed arcs (edges)

between nodes. The network can be represented through an nt -dimensional adja-

cency matrix At , with the element ai jt = 1 if there is an edge from i directed to

j with i, j ∈ Vt and 0 otherwise. The matrix At is estimated by using a pairwise

Granger causality approach to detect the direction and propagation of the relation-

ships between the institutions. The in-out degree measure is then defined as

IOit =
nt

∑
j=1

ai jt +
nt

∑
j=1

a jit (1.4)

t = 1, . . . ,T , where causality implies a jit = 1 if j causes i, ai jt = 1 if i causes j, and

ai jt = a jit = 1, if there is a feedback relationship.

As a reference measure we also consider the dynamic causality index (DCI),

proposed by (Billio et al., 2012), which is defined as

DCIt =

(

nt

2

)−1 nt

∑
i=1

nt

∑
j=1

ai jt (1.5)
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t = 1, . . . ,T , when (DCIt −DCIt−1)> 0, there is an increase of system interconnect-

edness.

1.4 Empirical application

We consider the daily closing price series for the European firms of the financial

sector from 1st January 1985 to 12th May 2014. The dataset is composed for a total

of 437 financial institutions considering the MSCI Europe index as the proxy for

the European market. To estimate the systemic risk measures, we use a rolling win-

dow approach (Zivot and J., 2003; Billio et al., 2012; Diebold and Yilmaz, 2014)

with a window size of 252 daily observations. Different indicators have been pre-

sented in the literature to detect economic and financial crises. In this regard, we use

the banking crisis for the European market presented in Alessi and Detken (2014),

which represents one of the target variables monitored by European Systemic Risk

Board.1 The variable takes value 1 (0) if there is crisis (not crisis). To study the ef-

fectiveness of the entropy-based indicators in detecting conditions of financial dis-

tress, we set a logistic model with entropy indicators for MES, ∆CoVaR and In-Out

network degree as covariates. The estimation results from the logit specification are

presented in Table 1.1. All entropies are significant at 1% confidence-level. The best

explanatory variable is the entropy based on ∆CoVaR.

For sake of brevity, we report in the paper the estimations for Shannon entropy but

estimations for Tsallis and Renyi entropy confirm these results.

The percent of correctly predicted indicators for the estimated logit models are

65.32% (MES), 77.51% (∆CoVaR) and 69.79% (In-Out degree). The entropy based

on ∆CoVar confirms the superior ability in predicting banking crisis.

Concluding, this paper shows promising forecasting abilities of entropy indicators

applied to cross-sectional systemic risk measures. In an early warning system per-

spective, further investigation should be performed using other risk measures and

target variables.
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Table 1.1: Logit specification where the dependent variable is the banking crisis

from Alessi and Detken (2014) and the explanatory variables are Shannon entropies.

Crisis Indicator

(Intercept) -5.3340*** -6.3911*** -6.4137***

(0.1996) (0.1641) (0.1851)

HS(MES) 10.9669***

(0.4151)

HS(∆CoVaR) 15.5536***

(0.4001)

HS(InOut) 20.0670***

(0.5817)

R-squared 0.1140 0.2905 0.1952

Adjusted-R-squared 0.1139 0.2905 0.1951

LogLikelihood -4455.92 -3790.80 -4107.88

LLR 0.0854 0.2219 0.1568

AIC 8915.84 7585.61 8219.77

BIC 8929.56 7599.33 8233.49

Sample jan-86 jan-86 jan-86

dec-12 dec-12 dec-12

Obs 7044 7044 7044
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