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Abstract. In this paper we present ongoing work for the correction of Extended WordNet (XWN), the most 
extended freely downloadable resource of Logical Forms (LFs) – by the Human Language Technology Research 
Institute (HLTRI) of University of Texas at Dallas (UTD). In a previous paper we reported on type and number 
of errors detected in the 140,000 entries of the resource, which amounted to some 30%. This didn’t include 
problems related to inconsistencies from disconnected variables which were not computable at the time. We now 
created an LF parser that parses each entry after appropriate transformations. The parser has been created to 
count the number of disconnected variables, be they object variables or predicate event variables: the result is 
56% of LFs containing some disconnected variable. We devised two procedures for correction: one lexical and 
the other structural which eventually allowed a dramatic reduction: the final count is now 24%. Additional work 
has been carried out to improve the general consistency by manual intervention on "inconsistent" outputs 
signaled by the parser and has reduce the number of errors to a reasonable percentage for such a resource, that is 
less that 15%. 

1 Introduction 

   This paper presents work carried out to parse and correct LF resources and in particular XWN or Extended 
WordNet (see Mihalcea et al. 2001), a freely downloadable resource containing a mapping into Logical Forms 
(LFs) of WordNet glosses. We started to produce a parser of LFs after working at individuating errors in XWN 
(see XXX). After we discovered that some 30% of all entries needed some corrections, we decided to continue 
work for a number of reasons, some of which positive some others negative that will be discussed below. 
   As to negative question, the first regards the way in which syntactic structure has been produced. Current 
parsers mostly produce surface dependency/constituency structure with good enough approximation, but which 
is of no use for the mapping into LFs seeing that deep relations are missing. We are here referring to two types 
of parsers, Charniak’s constituency-like parsers and dependency-like parsers. Deep parsers are only a few and 
the accuracy of their performance is insufficient for a mapping into LFs seeing that LFs require fully consistent 
representations in order to preserve the semantics (but see below). 
   Now, there is a number of applications that produce LFs directly from syntactic representations, but their 
performance is unsatisfactory for the reasons explained in the previous paragraph. We tried LFToolkit (Rathod, 
Hobbs, 2005) which maps into LF directly from the output of Charniak's parser - more on this below. 
Worthwhile mentioning is also Cahill et al. (2007) attempt at transforming a portion of WSJ into LFs by means 
of a conversion of PennTreebank II augmented syntactic representation into complete F-structures. The authors 
claim an F-measure of 97% over the 96% of sentences converted, which is certainly a success. However, WSJ 
sentences are in no way comparable to glosses and their online parser does not allow the creation of LF1. Since 
LFs cannot be produced fully automatically and need a lot of manual additional work, we thought it reasonable 
to try and use existing LF resources such as ILF (Intermediate Logical Forms) - see  Agerri & Peñas, 2010, 
XWN and others. We believe it is always worthwhile correcting these resources, wherever possible. WordNet 
glosses are definitions, meaning paraphrases and declarative descriptions associated to synsets of WN, which is 
what makes them highly valuable for semantically heavy tasks such as Q/A, WSD, and Text Understanding in 
general. 
   Coming now to the actual resources, LF mapping from PT (Penn Treebank)-like constituency-based syntactic 
structures are - in our opinion - a lot more error prone than those derived from dependency structure (see Agirre 
& Peñas, 2010). This is due to the fact that PT-like structures are more difficult to map due to the nature of 
constituency structure, which is more functionally based than semantically oriented, when compared to 
dependency structures. Syntactic constituency in PT as well as the one produced by Charniak’s parser, associates 
main constituency nodes to functional heads like auxiliaries, complementizers, subordinating conjunctions, 
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relative and interrogative pronouns, modals, verb particles. Nominal heads are usually lumped together with 
their determiners and modifiers, be they other nouns or adjectives. For this reason, using a dependency structure 
in which semantic heads are separated from functional ones can be and is – as ILF clearly shows, but see below 
– highly beneficial for a safer mapping into LF. In this sense, ILF being mapped from dependency structures is 
much closer to semantic content than XWN - more on ILF below. 
   Both XWN and ILF have been mapped without the help of additional resources such as lexica and anaphora 
resolution algorithm, which were in fact necessary, as will be shown below. However, the net result is the 
absence of free ungrounded variables in ILF: on the contrary in XWN, the presence of ungrounded variables is 
the rule, as will be shown below. This is partly due to the lack of any one to one correspondence between 
constituency structure and LF as encoded in the mapping algorithm. 
   The paper is organized as follows: in section 2 we will review different types of Logical Forms and try to 
evaluate the contribution of each representation; in section 3 we concentrate on XWN, WNE and ILF and 
individuate their strengths and weaknesses; section four is dedicated to presenting the parser itself; then we end 
with some evaluation, conclusion and future work. 

2 Logical Forms, but what kind? 

In XWN, WNE and ILF the mapping to LFs has been done semi-automatically with manual checking of the 
majority of syntactic constituency structures. However, the actual mapping process has not been subsequently 
checked nor evaluated (but see Vasile, 2004). 
   What kind of LF are we referring to? The LF we are referring to is a flat unscoped first-order logic (FOL) 
well-formed formula representing the "meaning" of a sentence. It has been restricted to a conjunction of 
predicates which in turn contain arguments that have been hampered from being themselves recursive. Possible 
arguments of predicates can be event variables and argument variables, the latter being also called object 
variables, referring to entities, properties and attributes. 
   However, not all work on Logical Form would look the same and there are lots of different ways of computing 
and building them. In XWN, for instance, there is no attempt at covering all if not most of what is commonly 
regarded as semantically related problems that might as such be represented in a LF. Here below we show some 
valuable attempt at including some of the semantics in the LF from the contents of the book by (Bos & 
Delmonte, 2008) for the workshop of ACL Sigsem held in Venice. 
   The first LF we show is the one used by J.Bos to represent DRS. As can be seen below, variables introduced in 
the representation are all of the same kind, the prefix always being X. What changes is the number that follows 
the X. As a result there is no distinct event variable, with an E prefix. The text is one of the Shared Task of the 
workshop and we take these two sentences (ibid., 283): 
Sent.1 Cervical cancer is caused by a virus.  
Sent.2 That has been known for some time and it has led to a vaccine that seems to prevent it.
 
|x0 x1 x2    | 
| thing(x0) 
| neuter(x1) 
| neuter(x2) 
|_____________ 
 
 
 
 
 
 
 
 
 
 

| x3 x4 x5  |  
| cancer(x3) 
| cervical(x3)  
| cause(x4) 
| virus(x5) 
| event(x4) 
| theme(x4,x3)  
| by(x4,x5)  
|______________ 
 
 
 
 
 
 

 
|x6 x7 |  
|know(x6) 
|time(x7) 
|event(x6) 
|theme(x6,x0)  
|for(x6,x7)  
|______________ 
 
|x8 x9 x10 x11 
|lead(x8) 
|vaccine(x9) 
|seem(x10) 
|proposition(x11 
 

|event(x10) 
|event(x8) 
|agent(x8,x1) 
|agent(x10,x9) 
|theme(x10,x11) 
|to(x8,x9) 
|______________ 
 
|x11:x12 
|prevent(x12)  
|event(x12)  
|agent(x12,x9)  
|theme(x12,x2)  

In this LF, events have been reified and appear as functions heading their variable.  
Also semantic/thematic roles have been reified, and head the variables of both argument and event. This choice 
multiplies the number of logical objects, but simplifies the matching. Another way of rendering the LF of 
sentence 1, could have been 
cause(e4,x5,x3),cancer(x3),cervical(x3),by(e4,x5),virus(x5) 



A slightly similar approach has been taken by (Clark et al., 2008) with a system that also comprises a parser and 
a logical form generator2. Their example is shown below, where variable are indicated by underscored _X: 
 
Sent.3 "A soldier was killed in a gun battle." 
(DECL ((VAR _X1 "a" "soldier") 
(VAR _X2 "a" "battle" (NN "gun" "battle")))  
(S (PAST) NIL "kill" _X1 (PP "in" _X2))) 
 
This mixed syntactic structure is then used to generate "ground logical assertions of the form r(x,y), containing 
Skolem instances, by recursively applying a set of syntactic rewrite rules to it. Verbs are reified as individuals, 
Davidsonian-style."(ibid., 48; but see also Davidson, 1967;1980): 
 
object(kill01,soldier01) 
in(kill01,battle01) 
modifier(battle01,gun01) 
 
As the authors comment, predicates used in this representation are just syntactic relations of the type SUBJect_of, 
OBJect_of, and MODifier_of and all prepositions, which typically take two variables related to the individuals 
they are bound to. In particular, in this representation Skolem instances are associated with its corresponding 
input word. Syntactic relations represent deep relations: the surface subject of the passive sentence Sent.3 is 
turned into an OBJect. 
Another richer way of representing meaning in LF is proposed by Delmonte in Bos & Delmonte 2008:291, for 
the sentence, 
 
Sent.4 John went into a restaurant 
wff(situation, 
    wff(go, 
     < entity : sn4 : wff(isa, sn4, John) >, 
     < indefinite : sn5 : wff(isa, sn5, restaurant) >,  
     < event : f1 : wff(and, wff(isa, f1, ev), 
       wff(time, f1, < definite : t2 : 
      wff(and, wff(isa, t2, tloc), wff(pres, t2)) >)) >)) 
 
where we see that two semantic elements appear in the representation, DEFINITENESS, and TENSE which is 
associated to a Reference Time location variable, T2. As will be discussed below, Reference Time and 
Definiteness are two important semantic features and are introduced also in other LF representations. 

3  Previous Work related to XWN 

There is a certain amount of additional work carried out on XWN that we want to review briefly here below. 
Apart from XWN by UTD people, the other effort to translate WN Glosses into Logical Form is by people at 
USC/ISI California, in 2006. Their results are also available on the web and freely downloadable at ISI, 2007. As 
the comment on the related webpage clearly states, "The following additional "standoff" files providing further 
semantic information to supplement the WordNet 3.0 release." The file contains LFs in XML format for most of 
the glosses "except where generation failed" as the comment clearly warns out. The authors made a subset of the 
core WordNet including 2800 noun senses in plain text format, in 2007. As the comments on the website say, 
"these are generally of higher quality than those contained in the file below for all glosses." We find these 
representations in eventuality notation too cluttered with additional event variables, which makes the LF entry 
too heavy to read, as can be seen in the example of the entry BUTTER included below. These files can be 
downloaded at http1;http2. The conversion process of WN glosses proceeds by parsing with Charniak parser and 
the result is converted into a logical syntax by a system called LFToolkit (Rathod & Hobbs, 2005). Each lexical 
semantic head is transformed into logical fragments involving variables. For instance "John works" - commented 
in detail below - is translated into John(x1) & work(e,x2) & present(e), where e is a working event. Object 
variables are differentiated at first (x1 and x2), and then a rule which recognizes “John” as the subject of “works” 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 In the authors' words, the LF is "a semi-formal structure between a parse and full logic, loosely based on Rathod & Hobbs, 2005. The LF is 
a simplified and normalized tree structure with logic-type elements, generated by rules parallel to the grammar rules, that contains variables 
for noun phrases and additional expressions for other sentence constituents. Some disambiguation decisions are performed at this stage (e.g., 
structural, part of speech), while others are deferred (e.g., word senses, semantic roles), and there is no explicit quantifier scoping. " 
 



sets x1 and x2 equal to each other. This works for the majority of English syntactic constructions. As the authors 
themselves comment, whenever there was a failure by the LFToolkit, it happened as a result of a bad parse, due 
to the presence of constructions for which no rule in LFToolkit had been written3. 
   I will show here below the entry for BUTTER as it has been transformed by the two systems. The first 
representation is the one produced at USC/ISI and the second one is the one by XWN in (Moldovan & Rus, 
2001). In fact both representations are in XML format, but for easiness of reading we eliminate angled brackets: 
 
example (1) 
entry word="butter#n#1" status="partial" 
gloss = an edible emulsion of fat globules made by churning milk or cream; 
for cooking and table use 
butter#n#1'(e0,x0) -> edible'(e9,x1) + emulsion#n#1'(e1,x1) + 
of'(e6,x1,x12) + fat#n#1'(e15,x17)+nn'(e14, x17,x12) + 
globule#n#1'(e10,x12) + dset(s5,x12,e10+e14) + make#v#15'(e2,x4,x3,x2) + 
by'(e3,x5,e7) + churn#v#1'(e7,x10,x14) + milk/cream#n#2'(e11,x14) + 
for'(e4,x6, x11) + cooking'(e12,x16) + table'(e13, x15) 
milk'(e11, x14) -> milk/cream#n#2'(e,x14) 
cream#n#2'(e11, x14) -> milk/cream#n#2'(e,x14) 
 
example (2) 
butter:NN(x1) --> edible_JJ(x1) emulsion:NN(x1) of:IN(x1,x2) fat:JJ(x2) 
globule:NN(x2) make:VB(e1,x9,x1) by:IN(e1,e2) churn:VB(e2,x2,x5) 
milk:NN(x3) or:CC(x5,x3,x4) cream:NN(x4) 
 
As can be seen in example(1), all lexical items are treated as predicates and have an event variable starting with 
E, associated to them. Event variables are typically unbound and should be quantified over. They are associated 
to object variables which start with X. In some cases, when a DSET is asserted, event variables are connected 
explicitly to their object variable, as in the nominal compound "FAT GLOBULES". Also this LF representation, 
which is classified as PARTIAL, contains a lot of unbound or ungrounded variables, as for instance in the case 
of MAKE(e2,x4,x3,x2) in example (1), where none of the object variables have an individual ground object 
linked to them.  
   Example(2) is much simpler and shorter. In this case, the LF representation produced has a better output. 
However, if we look at the representation associated to MAKE, we notice that only has three variables, one of 
which is the event variable, e1, and the remaining two are argument variables - x9, x1. Whereas x1 is properly 
bound to the entry BUTTER, the second variable is unbound. We can also notice that the first representation 
treats MAKE as a 3-place predicate, as in the sentence "John made the butter smooth by...". On the contrary, the 
second representation only has two argument variables: this could be justified by the use of MAKE in a 
participial structure, with a different meaning though.  The meaning in this case is obtained by omitting the 
secondary predication. It is just a simple transitive structure in a passivized form. More on this topic below. 
   The problem related to these examples are typical problems of mapping from surface syntactic structures to 
Logical Forms, and we have tried to overcome them by building an LF parser that checks for consistency. Here 
the term consistency is referred solely to the existence of free unbound or ungrounded variables in a given LF 
representation. This fact does not allow relations indicated by predicates to be associated to arguments and 
modifiers, which are thus disconnected. In this way, the formula is useless and meaningless. Variables associated 
to predicates needs to be equated with those of the arguments of the predicate in order to acquire semantic 
consistency. From our analysis, 54.05% of all LFs contained in XWN suffer from that problem. In particular, 
they constitute 71,658 over 132,587 where we found the following data: 
 

categories Dis.Vars Tot.LFs % 
Adverbs 487 3982 12.23 

Adjectives 8886 20317 43.74 
Verbs 9751 14454 67.46 
Nouns 52672 94028 56.00 
Total 71,658 132,587 54.05 

Table 1. Errors detected by the parser 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 "In these cases, the constituents are translated into logic, so that no information is lost; what is lost is the equalities between 
variables that provides the connections between the constituents. For instance, in the “John works” example, we would know that 
there was someone named John and that somebody works, but we would not know that they were the same person. Altogether 
98.1% of the 5,000 core glosses were translated into correct axioms (59.4%) or axioms that had all the propositional content but 
were disconnected in this way (38.7%). The remaining 1.9% of these glosses had bizarrely wrong parses due to noun-adjective 
ambiguities or to complex conjunction ambiguities."(ibid.,49) 



Here percent values refer to errors found by the parser. 

4  The LF Parser 

The parser takes as input two files, one containing the list of logical forms as they have been listed in XWN for 
the different categories - verb, noun, adjective, adverb; and another file containing the synset offset followed by 
the synset. Each synset is associated to a gloss that contains one or more definitions, comments or examples: this 
is what has been transformed into Logical Forms in XWN. So the parser knows that there may be one of more 
LFs to associated to the same synset offset index. Now, each Logical Form will necessarily start with the same 
lemma which corresponds to the first lemma in the synset: for instance, the entry 00002931 of the ADJ dataset 
corresponding to the synset "abducent, abducting", has the associated gloss "especially of muscles; drawing 
away from the midline of the body or from and adjacent part". This gloss is transformed into two LFs, 
respectively, 
 
abducent:JJ(x1)-> draw_away:VB(e1,x1,x5) from:IN(e1,x2) midline:NN(x2) of:IN(x2,x3) 
body:NN(x3) from:IN(e1,x4) adjacent:JJ(x4) part:NN(x4) 
 
abducent:JJ(x1) -> especially:RB(x1) of:IN(x1,x2) muscle:NN(x2) 
 
These have then been turned into the Prolog compliant corresponding structures below: 
 
lf(abducent_JJ(x1),[draw_away_VB(e1,x1,x5),from_IN(e1,x2),midline_NN(x2), 
of_IN(x2,x3),body_NN(x3),from_IN(e1,x4),adjacent_JJ(x4),part_NN(x4)]). 
 
lf(abducent_JJ(x1),[especially_RB(x1),of_IN(x1,x2),muscle_NN(x2)]). 
 
The parser takes the synset offset associated to the current synset and the first LF in the current list. Then it 
matches the first lemma in the synset with the lemma heading the LF. After correcting the LF, the parser checks 
the rest of the list to see whether there is another occurence of the current lemma and in that case it keeps the 
same offset index, otherwise it passes the rest of the synset-offset list. As will be discussed in detail in a section 
below, this version of the algorithm works fine only for a part of WordNet, proper names behave differently and 
the algorithm had to be modified to cope with them. The output of the algorithm is a conjunction of the 
information contained in the two files, as follows: 
 
synset(300002931,abducent_JJ(x1),[abducent,abducting])-[draw_away_VB-[e1,x1], 
from_IN-[e1,x2],midline_NN(x2),of_IN(x2,x3),body_NN(x3),from_IN-[e1,x4], 
adjacent_JJ(x4),part_NN(x4)] 
 
synset(300002931,abducent_JJ(x1),[abducent,abducting])-[especially_RB(x1), 
of_IN(x1,x2),muscle_NN(x2)] 
 
 
There are at least three different ways of conceiving the relation intervening between variables in a flat unscoped 
LF. As discussed above, the simplest way would be that of considering all variables free and each one different 
from the others, and then at the end, specifying those variables that have to be regarded equal by additional 
equations. A second way, is to regard all variables equal, and then specifying the ones that have to be regarded 
different - and this is what has been done in Robust Minimal Recursive Semantics, (RMRS) (Copestake, 2009).  
In both these two ways, however, variables need to be precisely bound as required, which is not what actually 
happens. We report one of the examples from that presentation, for the sentence "Some big angry dogs bark 
loudly", where we see that a scoped LF is used to convey the role of quantifier "some": 
 
example (3) 
some_q(x4, big_a_1(e8,x4) ⋀ angry_a_1(e9, x4) ⋀ dog_n_1(x4), bark_v_1(e2,x4) ⋀ 
loud_a_1(e10,e2)) 
 
Notice that in this LF representation, every attribute and modifier has a separate event variable name. This is 
remarkably different from what has been done in XWN. 
   The third way, which is more consistent with what has been done in the XWN LF representation, is to consider 
variable equalities to indicate relations of some kind: in particular, any modification relation is indicated by 
variable equality; the same applies to argument relations. Another important topic regards the way in which 
optional or omitted arguments should be treated in the LF representation. As discussed in (Copestake, 2009) LFs 



for predicates should consider deep structure information rather than simply surface structure, and in case an 
argument is missing - because it has been omitted in a passive structure or simply because optional - this should 
be signaled appropriately by marking the corresponding slot with U (for unexpressed). These are some of the 
problems that we will try to tackle in our parser.  

3.1 The architecture of the LF parser 

The LF parser is organized in a pipeline: 
A. the first module tries to match variables in predicates with their object counterpart.  
B. the second module does the opposite: it tries to match variables in object formulas with their predicate 
counterparts.  
This has to account for a number of different logical structures. The most common one is the one accounting for 
predicate argument structures governed by verbs, as in, 
- buy_VB(e1,x2,x1) 
where e1 is a generic event variable which might or might not have higher level binders, or meta level formula 
(see below) associated to it; x2 is by slot convention a variable associated to the complement (in this case an 
object); and x1 is again by slot convention the variable associated to the subject, treated as external argument. A 
second structure is the one associated to prepositions and other similar two place relation markers as comparative 
conjunctions or even subordinators and relative pronouns: 
- of_IN(x2,x3) - than_IN(x4,x5) etc. 
where x(number) variables bind objects, and prepositions - when they introduce gerundives - and (subordinating) 
conjunctions treated as relation markers: 
- by_IN(e1,e2) - since_IN(e4,e5) 
All relation markers only contain relational variables and no event or object variable of their own. 
Object formulae include simple one place predication with just one variable associated to an entity, a property or 
an attribute, as in 
- dog_NN(x2) 
XWN uses the same specification also for modifiers like adjectives and adverbials: 
- angry_JJ(x2), fast_RB(e2) 
but this, on the basis of what we have commented above, needs some reorganization. Modifiers are then 
supplemented by an additional variable of their own that accounts for the role of predicate they fulfill. This will 
allow to differentiate cases in which the same adjectival word - say "red" - may play the role of predicate in a 
copulative construction which has to be differentiated from the role of attribute in a nominal compound, as in 
(4b) "The red hat was stiff" vs. (4a)"The stiff hat was red". The two sentences could be differentiated as follows, 
where x1 is associated to the subject of predication, "hat" and the predication itself is constituted by a different 
property identified by variable e3. The attribute is associated to the nominal head object variable x1 and is 
specified with event variable e2, assuming in this way that the property of being “stiff” is independent of the 
property of being “red”, but they are both associated to the entity X1: 
 
example(4a) 
be_VB(e1,x1), hat_NN(x1), stiff_JJ(e2,x1), red_JJ(e3,e1) 
example(4b) 
be_VB(e1,x1), hat_NN(x1), red_JJ(e2,x1), stiff_JJ(e3,e1) 
 
There are then mixed formulae which include both event and object variables, as in, 
- by_means_of_IN(e1,x5) = (buying) by means of 
- consider_VB(e3,e1,x2,x1), silly_JJ(e1,x2) = consider (your dog) silly 
 
where x2 is the variable associated to "dog" and e1 is included in the argument list of the verb.  This is what 
differentiated real copulative verbs like "be", and transitive verbs like CONSIDER which have secondary 
predication as argument. As anticipated above, there are also meta-level formulae and they are of two types: 
- coordinating conjunctions 
- complex nominal compound 
The first refers to coordinating conjunctions, which allow to refer to sets of objects or predicates. The latter are 
separately specified: here, rather than duplicating the noun governors, the meta abstract coordinating conjunction 
is used, as shown below. Coordination may interest both event and object variables, as follows: 
- and_CC(x6,x1,x2,x3) 
- decide_VB(e4,e5,x6), leave_VB(e5,x6) 
for the sentence, "Frank, John, and the dog decided to leave". 
A similar formula would be used in case event variable should be coordinated as in, 



- or_CC(e8,e1,e2,e3) 
where e8 would be the variable associated to the coordinate structure. 
The other meta level formula is associated to the function NN introduced in the XWN following Jerry Hobb's 
suggestions. In this case, the only possible set of variables is the one associated to objects or nominals indicating 
properties of the head, usually the last variable in the set. As in one below for "Samsung's profits" where x4 and 
x6 are bound to single entries, 
- NN(x7,x4,x6) 
- Samsung_NN(x4), profit_NN(x6) 
and the variable x7 would be used by the event predicate that governs the nominal compound, 
- rise_VB(e2,x7) 
In order to allow for smooth matching procedures, all meta-level formulae are turned into their simple binary 
level by reification. Reification is also used for negation as shown below: 
- coordinations are turned into one place predicates, 
- and_CC(x6,x1,x2,x3) --> and_CC(xc), coord(xc,x6), coord(xc,x1), 
coord(xc,x2), coord(xc,x3) 
- negations are reified:  
- not_RB(e2) --> neg(xn,e2),not(xn) 
In fact, all negation formulae had to be corrected before starting to check for their consistency. We eliminated all 
DO auxiliaries and associated the negation predicate directly to the main verb variable, using regular expressions. 
In this way we got a double result: unwanted auxiliary information was eliminated and the negation operator is 
now correctly associated to the main verb meaning. A similar change had to be introduced for all cases of wrong 
treatment of the amalgam CANNOT, which in XWN is introduced directly without a decomposition, and in 
many cases is wrongly tagged as noun. So we produced the following change again by regular expression, where 
we deleted the variable associated to the wrong tagging and substitute it with the right one. 

3.2 Correcting Logical Forms 

We envisage two types of corrections: one induced by lexical information and another by structural information. 
The first correction is addressed to all those predicates that contain a dummy variable for an argument which 
does not exist in reality. In fact, here we are referring to verbs belonging to classes like unergative verbs, 
unaccusative verbs, weather verb, impersonal verbs, but also to verbs which can be intransitivized, ergativized. 
That is verbs which induce intransitive structures, either by raising the object to subject position and eliminating 
the deep subject; or cases of verbs which allow the object to be left unexpressed, that is something which can be 
quantified over by an existential quantifier.  Always on the basis of lexical information, we check for 
intransitivized and passivized TRANSITIVE verbs, which constitute by far the majority of cases. In particular, 
in case a passivized past participle is being used, this is usually accompanied by the omission of the deep subject. 
As to the structural corrections, we have been filtering wrong structures by a procedures that allows the 
correction module to select only those parts of the formula which need to be modified. In order to extract 
information related to wrong and inconsistent LFs, the parser collects variables related to object formula 
separately from those related to predicate formula. Then it does a simple intersection. The set of intersecting 
variables is then used to verify whether there are ungrounded variables.  
We used the two procedures in a sequence – at first we found ungrounded variables and then looked for 
predicates with unneeded variables that coincided with the ones found in the previous procedures – and 
eliminated them. The results are remarkable: we managed to eliminate some 32%, that is almost half of previous 
72% of all disconnected variables. In particular, they now constitute 31,583 over 132,587 – 23.82%. 
 

categories Dis.Vars Tot.LFs % after % before 
Adverbs 250 3982 6.28 12.23 
Adjectives 1599 20317 7.87 43.74 
Verbs 823 14454 5.69 67.46 
Nouns 28911 94028 30.75 56.00 
Total 31,583 132,587 23.82 54.05 

Table 2. Errors after parser correction 
 
As said above, XWN introduces a first event variable e1 or sometimes e0, which should be quantified over and 
are left unbound. Also a first object related variable is always associated to nouns and adjectives, and it is X1. 
These are not considered in the intersection and are removed from the set. Here below some examples of 
inconsistent formula for ABLE: 
 



gloss: having the necessary means or skill or know-how or authority to do something 
able:JJ(x1) -> have:VB(e1, x1, x8) necessary:JJ(x8) means:NN(x2) 
skill:NN(x3) know-how:NN(x4) or:CC(x8, x2, x3, x4, x5) authority:NN(x5) 
to:IN(x8, e2) do:VB(e2, x8, x6) something:NN(x6) 

where DO has x8 as Subject variable, which should be x1, that is the person that is ABLE, SUBJect of the 
predication of HAVE and also head of the adjective modifier. More errors are contained in the formula, where 
necessary(x8) should be necessary(x2), seeing that it only modifies "means". The following case is an 
inconsistency caused by various errors: "dependent_on" is associated to an unground variable "x4" and not "x1"; 
the same applies to "relative" which is associated to "x2", rather than "x1": 
 
gloss: not dependent on or conditioned by or relative to anything else 
independent:JJ(x1) -> not:RB(e2) dependent_on:JJ(x4) condition:VB(e1, x5, 
x1) by:IN(e1, x5) or:CC(e2, e1) relative:JJ(x2) to:IN(e2, x2) 
anything:NN(x2) else:JJ(x2) 

here below, we show what the correct LF would be like after introducing predicate variables in each adjective 
modifier, changed ungrounded variable associated to obligatory argument into an undefined U variable: 
 
independent_JJ(x1) -> not_RB(e3), dependent_on_JJ(e1,u,x1), or_CC(e3,e1,e2), 
condition_VB(e2,x2,x1), by_IN(x2,u), or_CC(e4,e3,e5), 
relative_to_JJ(e5,x3,x1), anything_NN(x3), else_JJ(x3) 

where DEPENDENT_ON has become a complex phrasal predicat. In its formula, the preposition ON requires an 
additional variable, ungrounded, though; and RELATIVE has also become a phrasal adjective with preposition 
and as such in need of an additional argument variable. To this end, we turned both adjectives into two place 
predicates with an event variable to indicate that there is a dummy BE verb implicit in the gloss. 
As said above, the parser at first measures intersection: in case no intersection intervenes then a flag is written on 
the output file and used by the correction module. In the following case, for instance, after deleting x1 and e1, 
the intersection is empty. 
INPUT 
lf(approved_JJ(x1),[generally_RB(e1),especially_RB(e1),officially_RB(e1),ju
dge_VB(e1,x5,x1),acceptable_JJ(x3),satisfactory_JJ(x3)]). 

OUTPUT 
approved_JJ(x1)  6  [x5,x3] no intersection 
lf(approved_JJ(x1),[generally_RB(e2,e1),especially_RB(e3,e1),officially_RB(
e4,e1),judge_VB(e1,e5,u,x1),acceptable_JJ(e6,e5),satisfactory_JJ(e7,e5)]). 

where we see that APPROVED has an LF formula made of 6 elements, that the intersection of the relevant 
variables is empty, and that there are two variables in particular which have no correspondence in object formula. 
The parser will inspect the formulas one by one, and eventually will equate x5 with x3, thus making the whole 
LF consistent. The equation decision is determined by the fact that: x5 is contained in a predicate formula, which 
also contains x1, and that x3 are both contained in object formula. In addition they both FOLLOW the predicate, 
this being a clear indication - in English at least - that they constitute a COMPLEMENT to the predicate itself. 
The modified and corrected formula contains also additional event variables for attributes predicated to x3 and 
an U for unexpressed argument variables. 
In particular, the system found 110 cases of inconsistencies in the ADVERBS file of XWN, 1154 cases of 
inconsistencies in the ADJECTIVES file, 2054 in the VERBS file and 5276 in the NOUNS file. Overall, 8594 
cases that we addressed by the correction module. The parser managed to correct half of them in a first run. Then 
more rules have been devised to correct the rest of the errors. These rules have then been used to check and 
correct most of the remaining LFs. 
In fact, as a whole, we managed to correct many more entries, thanks to the fact that the parser simply got 
stucked whenever the LF entry was not computable, i.e. none of the variables matched either x1 or e1. We also 
corrected all negation operators and some of the conjunctions which were not tagged consistently, as for instance 
THEN, which was tagged as RB (adverbial) most of the time, and only sometimes as IN. 
The evaluation of the corrections produced manually and automatically is made directly by the parser itself. The 
output of the parser, in the correction mode, is a file containing all LFs which have some inconsistency. 
Corrections have been carried out specifically on the output of the parser. Evaluation in this case is computed 
accordingly on the basis of number of mistakes found by the same parser.  



3.3 The case of Proper Names in WN 

The parser works smoothly with three files, the ones containing Adverbs, Adjectives, and Verbs, but when the 
file containing Nouns is started problems arise which eventually obliged me to modify the algorithm. WordNet 
contains some 18K capital letter initial lemmata which can be computed as proper names or named entities, i.e. 
person names, organization names, famous events names, institution names, location names. Contrary to 
expectations, the description of these entries in the database resembles the one used for common nouns, which as 
we know are used to denote classes of individuals, whereas proper names would rather be used to individuate 
uniquely a single referent in the world - they are rigid designators according to Kripke4. In fact, this is only 
partially true, seeing that a proper name made by the compound of first name and surname today can be regarded 
ambiguous and can refer to different referents in the world. Now, let's consider synsets: synsets are a collection 
or set of synonym lemmata which may constitute a single concept in a specific language. Lexica of different 
languages may vary a lot on this and a synset made of a plurality of referent words for the same concepts, 
translated in another language may turn up to be uniquely denoted by one single lemma. The other dimension of 
synsets is their polysemous nature: in this case, the same lemma - in case the synset is a singleton - or the first 
lemma of a set, may be used to denote different concepts. This difference is marked in WN by a different synset 
offset index as for instance in the typical case of PLANT, which is associated to the following four synsets: 
 
00014510 plant, flora, plant_life 
03806817 plant, works, industrial_plant 
05562308 plant 
09760967 plant 
 
From a lexicographic point of view these four entries instantiate totally different senses and are associated with 
different glosses. As can be seen, the offset indices are very far from one another, thus indicating the distance in 
meaning involved in each of the different lemma forms. Now this is what we find with common nouns: it would 
be impossible to have a duplicate of the same lemma in adjacency within the same semantic lexical field 
indicating or instance a slightly different meaning. Polysemous words in WordNet are not many, and their 
presence in distant and different semantic lexical fields is an indication of the high frequency of usage of the 
word in the language.  
   The problem is that WordNet uses a similar technique to store information about "polysemous" proper names. 
In fact, this may sound quite strange, seeing that the only meaning associated to a proper name is the referent 
which they should designate. So what WordNet is actually highlighting by associating a synset to proper names 
is, on the one side, the possibility that two or more proper names share part of the name. This is usually the first 
name for person names and the name as identifier of different types of named entities, like a famous work of art, 
or a famous book, etc. As an example, here is the list of different entries associated to JOHN, first lemma: 
 
06043175 John, Gospel_According_to_John 
10364758 John, Saint_John, St_John, Saint_John_the_Apostle,  
  St_John_the_Apostle, John_the_Evangelist,  John_the_Divine 
10365110 John, King_John, John_Lackland 
 
We have a first mention of JOHN as first member of a synset at 06043175, but then the two following mentions 
appear one adjacent to the other - thus belonging to the same semantic field (but is this a field at all?). On the 
other side, we know that when a person name is involved, then the title or the surname is usually needed to 
address the right person. This might also not be sufficient, but it is obvious that first names are totally ambiguous, 
without having to be regarded polysemous. Besides, we know that the concept is denoted by the full content of 
the synset, besides the gloss. And as the content makes it clear, we are here dealing with three totally different 
referents: one is the Gospel, the other is the Apostle and the third a King. So why use JOHN as first lemma and 
not the more distinctive second (or third if available) lemma? We find this to be totally misleading from a 
semantic point of view, because here we are not dealing with polysemous words as was the case with PLANT, 
but rather with referential identity. Besides, the word JOHN by itself can have additional uses. Consider for 
instance the corresponding lower case word "john" which is used with ambiguous meanings: 
 
10076833 whoremaster, whoremonger, john 
04274300 toilet, lavatory, lav, can, john, privy, bathroom 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 In his lecture in 1970, and then published in the book Naming and Necessity, by Saul A. Kripke, 1980, Blackwell, Harvard 
University Press. 



Here "john" is not the first member of the synset but the difference in meaning is clearly understood by a native 
speaker, and is testified again by the distance in terms of offset index values. In these two cases, the choice of 
lexicographers was not to highlight the polysemy of "john" which appears included in the set but not in first 
place, and will be assigned the corresponding offset index. 
   There are only sparse cases of first names as first lemmata in adjacent synsets before reaching the 
lexicographically marked section of the Noun file where all proper names are collected. Then, the choice to use 
first names as first members of the synset becomes very common in the more restricted list of person names 
made up of some 3200 entries that start around offset index 110102000. Here are some examples: 
 
110102151 Aaron 
110102325 Aaron, Henry_Louis_Aaron, Hank_Aaron 
 
110103348 Adam, Robert_Adam 
110103502 Adams, John_Adams, President_Adams, President_John_Adams 
110103654 Adams, John_Quincy_Adams, President_Adams,  
   President_John_Quincy_Adams 
110103839 Adams, Sam_Adams, Samuel_Adams 
 
110105319 Agrippina, Agrippina_the_Elder 
110105487 Agrippina, Agrippina_the_Younger 
 
110109993 Allen, Ethan_Allen 
110110169 Allen, Woody_Allen, Allen_Stewart_Konigsberg 
110110327 Allen, Gracie_Allen, Grace_Ethel_Cecile_Rosalie_Allen, Gracie 
 
110112423 Anderson, Carl_Anderson, Carl_David_Anderson 
110112636 Anderson, Marian_Anderson 
110112784 Anderson, Maxwell_Anderson 
110112893 Anderson, Philip_Anderson, Philip_Warren_Anderson,  
   Phil_Anderson 
110113110 Anderson, Sherwood_Anderson 
 
and the list may continue. In order to cope with this uncouth and unmotivated choice, the algorithm had to be 
modified: now there would be uncertainty in both files. In the list of LFs, where more than one LF would be 
associated to each sense and would start with the same word. And in the gloss offset index + synset, where the 
same first lemma appearing in more than one synset, now was used to denote a different concept in adjacency. 
There was no way to use the same automatic approach we used previously. So in order to complete work on the 
NOUN data file, we have decided to disambiguate each and every synset that needed it: i.e. all those synsets that 
were associated with more than one LF. After manual modifications, here below is the output and the input for 
the sequence of adjacent "Anderson": 
 
synset(110112423,anderson_NN(x1),['Anderson','Carl_Anderson','Carl_David_Anderson'])-
[united_NN(x1,e6),state_NN(x2,e5),physicist_NN(x3,e5),discover_VB-
[e1,x1,x4],antimatter_NN(x4),in_IN(x4,x5),form_NN(x5),of_IN(x5,x6),antielectron_NN(x6), 
call_VB-[e3,x6,e3],positron_NN(x7,e3)] 
 
synset(110112636,marian_anderson_NN(x1),['Marian_Anderson','Anderson'])-
[united_NN(x1,e2),state_NN(x2,e2),contralto_NN(x3,e2),note_VB-[e1,x1],for_IN-
[e1,x4],performance_NN(x4),of_IN(x4,x5),spiritual_NN(x5)] 
 
synset(110112784,anderson_NN(x1),['Anderson','Maxwell_Anderson'])-
[united_NN(x1,e1),state_NN(x2,e1),dramatist_NN(x3,e1)] 
 
synset(110112893,philip_anderson_NN(x1),['Philip_Anderson','Anderson','Philip_Warren_Anderson'
,'Phil_Anderson'])-[united_NN(x1,e2),state_NN(x2,e2),physicist_NN(x3,e2),study_VB-
[e1,x1,x4],electronic_JJ(x4),structure_NN(x4),of_IN(x4,x5),magnetic_JJ(x5),disordered_JJ(x5),s
ystem_NN(x5)] 
 
synset(110113110,anderson_NN(x1),['Anderson','Sherwood_Anderson'])-
[united_NN(x1,e2),state_NN(x2,e2),author_NN(x3,e2),works_NN(x4,e2),be_VB-
[e1,x5,x4],frequently_RB(x5,e2),autobiographical_JJ(x5,e2)] 
 
which was done after transforming the LFs as follows, 
 
lf(anderson_NN(x1),[united_NN(x1),state_NN(x2),physicist_NN(x3),discover_VB(e1,x1,x4),antimatt
er_NN(x4),in_IN(x4,x5),form_NN(x5),of_IN(x5,x6),antielectron_NN(x6),be_VB(e2,x6,e3),call_VB(e3
,x8,x6),positron_NN(x7)]). 
lf(marian_anderson_NN(x1),[united_NN(x1),state_NN(x2),contralto_NN(x3),note_VB(e1,x6,x1),for_I
N(e1,x4),performance_NN(x4),of_IN(x4,x5),spiritual_NN(x5)]). 



lf(anderson_NN(x1),[united_NN(x1),state_NN(x2),dramatist_NN(x3)]). 
lf(philip_anderson_NN(x1),[united_NN(x1),state_NN(x2),physicist_NN(x3),study_VB(e1,x1,x4),elec
tronic_JJ(x4),structure_NN(x4),of_IN(x4,x5),magnetic_JJ(x5),disordered_JJ(x5),system_NN(x5)]). 
lf(anderson_NN(x1),[united_NN(x1),state_NN(x2),author_NN(x3),works_NN(x4),be_VB(e1,x4,x26),fre
quently_RB(x5),autobiographical_JJ(x5)]). 
 
and the offset indices+synsets accordingly, 
 
110112423,Anderson, Carl_Anderson, Carl_David_Anderson 
110112636,Marian_Anderson, Anderson 
110112784,Anderson, Maxwell_Anderson 
110112893,Philip_Anderson, Anderson, Philip_Warren_Anderson, Phil_Anderson 
110113110,Anderson, Sherwood_Anderson 

4 Conclusion and Future Work 

In this paper we presented ongoing work to produce a parser for Logical Forms resources that checks for their 
consistency, which is basically focussing on the existence of disconnected and ungrounded variables, and tries to 
correct them. This problem is divided up into two separate processes: one that looks for object variables and tries 
to connect them to the predicate they depend on. Another process looks for arity of arguments in any predicate 
formula in order to eliminate unwanted and unneeded variables: these may ensue basically due to the use of a 
basic lexical structure in presence, however, of omitted arguments. Arguments may be omitted either because 
they are optional, or because the predicate is used in a passive, intransitivized or ergativized construction. We 
found an amount of disconnected variables that averages 56% of all LFs, that is 71000 wrong entries over 
138000 overall. After running the algorithm for correction which used a lexicon of 7000 verb entries, we 
managed to correct over 32% of LFs thus reducing the error rate to 24%. We worked then at manually correcting 
those LFs that are marked as inconsistent by the parser, overall some 4000 entries. We corrected in this way 
5.64% of errors that were signaled by the parser. Intervening in this way we discovered new mistakes that are 
due simply to specific type of structures, containing adjunct structures at verb level. This will require a new 
effort  to count these new mistakes and then manually check the remaining entries. We are also enriching 
semantically the logical forms, by two types of operations: signaling modifiers' semantic nature as being either 
restrictive or non-restrictive, then intersective, non-intersective and anti-intersective. But also treating three-
place predicates distinguishing closed arguments from predicative arguments. 
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