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Abstract Global warming is increasingly affecting mar-

ine ecosystems and ecological services they provide. One

of the major consequences is a shift in species geographical

distribution, which may affect resources availability to

fisheries. We computed the mean temperature of the catch

(MTC) for Italian catches from 1972 to 2012 to test if an

increase of warmer-water species against colder-water ones

was observed. We further analysed the relationship among

MTC, landings, fishing effort and climatic factors through

a Linear Mixed Models approach. Global MTC increased

at a rate of 0.12 �C per decade. Though, by considering the

influence of sea surface temperature (SST), a strongest

increase (0.31 �C) was estimated in southernmost areas,

while in the northernmost basin (Northern Adriatic Sea) a

decrease of 0.14 �C was observed. SST resulted the most

relevant driver, and the relationship between MTC and SST

showed a high spatial variability both in terms of strength

and sign, being positively stronger in southernmost areas

while negative in the northernmost basin. The result is

probably underestimated since several psychrophilous and

thermophilous species were not included in the analysis.

However, it seems that a change towards warmer-water

species has already occurred in Italian marine ecosystems.

Conversely, total landings temporal dynamics seem mostly

driven by changes in fishing effort rather than by MTC and

climatic factors. Consequently, fishery management

strategies need to focalize primarily on fishing effort re-

duction, in order to reduce the pressure on the stocks while

increasing their resilience to other stressors, among which

global warming.

Keywords Climate change � MTC � SST � NAO � Linear

Mixed Models � Mediterranean Sea

Introduction

Climate variability has always occurred throughout geo-

logical times and ecosystems have evolved consequently.

However, the actual rate of climate change is more rapid

than previous natural changes (Brander 2013), human in-

fluence on the climate system is clear (IPCC 2013), and the

resilience of species and systems has being already com-

promised by concurrent pressures (Brander 2010). As a
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result, ocean warming is currently considered one of the

main driving forces causing changes in the marine com-

munities’ structure (Portner and Peck 2010).

These changes affect marine species in terms of distri-

bution shifts, growth rates, spawning period, size at ma-

turity, recruitment and mortality (Pecl et al. 2014). Thus,

such changes are expected to affect ecosystem services

(e.g. fisheries; Gamito et al. 2015) all around the world. In

particular, the vulnerability of a fishery to climate depends

on induced changes in fish stocks that affect species

composition and thus abundance in commercial catches.

Fisheries should be affected by ‘‘meridionalization’’ (Az-

zurro et al. 2011) and ‘‘tropicalization’’ (Bianchi 2007) of

catch, i.e. an increase of warmer-water species in relation

to colder-water ones, since shifts in distribution are ex-

pected to affect their availability to fisheries (Rijnsdorp

et al. 2009; Cheung et al. 2013). Landings may change in

relation to global warming (Teixeira et al. 2014), and this

may induce changes in the intensity and spatial distribution

of fishing effort (Haynie and Pfeiffer 2012). The exposure

of a fishing community will be greatest where other pres-

sures, such as overfishing, are already stressing the social-

ecological system (Miller et al. 2010). Also fish stocks, if

already overexploited, are more strongly affected by cli-

mate change. This is due to reduced age structure, re-

striction of geographic distribution, loss of diversity etc.

(Rijnsdorp et al. 2009; Perry et al. 2010; Planque et al.

2010).

Unfortunately, most of the Mediterranean fish stocks are

currently overexploited (Colloca et al. 2011), making them

particularly vulnerable to climate change, as observed, for

instance, for the Northern Adriatic Sea (Pranovi et al.

2013). In that fishery, commercial catch is entirely com-

posed of species from cold and temperate latitudes that

have decreased during the past decade as a consequence of

global warming.

Each species has individual characteristics which govern

responses to environmental changes, thus the complexity of

these processes and their interaction makes the task of

understanding and predicting the impacts of climate on

fisheries production tricky (Brander 2010). One possible

solution is to look at the behaviour at a higher level, for

instance community. We applied the mean temperature of

the catch (MTC) index (Cheung et al. 2013) to Italian

landings for the period 1972–2012 to test if an increase of

warmer-water species against colder-water ones was ob-

served. In order to disentangle the role of different driving

forces on MTC changes, we used Linear Mixed Models

(LMM) with an ensemble of different combination of

predictors, i.e. the mean sea surface temperature (SST), the

North Atlantic Oscillation index (NAO), landings and

fishing effort. Moreover, we investigated if total landings

are actually quantitatively affected by MTC dynamics,

since climate and exploitation may likely interact in their

effects (Planque et al. 2010).

In particular, the aims of this study were to analyze

MTC temporal changes in different areas belonging to

Italian seas in relation to climatic factors and fishing effort,

and to investigate how changes in MTC contributed, in

space and time, to changes in landings.

Materials and methods

Landings and mean temperature of the catch

Annual landings (1972–2012) originated from official

Italian statistics on fishery, reported by the Italian National

Institute of Statistics (ISTAT) from 1972 to 2004, and by

the Institute for Economic Research in Fishery and Aqua-

culture (IREPA) from 2005 to 2012.

Landings were expressed in terms of species or groups

of species wet weight (kg/year) per region, and do not

include discarded, illegal and unreported catches. To take

into account possible geographical differences in variables

relationships and trends, regional data were grouped in six

areas (Fig. 1).

The taxonomic resolution of landings changed over

time, so only species clearly recognizable across the

entire time-series were included in the analysis. The fi-

nal database resulted to be composed by 25 species in

each region (35 species in total, since some species were

different according to the region). For each species the

thermal preference (median temperature preference, T)

was assigned according to Cheung et al. 2013 (Table

S1).

The yearly MTC was calculated for each region from

the average inferred temperature preference of exploited

species, weighted by their annual landing (Cheung et al.

2013), according to the following formula:

MTCyr ¼
Pn

i

ci; yr�Ti=
Pn

i

ci; yr ð1Þ

where ci,yr is the landing of species i in a specific region in

year yr, Ti is the median temperature preference of species

i and n is the total number of species.

Trawl-survey data

Biomass data were obtained from the Mediterranean In-

ternational Trawl Survey program (MEDITS) for the years

1994–2011 (for further details see Bertrand et al. 2002).

These data were used to calculate the MTC in the FAO

Geographical Sub Area 17 (GSA 17, corresponding to Area

1 and 2 in Fig. 1) for the period 1994–2011 to test the

effect of the use of landings or survey data in estimating
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changes in MTC over time through the analysis of co-

variance (ANCOVA).

Fishing effort

The engine power (kW) has been adopted as a proxy for

fishing effort (Anticamara et al. 2011), since no estimates

of the effective effort were available for the considered

period. Data from 1972 to 2001 originated from the official

statistics produced by ISTAT and IREPA. This database

was integrated with data coming from the Community

Fishing Fleet Register (2002–2012).

Climatic factors

Monthly data on SST were downloaded for the period

1972–2012 from the International Comprehensive Ocean–

Atmosphere Data Set (ICOADS). The spatial resolution of

the dataset is 1� latitude 9 1� longitude.

The NAO index (December thru March anomaly) was

used as large scale climatic indicator for the period

1972–2012 (Hurrell et al. 2014). The winter NAO is based

on the difference of normalized sea level pressure between

Lisbon (Portugal) and Stykkisholmur/Reykjavik (Iceland).

Data analysis

A LMM approach (Pinhero and Bates 2000) was followed

to assess the relationship among MTC, landings, fishing

effort and climatic factors, fitting three models by using

different response variables, namely MTC and landings.

The structure (i.e. the included predictors) of the

models has been chosen evaluating different alternative

combinations of formulations (Table S2). Model 1 uses

MTC as response variable and year, fishing effort, SST

and NAO as candidate predictors; Model 2 relates land-

ings (response variable) to the same predictors of the first

model; Model 3 is fitted to explore the role of MTC in

influencing landings, and it considers landings as the re-

sponse variable, the optimal structure—as defined by the

model selection procedure—of Model 2 and MTC as

candidate variables.

Different alternative correlations terms and random

structures were evaluated following the protocol proposed

by Zuur et al. (2009). After the choice of the optimal

random structure, alternative formulations of the fixed part

were fitted to explore different combinations of explana-

tory variables (see Table S2). The optimal structure of

models was evaluated considering the Akaike Information

Criterion, corrected for small samples (AICc; Grueber et al.

2011). In case of no strong support for one single ‘best’

model (DAICc smaller than four for the two models with

the lower AICc values), inferences were carried out on an

averaged model, built computing the weighted averages

parameters for each independent variable, using AICc

weights (WAICc) (Burnham and Anderson 2002, Burnham

et al. 2011) and considering the set of models whose cu-

mulative weights (WAICc) represent 95 % of the total

ensemble. Calculations were carried out using the ‘nlme’

(model fitting; Pinhero and Bates 2000) and ‘MuMIn’

(model averaging; Barton 2014) packages, within the R

statistical environment (v. 2.15.1; R Core Team 2012).

Fig. 1 The area of study.

Dashed lines indicate different

areas into which regional

landings were grouped
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Results

No significant difference (F = 2.634, p = 0.1144) was

found between using landings and scientific bottom trawl

survey data in the rate of change in MTC in GSA 17.

The optimal structure for the LMM for MTC includes an

autoregressive correlation structure (AR1) and a structure

that allows a different variance for each region, in order to

address to heteroschedasticity issues. The temporal corre-

lation between years is high (phi = 0.76), and it is not

possible to estimate a unique optimal structure of the fixed

part, following the AICc criterion. The average model,

obtained by using the three models, suggested the presence

of a linear trend of MTC over time, with an increase rate of

0.12 �C per decade and an area-specific dependence of

MTC from SST. This means that changes of MTC over

time are composed by a fixed rate (0.12 �C 9 10 year-1)

plus a variable part that depends from the rate of change of

SST in each area (Table 1). The relationship follows a

latitudinal gradient, being strongest for Area 4 (Table 1)

and increasingly weaker moving northward, with the

Northern Adriatic area (Area 1) showing a negative rela-

tionship (i.e. MTC decreases with increasing water tem-

peratures). Moreover, a high heterogeneity in terms of

dependence of MTC from SST trend was observed among

areas.

The model developed for landings has a different ran-

dom structure, including a random intercept for the factor

Area, in addition to the components already present in

Model 1. The temporal correlation between years is

stronger (phi = 0.85) than for MTC, and the uncertainty in

the selection of the fixed structure is higher (DAICc among

models is generally lower, and the average model was

fitted considering 12 different models). There is a positive

trend in landings, but the temporal dynamic is less strong

than for MTC. The most influential variables are fishing

effort, positively correlated with landings, and NAO,

negatively correlated with landings. The dependence from

SST is less important than for MTC, and it changes in the

different areas. Specifically, this relationship is notably

stronger in the southernmost area (Area 4; Table 1).

To understand the effects over time on landings of

changes in MTC, a new set of models was considered: this

is composed by the 12 models considered after the selec-

tion procedure for Model 2 (same fixed and random

structure) and 12 additional models with the same random

structure and considering the same covariates, but includ-

ing also MTC among the predictors. The model selection

procedure indicates that uncertainty increases, and the best

combination of models is obtained considering 18 models,

mixing some of the models including MTC with some

models without this term among the predictors (Table S2).

The role of the other variables are similar as for Model 2

(even if NAO is the most influential variable), and MTC is

positively correlated with landings, even if it represents the

less important variable and seems to contribute marginally

on the prediction of landings (Table 1).

Discussion

Within the context of the Mediterranean basin, the Italian

Seas can be considered an interesting case study to analyze

possible effects of climate changes on fish communities

and fisheries, due to the presence of a high environmental

variability and a wide latitudinal gradient. The different

Table 1 Estimated parameters of the models

Model for MTC Model for landings Model for landings (including MTC)

Estimate Adjusted

st. error

AICc

weigths

Estimate Adjusted

st. error

AICc

weigths

Estimate Adjusted

st. error

AICc weigths

Intercept -4.477 7.459 – 57,650.88 219,402.60 – 50,063.78 221,098.48 –

kW 0.000 0.000 0.262 0.14 0.07 0.72 0.14 0.07 0.73

SST – – – 561.19 344.15 0.53 552.20 340.62 0.52

YEAR 0.012 0.004 1.000 13.61 180.80 0.37 12.01 180.27 0.37

NAO -0.002 0.006 0.194 -369.23 154.90 0.69 -375.64 153.75 0.74

Area 4:SST 0.019 0.015 1.000 10,462.14 3571.00 0.34 10,455.39 3570.29 0.35

Area 6:SST 0.015 0.014 -194.61 1391.88 -196.29 1388.17

Area 5:SST 0.017 0.021 -274.45 1830.87 -317.88 1824.86

Area 1:SST -0.026 0.014 1449.23 1050.28 1446.96 1045.29

Area 2:SST 0.002 0.013 572.58 372.25 554.93 368.33

Area 3:SST 0.019 0.013 136.23 1015.35 121.45 1016.53

MTC – – – – – – 1090.49 1043.85 0.33

The estimation refers to the averaged models
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areas surrounding the Italian peninsula and its isles are

characterized, indeed, by different features, such as water

temperature, hydrodynamic circulation, nutrients load, that

all directly affect marine communities (Cataudella and

Spagnolo 2011).

Although we are aware of the limitations inherent in the

use of commercial data to infer changes at community

level, MTC confirmed to be a robust proxy to examine

changes in relation to ocean warming (Cheung et al. 2013),

since the rate of change does not depend on the type of data

used. Indeed, no significant difference was found between

using landings and scientific bottom trawl survey data in

the MTC rate of change.

Globally, the MTC in Italian waters increased at a rate

of 0.12 �C per decade in the last 40 years, without con-

sidering the effect of SST. Thus, an increasing dominance

of catches of warm affinity species occurred in the land-

ings. This value resulted lower than those reported for the

Western and Central Mediterranean (0.56 and 1.05 �C per

decade, respectively) by Tsikliras and Stergiou (2014), but

more similar to that reported for the Greek Seas (0.16 �C

per decade) (Tsikliras and Stergiou 2013). These differ-

ences may derive from the different spatial scale at which

MTC changes are analyzed in these works, but are also

strongly influenced by the relationship with SST. Indeed,

our model formulation considers also the influence of

temperature whose signal should be added to the 0.12 �C

rate of change. For instance, if we consider also SST effect

the strongest increase of MTC was estimated (0.31 �C per

decade and per �C of increase of SST) in southernmost

areas (3 and 4), while in the northernmost basin (Area 1) a

decrease of 0.14 �C (per decade and per �C of increase of

SST) was estimated. In general, SST resulted the most

influential variable in driving MTC temporal changes. This

is not surprising, since temperature is recognized to be the

main driving force causing shifts in the geographical dis-

tribution of species (Ben Rais Lasram et al. 2010; Portner

and Peck 2010; Cheung et al. 2013; Tsikliras and Stergiou

2014).

It is worth noting that, while the signal is well-defined,

our result is rather conservative, given that several ther-

mophilous species (e.g. Lessepsian migrants) and psy-

chrophilous species (Atlantic relicts, such as Platichthys

flesus and Sprattus sprattus) were not included in the

analysis, since their catches were not recorded in available

statistics. This means that probably the rate of warming-

induced changes is higher than that here reported, as ob-

served also by other authors (Tsikliras and Stergiou 2014).

The relationship between MTC and SST, even if sig-

nificant in each of the analyzed areas, showed a high spatial

variability both in terms of strength and sign. This could be

related to the local environmental features characterizing

each area and the structure of underlying communities. For

example Area 4 (Sicilian Seas), due to its peculiar hydro-

dynamic conditions and being at the boundary between the

West and East Mediterranean, is recognized as one of the

most influenced by/exposed to climate change (Gasparini

et al. 2005). In this area, the MTC–SST relationship re-

vealed to be the strongest positive one. On the opposite, in

the Northern Adriatic Sea (Area 1) a negative MTC–SST

relationship was detected. The Northern Adriatic Sea is one

of the coldest Mediterranean basins, hosting an endemic

community mainly composed by cold/temperate affinity

species (Pranovi et al. 2013). Within this context of ‘low’

temperature, the water warming is expected to, at least

during a first phase, positively affect the biological cycles

of endemic species, increasing their production (Norman-

López et al. 2013). Thus, the Northern Adriatic Sea may be

acting as a refuge for cold-water species (Ben Rais Lasram

et al. 2010). This hypothesis is supported also by the

positive relation between SST and landings in the area.

However, in the long-term the area may become a ‘cul-de-

sac’ for such species (Ben Rais Lasram et al. 2010), since

Mediterranean surface waters are expected to warm by an

average of 3.1 �C by the end of the twentyfirst century

(Somot et al. 2006). A warming that exceeds the thermal

tolerance of psychrophilous species may negatively impact

catch potential in the region, with direct implications for

fishing communities.

Conversely, the temporal trend resulted to be less im-

portant for landings, being the fishing effort the most im-

portant explaining variable. In general, the SST seems to

play a less important role in affecting landings trend.

However, significant differences among areas have been

recorded, with a higher positive impact of warming in Area

4, suggesting that the increase in water temperature

favoured fishery in the last 40 years, and confirming the

hypothesis of a stronger effect on southernmost areas.

On the other hand, NAO’s role in determining MTC and

landings trends resulted to be marginal and highly variable

depending on the area. This result confirms that, even if it

was expected the NAO to influence marine communities

(Conversi et al. 2010), the effects on Mediterranean me-

teorological/climatic conditions are weak and sometimes

controversial (Lionello and Galati 2008; Vicente-Serrano

and Trigo 2011).

Finally, MTC resulted to be scarcely related to landings

in all areas. This could mean that, even if in presence of

clear changes in fish community structure due to ocean

warming, actually such modifications do not deeply modify

fishing activities.

In conclusion, MTC confirmed to be a good aggregated

index useful to describe the effects of climate change on

marine communities and fisheries. Thus, the index should

be adopted to monitor how global warming is affecting

marine ecosystem services in the framework of the EU
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Strategy on adaptation to climate change. It is worth

noting that the spatial scale of analysis plays a crucial role

in determining the outputs, both in terms of the increasing

rate and sign of the interaction with SST. However, the

presence of a weak relationship between MTC and land-

ings suggests that, at present, MTC cannot be used to

inform fishery management strategies. Within the context

of a general trend of change driven by increasing tem-

perature, landings are mainly affected by other drivers,

first of all fishing effort. Therefore, in order to cope with

the effects of climate change, fishery management strate-

gies need to focalize primarily on fishing effort reduction,

in order to reduce the pressure on the stocks while in-

creasing their resilience to other stressors, like global

warming.
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