
SIAM J. OPTIM. c© XXXX Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000–000

A LINESEARCH-BASED DERIVATIVE-FREE APPROACH FOR
NONSMOOTH CONSTRAINED OPTIMIZATION∗

G. FASANO† , G. LIUZZI‡ , S. LUCIDI§ , AND F. RINALDI¶

Abstract. In this paper, we propose new linesearch-based methods for nonsmooth constrained
optimization problems when first-order information on the problem functions is not available. In
the first part, we describe a general framework for bound-constrained problems and analyze its
convergence toward stationary points, using the Clarke–Jahn directional derivative. In the second
part, we consider inequality constrained optimization problems where both objective function and
constraints can possibly be nonsmooth. In this case, we first split the constraints into two subsets:
difficult general nonlinear constraints and simple bound constraints on the variables. Then, we
use an exact penalty function to tackle the difficult constraints and we prove that the original
problem can be reformulated as the bound-constrained minimization of the proposed exact penalty
function. Finally, we use the framework developed for the bound-constrained case to solve the
penalized problem. Moreover, we prove that every accumulation point, under standard assumptions
on the search directions, of the generated sequence of iterates is a stationary point of the original
constrained problem. In the last part of the paper, we report extended numerical results on both
bound-constrained and nonlinearly constrained problems, showing that our approach is promising
when compared to some state-of-the-art codes from the literature.

Key words. derivative-free optimization, Lipschitz optimization, exact penalty functions, in-
equality constrained optimization, stationarity conditions

AMS subject classifications. 90C30, 90C56, 65K05, 49J52

DOI. 10.1137/130940037

1. Introduction. In this paper, we consider the optimization of a nonsmooth
function f : Rn → R over a feasible set defined by lower and upper bounds on the vari-
ables and, possibly, by nonlinear and nonsmooth inequality constraints g : Rn → R

m,
namely,

min f(x)

s.t. g(x) ≤ 0,

l ≤ x ≤ u,

where l, u ∈ R
n, and l < u. We observe that, to our purposes, the fact that l and

u must be finite might be relaxed by suitable assumptions on the objective function
of the problem. We assume that the problem functions (though nonsmooth) are
Lipschitz continuous and that first-order information is unavailable or impractical to
obtain (e.g., when problem functions are expensive to evaluate or somewhat noisy).

∗Received by the editors October 7, 2013; accepted for publication (in revised form) April 23,
2014; published electronically DATE. This work was partially funded by Italian national project
RITMARE 2012-2016.

http://www.siam.org/journals/siopt/x-x/94003.html
†Dipartimento di Management, Università Ca’Foscari Venezia, San Giobbe, Cannaregio 873,

30121 Venice, Italy (fasano@unive.it).
‡Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti,” Consiglio Nazionale delle Ricerche,

Viale Manzoni 30, 00185 Rome, Italy (giampaolo.liuzzi@iasi.cnr.it).
§Dipartimento di Ingegneria Informatica Automatica e Gestionale “A. Ruberti,” “Sapienza” Uni-

versità di Roma, Via Ariosto 25, 00185 Rome, Italy (lucidi@dis.uniroma1.it).
¶Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padua, Italy

(rinaldi@math.unipd.it).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' Foscari

https://core.ac.uk/display/223167539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/siopt/x-x/94003.html
mailto:fasano@unive.it
mailto:giampaolo.liuzzi@iasi.cnr.it
mailto:lucidi@dis.uniroma1.it
mailto:rinaldi@math.unipd.it

2 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

Such optimization problems encompass many real-world problems arising in dif-
ferent fields, like computational mathematics, physics, and engineering, and present a
twofold difficulty. On the one hand, problem functions are typically of the black-box
type, so that first-order information is unavailable; on the other hand, the functions
present a certain level of nonsmoothness (see, e.g., [3], [11], and [24]).

In [4] and [5], the mesh adaptive direct search (MADS) class of algorithms is
introduced, where a dense set of directions is generated and combined with an extreme
barrier approach, in order to provide a general and flexible framework for nonsmooth
constrained problems. In [2], the use of a deterministic scheme for the generation of a
dense set of search directions is proposed, thus defining the ORTHOMADS method.
A different way to handle the constraints within MADS-type algorithms is proposed
in [6], where the authors combine a filter-based strategy [17] with a progressive barrier
approach. In [46], the most general result for direct search methods of this type is
given (for functions directionally Lipschitz) and, moreover, it is shown that integer
lattices can be replaced by sufficient decrease when using polling directions dense in
the unit sphere.

In [14], it is proved that the efficiency of direct search methods (e.g., MADS),
when applied to nonsmooth problems, can be improved by using simplex gradients to
order poll directions.

In this work, we extend the linesearch approach with sufficient decrease for
unconstrained minimization problems in [18, 35] to the case of nonsmooth bound-
constrained and nonlinearly constrained minimization problems. This approach gives
us a twofold achievement. On the one hand, by means of the sufficient decrease we
can avoid the use of integer lattices. On the other hand, the extrapolation phase
allows us to better exploit a descent direction and hence to characterize all the limit
points of the sequence of iterates, under some density assumptions on the search
directions.

In the first part of this paper, we describe a general framework for solving
bound-constrained nonsmooth optimization problems. The approach, called DFNsimple

(derivative-free nonsmooth simple), uses a projected linesearch procedure. For this
simple algorithm we can prove convergence to stationary points of the problem in
the Clarke–Jahn sense [22] (see also Definition 2.3 below). Then, we propose an
improved version of the algorithm, namely, CS-DFN (coordinate search derivative-
free nonsmooth), which further performs linesearches along the coordinate
directions.

In the second part, we focus on nonlinearly constrained problems. We assume
that two different classes of constraints exist, namely, difficult general nonsmooth con-
straints (g(x) ≤ 0) and simple bound constraints on the problem variables (l ≤ x ≤ u).
The main idea consists of getting rid of the nonlinear constraints by means of an exact
penalty approach. Therefore, we construct a merit function that penalizes the gen-
eral nonlinear inequality constraints and we resort to the minimization of the penalty
function subject to the simple bound constraints. We acknowledge that the idea of
only penalizing the nonlinear constraints is not new in the context of derivative-free
optimization. Indeed, for smooth problems, the same handling of easy constraints
has been previously adopted in several papers like, for instance, [28, 33] (for a com-
bination of inequality and bound constraints) and [25] (for a combination of general
and linear constraints). For nonsmooth problems, in [32] finite minimax problems are
considered with explicit handling of linear inequality constraints; in [20] the idea of
projecting onto simple constraints is proposed for Lipschitz problems. Following this
approach, we can resort to the framework developed for the bound-constrained case

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 3

and define an algorithm (which is called DFNcon) to tackle nonlinearly constrained
nonsmooth problems. We are able to prove that the new bound-constrained problem
is to a large extent equivalent to the original problem and that the sequence gener-
ated by means of the described approach converges to stationary points of the original
problem, in the sense that every accumulation point is stationary for the constrained
problem.

In the last part of the paper, an extensive numerical experience (on 142 bound-
constrained and 296 nonlinearly constrained problems) is carried out. We first test
two versions of the DFNsimple algorithm, obtained by embedding into the scheme two
different pseudorandom sequences to generate the sequence of search directions. In
particular, we compare the Halton [19] and Sobol sequences [8, 43] within our method.
Then we analyze the performances of both our methods DFNsimple and CS-DFN,
and we compare CS-DFN with two state-of-the-art solvers on the test set of bound-
constrained nonsmooth problems. Finally, we focus on nonlinearly constrained prob-
lems. In this case, we compare our code DFNcon with two well-known codes on the test
set of nonsmooth constrained problems. The codes DFNsimple, CS-DFN, and DFNcon

are freely available for download at http://www.dis.uniroma1.it/∼lucidi/DFL.

The paper has the following structure. In section 2, we analyze the approach
for the bound-constrained case. In section 3, we extend the approach to nonlinearly
constrained problems. The numerical results are reported in section 4. We summarize
our conclusions in section 5, and an appendix completes the paper, including auxiliary
results.

1.1. Notation and definitions. Given a vector v ∈ R
n, a subscript will be used

to denote either the ith of its entries vi or the fact that it is an element of an infinite
sequence of vectors {vk}. In the case of possible misunderstanding or ambiguities,
the ith component of a vector will be denoted by (v)i. By ‖ · ‖ we indicate the
Euclidean norm. We denote by vj the generic jth element of a finite set of vectors,
and in particular e1, . . . , en represent the coordinate unit vectors. Given two vectors
a, b ∈ R

n, we indicate with y = max{a, b} (y = min{a, b}) the vector such that
yi = max{ai, bi} (yi = min{ai, bi}), i = 1, . . . , n. Furthermore, given a vector v ∈ R

n

we denote by v+ = max{0, v}. By S(0, 1) we indicate the unit sphere with center in
the origin, i.e., S(0, 1) = {x ∈ R

n : ‖x‖ = 1}. Further, [x][l,u] = max{l,min{u, x}}
denotes the orthogonal projection over the set {x ∈ R

n : l ≤ x ≤ u}, and ◦
C is the

interior of set C. From [41, Theorem 3.3], we give the following definition.

Definition 1.1 (convex hull). Given a collection of finitely many nonempty
convex sets Γ = {Ai ⊆ R

n : i = 1, . . . ,m}, Co(Γ) indicates its convex hull, namely,

Co(Γ) =
⋃{

m∑
i=1

λiAi

}
,

where the union is taken considering all coefficients λi ≥ 0, i = 1, . . . ,m, with∑n
i=1 λi = 1.

From [9], we recall the definition of Clarke stationarity.

Definition 1.2 (Clarke stationarity). Given the unconstrained problem minx∈Rn

f(x), a point x̄ is a Clarke stationary point if 0 ∈ ∂f(x̄), where ∂f(x) = {s ∈ R
n :

fCl(x; d) ≥ dT s ∀d ∈ R
n} is the generalized gradient of f at x, and

http://www.dis.uniroma1.it/~lucidi/DFL

4 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

(1.1) fCl(x; d) = lim sup
y → x, t ↓ 0

f(y + td)− f(y)

t
.

Recalling the convergence analysis carried out in [2, 5] for derivative-free
nonsmooth optimization, the directions used in the optimization algorithm have to
satisfy a condition that is intimately connected with the nonsmoothness of the problem
itself. Indeed, since the cone of feasible descent directions can be arbitrarily narrow,
there is no theoretical guarantee that by using finite sets of search directions one of
them yields a negative Clarke directional derivative (1.1) of the objective function
(see, e.g., [11, 24]).

Thus, we finally recall the well-known definition of a dense subsequence of direc-
tions that will be used throughout the paper.

Definition 1.3 (dense sequence). Let K be an infinite subset of indices (possibly
K = {0, 1, . . .}). The subsequence of normalized directions {dk}K is said to be dense
in the unit sphere S(0, 1) if for any d̄ ∈ S(0, 1) and for any ε > 0 there exists an index
k ∈ K such that ‖dk − d̄‖ ≤ ε.

2. The bound-constrained case. In this section we consider the bound-
constrained problem

(2.1)
min f(x)

s.t. x ∈ X,

where we indicate by X the set of bound constraints on the variables, i.e.,

X = {x ∈ R
n : l ≤ x ≤ u},

and f is Lipschitz continuous. We recall that, since l and u are both finite, set X is
compact. For points in the feasible set X we address also the definition of cone of
feasible directions, as follows.

Definition 2.1 (cone of feasible directions). Given problem (2.1) and any point
x ∈ X,

D(x)

= {d ∈ R
n : di ≥ 0 if xi = li, di ≤ 0 if xi = ui, di ∈ R if li < xi < ui, i = 1, . . . , n}

is the cone of feasible directions at x with respect to X.

We also report a technical proposition whose proof can be found in [29, Proposi-
tion 2.3].

Proposition 2.2. Given problem (2.1), let {xk} ⊂ X for all k and {xk} → x̄
for k → ∞. Then, for k sufficiently large,

D(x̄) ⊆ D(xk).

The necessary optimality conditions for problem (2.1) can be characterized in terms of
the Clarke–Jahn generalized directional derivative of the objective function, instead of

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 5

using definition (1.1). Given a point x ∈ X, the Clarke–Jahn generalized directional
derivative of function f along direction d ∈ D(x) is given by (see [22, section 3.5])

(2.2) f◦(x; d) = lim sup
y → x, y ∈ X

t ↓ 0, y + td ∈ X

f(y + td)− f(y)

t
.

From [22, Theorem 4.14] we recall that every local minimum of problem (2.1)
satisfies the following definition.

Definition 2.3 (Clarke–Jahn stationarity). Given problem (2.1), x� is a Clarke–
Jahn stationary point if

(2.3) f◦(x�; d) ≥ 0 ∀ d ∈ D(x�).

We propose in the next sections two algorithms having different performances on
the nonsmooth bound-constrained problem (2.1).

2.1. A simple derivative-free algorithm. As discussed in the introduction,
even in the simpler case of bound constraints, since the objective function f is pos-
sibly not continuously differentiable on X, a finite number of search directions is not
sufficient to investigate the local behavior of f(x) on X [24, section 6.4]. Hence,
recalling [5], it is necessary to assume density properties on particular subsequences
of the search directions. In this way we are able to prove convergence to stationary
points of problem (2.1).

To this purpose, here we propose a very simple derivative-free algorithm for solv-
ing the nonsmooth problem (2.1), namely, DFNsimple.

In this algorithm we use a predefined sequence of search directions {dk}. Then,
we investigate the behavior of the function f(x) along the direction dk by means of
the linesearch procedure projected continuous search. Given the current iterate xk at
step k, the latter procedure first evaluates the function at [xk ± α̃kdk][l,u]. In case a
sufficient reduction of the function value is obtained, an extrapolation along the search
direction is performed, so that a suitable steplength αk is computed, and is used as
a tentative steplength for the next iteration, i.e., α̃k+1 = αk. On the other hand, if
at [xk ± α̃kdk][l,u] we do not obtain a sufficient reduction of the function value, then
the tentative steplength at the next iteration is suitably reduced by a scale factor,
i.e., α̃k+1 = θα̃k, θ ∈ (0, 1). More formally, the resulting algorithm and the proposed
linesearch procedure are summarized in the next schemes.

Algorithm DFNsimple .

Input. θ ∈ (0, 1), x0 ∈ X, α̃0 > 0, a sequence {dk} such that dk ∈ R
n, ‖dk‖ = 1,

for all k.

For k = 0, 1, . . .
Compute αk and d̃k by the projected continuous search (α̃k, xk, dk;αk, d̃k).

If (αk = 0) then α̃k+1 = θα̃k and x̃k = xk

else α̃k+1 = αk and x̃k = [xk + αkd̃k][l,u].

Find xk+1 ∈ X such that f(xk+1) ≤ f(x̃k).

End For

Output. The sequences {xk}, {αk}, and {α̃k}.

6 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

Projected continuous search (α̃, y, p;α, p+).
Data. γ > 0, δ ∈ (0, 1).

Step 0. Set α = α̃.

Step 1. If f([y + αp][l,u]) ≤ f(y)− γα2 then set p+ = p and go to Step 4.

Step 2. If f([y − αp][l,u]) ≤ f(y)− γα2 then set p+ = −p and go to Step 4.

Step 3. Set α = 0, return α and p+ = p.

Step 4. Let β = α/δ.

Step 5. If f([y + βp+][l,u]) > f(y)− γβ2 return α, p+.

Step 6. Set α = β and go to Step 4.

For clarity, we note that the projected continuous search procedure takes in input
α̃, y, and p (that is, the arguments before the semicolon) and gives in output α and
p+ (that is, the arguments after the semicolon).

It is worth noting that in Algorithm DFNsimple the next iterate xk+1 is required
to satisfy f(xk+1) ≤ f(x̃k). This allows us in principle to compute xk+1 by minimizing
suitable approximating models of the objective function, thus possibly improving the
efficiency of the overall scheme.

Furthermore, since we are interested in studying the asymptotic convergence prop-
erties of DFNsimple, its formal definition does not include a stopping condition. We
note that this is in accordance with most of the papers concerning convergence of
derivative-free methods; see, e.g., [6, 10, 12, 13, 16, 44], among others. We refer the
reader to section 4 for a practical stopping condition.

In the following results we analyze the global convergence properties of Algo-
rithm DFNsimple. In particular, in the next proposition we prove that the projected
continuous search cannot cycle.

Proposition 2.4. The projected continuous search cannot infinitely cycle
between Step 4 and Step 6.

Proof. Let us consider the projected continuous search. We proceed by contradic-
tion assuming that an infinite monotonically increasing sequence of positive numbers
{βj} exists such that

f([y + βjp
+][l,u]) ≤ f(y)− γβ2

j .

The above relation contradicts the fact that X is compact, by definition, and that
function f is continuous, thus concluding the proof.

Now, in the following proposition we prove that the stepsizes computed by the
projected continuous search procedure eventually go to zero.

Proposition 2.5. Let {αk}, {α̃k} be the sequences produced by Algorithm
DFNsimple; then

(2.4) lim
k→∞

max{αk, α̃k} = 0.

Proof. We split the iteration sequence {k} into two sets K1, K2, with K1 ∪K2 =
{k} and K1 ∩K2 = ∅. We denote

• K1 the set of iterations when α̃k+1 = αk,
• K2 the set of iterations when α̃k+1 = θα̃k and αk = 0.

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 7

Note that K1 and K2 cannot both be finite. Then we analyze the following two cases,
K1 infinite (Case I) and K1 finite (Case II).

Case I. Since K1 is infinite, then the instructions of the algorithm imply, for
k ∈ K1,

(2.5) f(xk+1) ≤ f([xk + αkd̃k][l,u]) ≤ f(xk)− γα2
k.

Taking into account the compactness of X and the continuity of f , we get from the
above relation that {f(xk)} tends to a limit f̄ . Then, by (2.5), it follows that

(2.6) lim
k→∞,k∈K1

αk = 0,

which also implies

(2.7) lim
k→∞,k∈K1

α̃k = 0.

Case II. Recall that K1 is finite in this case, so that set K2 must be infinite.
Since, by definition, αk = 0, k ∈ K2, we have

(2.8) lim
k→∞,k∈K2

αk = 0.

Then, let mk < k be the largest integer such that mk ∈ K1. By the instructions of
the algorithm, we can write

(2.9) α̃k+1 = θk−mk α̃mk
.

Note that in case the index mk does not exist (when K1 is empty), we set mk = 0.
When k → ∞ and k ∈ K2, we have only the following two cases: either mk → ∞
(i.e., K1 is an infinite subset) or (k −mk) → ∞ (i.e., K1 is finite). Therefore, (2.7)
and (2.9) along with θ ∈ (0, 1) give

(2.10) lim
k→∞,k∈K2

α̃k = 0.

Relations (2.6), (2.7), (2.8), and (2.10) yield (2.4), thus concluding the
proof.

Using the latter result we can provide the next technical lemma, which will be
necessary to prove the main global convergence result for algorithm DFNsimple. This
lemma shows that the projection operator does not sensibly deteriorate the asymptotic
properties of the directions dk. More precisely, performing a steplength ηk along dk
and assuming that ηk goes to zero, it results that eventually the new point [xk +
ηkdk][l,u] differs from xk and the scaled actual step ([xk + ηkdk][l,u] − xk)/ηk enjoys
the same asymptotic properties of dk.

Lemma 2.6. Let {xk} be the sequence produced by Algorithm DFNsimple, let {dk}
be the sequence of search directions used by DFNsimple, and let {ηk} be a sequence
such that ηk > 0 for all k. Further, let K be a subset of indices such that

lim
k→∞,k∈K

xk = x̄,(2.11)

lim
k→∞,k∈K

dk = d̄,(2.12)

lim
k→∞,k∈K

ηk = 0(2.13)

with x̄ ∈ X and d̄ ∈ D(x̄), d̄ �= 0. Then,

8 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

(i) for all k ∈ K sufficiently large,

[xk + ηkdk][l,u] �= xk;

(ii) the following limit holds:

lim
k→∞,k∈K

vk = d̄,

where

(2.14) vk =
[xk + ηkdk][l,u] − xk

ηk
.

Proof. In order to prove items (i) and (ii), let us recall that

[xk + ηkdk][l,u] = max{l,min{u, (xk + ηkdk)}}.

Now we show that for k ∈ K sufficiently large

(2.15) [xk + ηkdk][l,u] �= xk.

By contradiction, let us assume that for k ∈ K sufficiently large, we have

(2.16) [xk + ηkdk][l,u] = xk.

Since by assumption d̄ �= 0, an index i with d̄i �= 0 exists and one of the following
three cases holds:

(1) x̄i = li (which implies d̄i > 0). We can write

([xk + ηkdk][l,u])i = max{li, (xk + ηkdk)i};

since xk is feasible and (2.12) holds, for k sufficiently large we have

max{li, (xk + ηkdk)i} > max
{
li,

(
xk +

ηk
2
d̄
)
i

}
,

so that, by (2.13) and ηk > 0, we get

(2.17) max
{
li,

(
xk +

ηk
2
d̄
)
i

}
=

(
xk +

ηk
2
d̄
)
i
�= (xk)i.

(2) x̄i = ui (which implies d̄i < 0). We can write

([xk + ηkdk][l,u])i = min{ui, (xk + ηkdk)i};

since xk is feasible and (2.12) holds, for k sufficiently large we have

min{ui, (xk + ηkdk)i} < min
{
ui,

(
xk +

ηk
2
d̄
)
i

}
,

so that by (2.13) and ηk > 0 we get

(2.18) min
{
ui,

(
xk +

ηk
2
d̄
)
i

}
=

(
xk +

ηk
2
d̄
)
i
�= (xk)i.

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 9

(3) li < x̄i < ui (which implies d̄i �= 0). We can write

([xk + ηkdk][l,u])i = (xk + ηkdk)i;

since xk is feasible and (2.12) holds, for k sufficiently large we have

(2.19) (xk + ηkdk)i �= (xk)i.

Then, by (2.17), (2.18), and (2.19) we have a contradiction with (2.16), which proves (i).

Now, we recall definition (2.14) and note that, by (2.15), the vector vk is eventually
nonzero. By the definition of the vector vk, we have for its ith entry

(vk)i =
max{li,min{ui, (xk + ηkdk)i}} − (xk)i

ηk
(2.20)

=
min{ui,max{li, (xk + ηkdk)i}} − (xk)i

ηk
.(2.21)

Now, let us distinguish among the following three cases for k sufficiently large and
k ∈ K:

(1) x̄i = li. Then by (2.20) we have

(vk)i =
max{li, (xk + ηkdk)i} − (xk)i

ηk

and recalling that whenever x̄i = li it must be d̄i ≥ 0, we distinguish two
subcases:
a) when d̄i > 0, then (vk)i = max

{ li−(xk)i
ηk

, (dk)i
}
= (dk)i;

b) when d̄i = 0, then

lim
k→∞,k∈K

(vk)i = lim
k→∞,k∈K

max

{
li − (xk)i

ηk
, (dk)i

}
= 0 = (d̄)i.

(2) x̄i = ui. Then by (2.21) we have

(vk)i =
min{ui, (xk + ηkdk)i} − (xk)i

ηk

and recalling that whenever x̄i = ui it must be d̄i ≤ 0, we distinguish two
subcases:
(a) when d̄i < 0, then (vk)i = min

{ui−(xk)i
ηk

, (dk)i
}
= (dk)i;

(b) when d̄i = 0, then

lim
k→∞,k∈K

(vk)i = lim
k→∞,k∈K

min

{
ui − (xk)i

ηk
, (dk)i

}
= 0 = (d̄)i.

(3) li < x̄i < ui. Then by (2.20) or (2.21) we have (vk)i = (xk+ηkdk−xk)i/ηk =
(dk)i.

These imply that limk→∞,k∈K vk = d̄, so that (ii) is proved.

Finally, we are now ready to prove the main convergence result for Algorithm
DFNsimple. We highlight that according to the following proposition, every limit point

10 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

of the sequence of iterates {xk}, produced by Algorithm DFNsimple, is a stationary
point for problem (2.1).

Proposition 2.7. Let {xk} be the sequence produced by Algorithm DFNsimple.
Let x̄ be any limit point of {xk} and K be the subset of indices such that

lim
k→∞,k∈K

xk = x̄.

If the subsequence {dk}K is dense in the unit sphere (see Definition 1.3), then x̄ is
Clarke–Jahn stationary for problem (2.1).

Proof. We recall that by Definition 2.3 we consider the stationarity condition
at x̄:

f◦(x̄; d̄) = lim sup
y → x̄, y ∈ X

t ↓ 0, y + td̄ ∈ X

f(y + td̄)− f(y)

t
≥ 0 ∀d̄ ∈ D(x̄).

We proceed by contradiction and assume that a direction d̄ ∈ D(x̄)∩S(0, 1) exists
such that

(2.22) f◦(x̄; d̄) = lim sup
xk → x̄, xk ∈ X,
t ↓ 0, xk + td̄ ∈ X

f(xk + td̄)− f(xk)

t
< 0.

By recalling the instructions of the projected continuous search, if the condition
at Step 1 is satisfied, we have αk > 0 and

(2.23) f([xk + (αk/δ)dk][l,u]) > f(xk)− γ(αk/δ)
2;

otherwise, we have

(2.24) f([xk + α̃kdk][l,u]) > f(xk)− γα̃2
k.

Now, for every index k ∈ K, let us set

ηk =

{
αk/δ if (2.23) holds,

α̃k if (2.24) holds,

and let vk be defined as in relation (2.14) of Lemma 2.6, that is,

vk =
[xk + ηkdk][l,u] − xk

ηk
.

The instructions of Algorithm DFNsimple and definition of ηk guarantee that ηk > 0
for all k ∈ K. Moreover, by Proposition 2.5,

(2.25) lim
k→∞

ηk = 0.

Further, by Definition 1.3, a subset K̄ ⊆ K exists such that

lim
k→∞,k∈K̄

xk = x̄,(2.26)

lim
k→∞,k∈K̄

dk = d̄.(2.27)

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 11

Hence, by (2.25), (2.26), and (2.27), the assumptions of Lemma 2.6 are satisfied.
Then, from point (i) of Lemma 2.6, we have vk �= 0, for k ∈ K̄ and sufficiently large,
so that relations (2.23) and (2.24) can be equivalently expressed as

f(xk + ηkvk) > f(xk)− γη2k,

that is, recalling that ηk > 0,

(2.28)
f(xk + ηkvk)− f(xk)

ηk
> −γηk,

for k ∈ K̄ and sufficiently large.
Then we can write

lim sup
xk → x̄, xk ∈ X
t ↓ 0, xk + td̄ ∈ X

f(xk + td̄)− f(xk)

t
≥ lim sup

k→∞,k∈K̄

f(xk + ηkd̄)− f(xk)

ηk

= lim sup
k→∞,k∈K̄

f(xk + ηkd̄) + f(xk + ηkvk)− f(xk + ηkvk)− f(xk)

ηk

≥ lim sup
k→∞,k∈K̄

f(xk + ηkvk)− f(xk)

ηk
− L‖d̄− vk‖,

where L is the Lipschitz constant of f . By (2.28) and (ii) of Lemma 2.6 we get, from
the latter relation,

lim sup
xk → x̄, xk ∈ X
t ↓ 0, xk + td̄ ∈ X

f(xk + td̄)− f(xk)

t
≥ 0,

which contradicts (2.22) and concludes the proof.
We conclude this section by reporting the following corollary, where we assume

that the whole sequence {xk} converges to a single limit point x̄.
Corollary 2.8. Let {xk} be the sequence produced by Algorithm DFNsimple. If

the sequence {xk} admits a unique limit point x̄ and the sequence {dk} is dense in the
unit sphere (see Definition 1.3), then x̄ is Clarke–Jahn stationary for problem (2.1).

Proof. The proof easily follows from Proposition 2.7 by considering
K = {0, 1, . . .}.

2.2. Combining DFNsimple with coordinate searches. A possible way to
improve the efficiency of Algorithm DFNsimple is to take advantage of the experience
in the smooth case. For example, we can draw inspiration from the paper [34], where
the objective function is repeatedly investigated along the directions ±e1, . . . ,±en in
order to capture the local behavior of the objective function. In fact, the use of a set
of search directions, which is constant with iterations, allows us to store the actual
and tentative steplengths, i.e., αi and α̃i, respectively, that roughly summarize the
sensitivity of the function along those directions. Thus, when the function is further
investigated along such search directions, we can exploit information gathered in the
previous searches along them.

In the following, we propose a new algorithm, where we first explore the coordinate
directions and then, provided that the steplengths αi and α̃i are smaller than a given

12 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

threshold η > 0, a further direction dk is explored. In particular, the sampling along
the coordinate directions is performed by means of a continuous search procedure
[34, 31].

Algorithm CS-DFN.

Input. θ ∈ (0, 1), η > 0, x0 ∈ X, α̃0 > 0, α̃i
0 > 0, di0 = ei, for i = 1, . . . , n, a

sequence {dk} of search directions such that ‖dk‖ = 1, for all k.

For k = 0, 1, . . .
Set y1k = xk.
For i = 1, . . . , n

Compute α and dik+1 by the continuous search (α̃i
k, y

i
k, d

i
k;α, d

i
k+1).

If (α = 0) then set αi
k = 0 and α̃i

k+1 = θα̃i
k

else set αi
k = α and α̃i

k+1 = α.

Set yi+1
k = yik + αi

kd
i
k+1.

End For
If

(
maxi=1,...,n{αi

k, α̃
i
k} ≤ η

)
then

Compute αk and d̃k by the
projected continuous search (α̃k, y

n+1
k , dk;αk, d̃k).

If (αk = 0) then α̃k+1 = θα̃k and yn+2
k = yn+1

k

else α̃k+1 = αk and yn+2
k = [yn+1

k + αkd̃k][l,u].

else set α̃k+1 = α̃k and yn+2
k = yn+1

k .

Find xk+1 ∈ X such that f(xk+1) ≤ f(yn+2
k).

End For
Output. The sequences {xk}, {αk}, {α̃k}, {αi

k} and {α̃i
k}, for i = 1, . . . , n.

Continuous search (α̃, y, p;α, p+).
Data. γ > 0, δ ∈ (0, 1).

Step 1. Compute the largest ᾱ such that y + ᾱp ∈ X. Set α = min{ᾱ, α̃}.
Step 2. If α > 0 and f(y+αp) ≤ f(y)− γα2 then set p+ = p and go to Step 6.

Step 3. Compute the largest ᾱ such that y − ᾱp ∈ X. Set α = min{ᾱ, α̃}.
Step 4. If α > 0 and f(y−αp) ≤ f(y)−γα2 then set p+=−p and go to Step 6.

Step 5. Set α = 0, return α and p+ = p.

Step 6. Let β = min{ᾱ, (α/δ)}.
Step 7. If α = ᾱ or f(y + βp+) > f(y)− γβ2 return α, p+.

Step 8. Set α = β and go to Step 6.

Concerning the above definition of Algorithm CS-DFN, we again remark that the
lack of a stopping condition allows us to study the asymptotic convergence properties
of CS-DFN.

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 13

The following three propositions concern the convergence analysis of Algorithm
CS-DFN. The third proof is omitted since it is very similar to the corresponding one
for Algorithm DFNsimple.

Proposition 2.9. The continuous search cannot infinitely cycle between Step 6
and Step 8.

Proof. We proceed by contradiction and assume that an infinite monotonically
increasing sequence of positive numbers {βj} exists such that

βj < ᾱ and f(y + βjp
+) ≤ f(y)− γβ2

j .

The above relation contradicts the fact that X is compact, by definition, and that
function f in problem (2.1) is continuous.

The proposition that follows concerns convergence to zero of the steplengths in
Algorithm CS-DFN. In particular, since αi

k and α̃i
k tend to zero, it results that the

search along the dense direction dk is performed eventually infinitely many times.

Proposition 2.10. Let {αi
k}, {α̃i

k}, {αk}, and {α̃k} be the sequences produced
by Algorithm CS-DFN; then

lim
k→∞

max{α1
k, α̃

1
k, . . . , α

n
k , α̃

n
k} = 0,(2.29)

lim
k→∞

max{αk, α̃k} = 0.(2.30)

Proof. Reasoning as in the proof of Proposition 1 in [34], we can prove (2.29).

Now we have to show (2.30). By virtue of (2.29), we know that an index k̄ exists
such that the dense direction dk is investigated for all k ≥ k̄.

Then, without loss of generality, we split the iteration sequence {k : k ≥ k̄} into
two sets K1 and K2, with K1 ∪K2 = {k} and K1 ∩K2 = ∅. We denote

• K1 the set of iterations when α̃k+1 = αk,
• K2 the set of iterations when α̃k+1 = θα̃k.

Hence, the proof follows by reasoning as in the proof of Proposition 2.5.

Proposition 2.11. Let {xk} be the sequence produced by Algorithm CS-DFN.
Let x̄ be any limit point of {xk} and K be the subset of indices such that

lim
k→∞,k∈K

xk = x̄.

If the subsequence {dk}K is dense in the unit sphere (see Definition 1.3), then x̄ is
Clarke–Jahn stationary for problem (2.1).

Proof. The proof trivially follows from Proposition 2.7.

3. The nonsmooth nonlinearly constrained case. In this section, we con-
sider Lipschitz-countinuous nonlinearly constrained problems of the following form:

(3.1)

min f(x)

s.t. g(x) ≤ 0,

l ≤ x ≤ u,

14 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

where f : Rn → R, g : Rn → R
m, and l, u ∈ R

n. The vectors l and u correspond
respectively to lower and upper bounds on the variables x ∈ R

n and satisfy the
additional condition l < u. We also assume throughout the paper that f(x) and g(x)
are Lipschitz continuous functions, though they may be possibly nondifferentiable.
Furthermore, F indicates the feasible set of problem (3.1), i.e.,

F = {x ∈ X : g(x) ≤ 0}.

We highlight that, by definition, X = {x ∈ R
n : l ≤ x ≤ u} is a compact subset of Rn.

3.1. Preliminary results. The nonlinearly constrained problem (3.1) can be
handled partitioning the constraints in two different sets, the first one defined by
general inequality constraints, and the second one consisting of simple bound con-
straints. Then, for this kind of problem, we can state necessary optimality conditions
that explicitly take into account the presence of these two different sets of constraints.

The following propositions extend the results in [21, Theorem 6] to the case where
inequality constraints and an additional convex set of constraints are present.

Proposition 3.1 (Fritz John optimality conditions). Let x� ∈ F be a local
minimum of problem (3.1). Then, multipliers λ�

0, λ
�
1, . . . , λ

�
m ∈ R not all zero exist,

with

λ�
0 ≥ 0, λ�

i ≥ 0, and λ�
i gi(x

�) = 0 ∀ i = 1, . . . ,m,

such that for every d ∈ D(x�)

(3.2) max

{
ξ	d : ξ ∈ λ�

0∂f(x
�) +

m∑
i=1

λ�
i ∂gi(x

�)

}
≥ 0.

Proof. The proof can be found in Appendix A.

As usual, by adding a version of the Mangasarian–Fromowitz constraint qualifi-
cation condition for nonsmooth problems, we can prove KKT necessary optimality
conditions.

Corollary 3.2 (KKT necessary optimality conditions). Let x� ∈ F be a local
minimum of problem (3.1) and assume that a direction d ∈ D(x�) exists such that for
all i ∈ {1, . . . ,m : gi(x

�) = 0},

(3.3) (ξgi)	d < 0 ∀ ξgi ∈ ∂gi(x
�).

Then, multipliers λ�
1, . . . , λ

�
m ∈ R exist, with

λ�
i ≥ 0 and λ�

i gi(x
�) = 0 ∀ i = 1, . . . ,m,

such that for every d ∈ D(x�)

max

{
ξ	d : ξ ∈ ∂f(x�) +

m∑
i=1

λ�
i ∂gi(x

�)

}
≥ 0.

Proof. The proof can be found in Appendix A.

As regards the stationarity conditions for problem (3.1), taking into account the
above results, we can now give the following definition.

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 15

Definition 3.3 (stationary point). Given problem (3.1), the feasible point x̄ is
a stationary point of (3.1) if multipliers λ̄1, . . . , λ̄m ∈ R exist, with

λ̄i ≥ 0 and λ̄igi(x̄) = 0 ∀ i = 1, . . . ,m,

such that for every d ∈ D(x̄)

max

{
ξ	d : ξ ∈ ∂f(x̄) +

m∑
i=1

λ̄i∂gi(x̄)

}
≥ 0.

3.2. The penalty approach. Given problem (3.1), we introduce the penalty
function

Zε(x) = f(x) +
1

ε

m∑
i=1

max {0, gi(x)}

and define the penalized problem

(3.4)
min Zε(x)

s.t. x ∈ X.

Remark 3.4. Observe that since f and gi, i = 1, . . . ,m, are Lipschitz continuous,
with Lipschitz constants Lf and Lgi , i = 1, . . . ,m, the penalty function Zε is Lipschitz
continuous too, with Lipschitz constant

L ≤ Lf +
1

ε

m∑
i=1

Lgi .

Remark 3.5. Note that problem (3.4), for any ε > 0, has the same structure and
properties of problem (2.1).

We further note that our penalty approach differs from the ones previously pro-
posed in the literature (see, e.g., [15] and references therein), since only the general
nonlinear constraints are penalized. The minimization of the penalty function is then
carried out on the set defined by the bound constraints. We report in the following
proposition the equivalence between problem (3.4) and the nonlinearly constrained
problem (3.1).

In order to carry out the theoretical analysis, we use an extended version of the
Mangasarian–Fromowitz constraint qualification (EMFCQ) condition for nonsmooth
problems.

Assumption 1 (EMFCQ). Given problem (3.1), for any x ∈ X\ ◦
F a direction

d ∈ D(x) exists such that

(ξgi)	d < 0

for all ξgi ∈ ∂gi(x), i ∈ {1, . . . ,m : gi(x) ≥ 0}.
Proposition 3.6. Let Assumption 1 hold. Given problem (3.1) and considering

problem (3.4), a threshold value ε� > 0 exists such that for every ε ∈ (0, ε�], every
Clarke–Jahn stationary point x̄ of problem (3.4) is stationary (according to Definition
3.3) for problem (3.1).

Proof. The proof is reported in Appendix B.

3.3. A derivative-free algorithm. Now we report the algorithm adopted for
solving problem (3.4), which is obtained from Algorithm CS-DFN by replacing f
with Zε for given ε > 0. For simplicity, we omit reporting the extension of Algorithm

16 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

DFNsimple to the general inequality constrained case, which requires trivial modifica-
tions.

Algorithm DFNcon.

Input. θ ∈ (0, 1), x0 ∈ X, ε > 0, α̃0 > 0, α̃i
0 > 0, di0 = ei, for i = 1, . . . , n, a

sequence {dk} such that ‖dk‖ = 1, for all k.

For k = 0, 1, . . .
Set y1k = xk.
For i = 1, . . . , n

Compute α and dik+1 by the continuous search (α̃i
k, y

i
k, d

i
k;α, d

i
k+1).

If (α = 0) then set αi
k = 0 and α̃i

k+1 = θα̃i
k

else set αi
k = α and α̃i

k+1 = α.

Set yi+1
k = yik + αi

kd
i
k+1.

End For
If

(
maxi=1,...,n{αi

k, α̃
i
k} ≤ η

)
then

Compute αk and d̃k by the
projected continuous search (α̃k, y

n+1
k , dk;αk, d̃k).

If (αk = 0) then α̃k+1 = θα̃k and yn+2
k = yn+1

k

else α̃k+1 = αk and yn+2
k = [yn+1

k + αkd̃k][l,u].

else set α̃k+1 = α̃k, y
n+2
k = yn+1

k .
Find xk+1 ∈ X such that Zε(xk+1) ≤ Zε(y

n+2
k).

End For
Output. The sequences {xk}, {αk}, {α̃k}, {αi

k} and {α̃i
k}, for i = 1, . . . , n.

We remark that in Algorithm DFNcon the continuous search procedure is per-
formed replacing f with Zε. Further, observe that Algorithm DFNcon can be used
to solve the constrained problem (3.1) provided that the penalty parameter ε is suf-
ficiently small, as the following proposition states.

Proposition 3.7. Let Assumption 1 hold and let {xk} be the sequence produced
by Algorithm DFNcon. Let x̄ be any limit point of {xk} and K be the subset of indices
such that

lim
k→∞,k∈K

xk = x̄.

If the subsequence {dk}K is dense in the unit sphere (see Definition 1.3), then a
threshold value ε∗ exists such that for all ε ∈ (0, ε∗], x̄ is stationary for problem (3.1).

Proof. The proof follows from Propositions 2.11 and 3.6.

4. Implementation details and numerical results. This section investigates
the numerical issues related to the implementation of the proposed algorithms. We
first report the numerical experience related to bound-constrained problems; then
we analyze the computational results related to the nonlinearly constrained case. In
order to compare algorithms using data and performance profiles, all the experiments
have been conducted allowing for a maximum number of 20,000 function evaluations.

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 17

For the parameters included in the proposed algorithms (DFNsimple, CS-DFN,
DFNcon) we considered the following setting: θ = 0.5, γ = 10−6, δ = 0.5, η = 10−3,

α̃i
0 = max

{
10−3,min{1, |(x0)i|}

}
, i = 1, . . . , n,

α̃0 =
1

n

n∑
i=1

α̃i
0.

Regarding the choice of the new iterate xk+1, we remark that
• in Algorithm DFNsimple, xk+1 is computed starting from x̃k and performing

projected continuous searches along a set of n− 1 directions which define an
orthonormal basis in R

n along with dk;
• in Algorithms CS-DFN and DFNcon, if (maxi=1,...,n{αi

k, α̃
i
k} ≤ η), then xk+1

is computed as above but starting from yn+2
k . Otherwise, we set xk+1 = yn+2

k .
As a final note, by drawing inspiration from [26, Theorem 6.4] and from the proof

of Proposition 2.7, and by recalling that by Proposition 2.5 limk→∞ max{αk, α̃k} = 0,
in the implementation of our algorithms, we used as a termination condition the
following heuristic rule:

(4.1) max{αk, α̃k} ≤ 10−13.

However, we highlight that the algorithms are compared by means of performance
and data profiles [37], that is, by using a normalized convergence test on the function
values. Thus, we adopted the tight convergence test (4.1) in order to provide enough
information on the progress of all the codes compared.

The codes DFNsimple, CS-DFN, and DFNcon are freely available for download at
http://www.dis.uniroma1.it/∼lucidi/DFL.

4.1. Bound-constrained problems. The first part of the numerical experience
has been carried out on a set of 142 bound-constrained nonsmooth problems from [45],
[32], and [37], with a number of variables n in the range [1, 200] (see Table 1).

As showed in the theoretical analysis of the different algorithms, our linesearch-
based approach is able to guarantee convergence toward stationary points of the non-
smooth problem, provided that suitable sequences of search directions {dk} are dense
in the unit sphere (see Definition 1.3). In particular, we can adopt the mapping based
on the Halton sequence [19], which is the one implemented in the NOMAD package
[1, 2, 27]. But, unlike NOMAD, further mappings can be used in our algorithms to
generate the sequence of search directions {dk}, since we are not committed to using
a modified Halton sequence in order to generate points on a mesh (see, e.g., [19]). For
instance, we implemented a mapping based on the Sobol sequence [43, 8], which is a
pseudorandom generator widely used in practice.

In order to show the behavior of the above pseudorandom sequences, we prelim-
inarily compared two versions of the Algorithm DFLsimple, which respectively use

Table 1

Distribution of problem dimensions for the bound-constrained case.

n 1 2 3 4 5 6 7 8 9 10

Number of problems 4 34 12 17 10 8 6 6 6 10

n 11 12 15 20 50 100 200

Number of problems 6 6 1 8 4 2 2

http://www.dis.uniroma1.it/~lucidi/DFL

18 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1
τ=10−3

Number of simplex gradients, κ

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(κ
)

Halton
Sobol

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1
τ=10−7

Number of simplex gradients, κ

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1
τ=10−3

Performace ratio, α

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(α
)

1 2 4 8
0

0.2

0.4

0.6

0.8

1
τ=10−7

Performace ratio, α

Fig. 1. Data (top) and performance (bottom) profiles for the 142 bound-constrained problems.
Comparison between Sobol and Halton pseudorandom sequences within DFNsimple.

the Halton and the Sobol sequence, on the test set of bound-constrained problems
described above. The resulting experience is reported in Figure 1 using data and
performance profiles [37].

We recall that for a given value of the tolerance τ , data profiles report the percent-
age of problems which are solved (by each solver) within κ simplex gradient evaluations
(n + 1 being the number of function evaluations necessary for each simplex gradient
computation). On the other hand, for each solver, a performance profile reports the
percentage of problems which are solved within α-times the function evaluations re-
quired by the best solver. Hence, the uppermost curve in the profiles denotes better
performances of the corresponding algorithm.

As we can see, the Sobol pseudorandom sequence outperforms the Halton one for
all precision levels, in terms of both efficiency and robustness. Then, we compared
both Algorithms DFNsimple and CS-DFN and report the results in Figure 2 in terms
of performance and data profiles.

As we can see, the combination of coordinate and dense directions can improve
the performance of the algorithm.

Finally, we compared CS-DFN with two state-of-the-art derivative-free optimiza-
tion codes, namely, NOMAD [1, 27, 2] and BOBYQA [40]. We ran NOMAD by using
its default settings and BOBYQA by specifying RHOBEG = 1 and RHOEND = 10−13. The
results of this comparison are summarized in Figure 3. By looking at how rapidly
data and performance profiles rise for small values of κ and α, respectively, we can
say that: (i) BOBYQA is very efficient for small precision; (ii) when a high precision,
i.e., τ = 107, is required, CS-DFN is the most efficient in terms of number of sim-
plex gradient evaluations, whereas NOMAD is the best one in terms of performance
ratio. As concerns the robustness of the compared solvers, which is represented by
the asymptotic behavior of the reported data and performance profiles, the robust-
ness of CS-DFN is between NOMAD, which is the most robust one, and BOBYQA.
The above comments about efficiency and robustness of the methods were definitely
expected and can be explained by the following considerations:

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 19

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1
τ=10−3

Number of simplex gradients, κ

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(κ
)

DFN
simple

CS−DFN

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1
τ=10−7

Number of simplex gradients, κ

1 2 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1
τ=10−3

Performace ratio, α

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(α
)

1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1
τ=10−7

Performace ratio, α

Fig. 2. Data (top) and performance (bottom) profiles for the 142 bound-constrained problems.
Comparison between DFNsimple and CS-DFN.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1
τ=10−3

Number of simplex gradients, κ

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(κ
)

CS−DFN
NOMAD
BOBYQA

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1
τ=10−7

Number of simplex gradients, κ

1 2 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1
τ=10−3

Performace ratio, α

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(α
)

1 2 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1
τ=10−7

Performace ratio, α

Fig. 3. Data (top) and performance (bottom) profiles for the 142 bound-constrained problems.
Comparison of CS-DFN, NOMAD, and BOBYQA.

(i) BOBYQA is quite efficient, though not so effective, because it is a model-
based method whose performances are strongly related to the smoothness
of the objective function. It is worth noting that for smooth problems the
performances of BOBYQA tend to improve sensibly.

20 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1
τ=10−3

Number of simplex gradients, κ

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(κ
)

CS−DFN

NOMAD

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1
τ=10−7

Number of simplex gradients, κ

1 2 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1
τ=10−3

Performace ratio, α

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(α
)

1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1
τ=10−7

Performace ratio, α

Fig. 4. Data (top) and performance (bottom) profiles for CS-DFN and NOMAD on the set of
problems where they find the same solution.

(ii) Both CS-DFN and NOMAD are more robust than BOBYQA since they use
globally convergent strategies which do not assume any continuous differentia-
bility. For this reason, they are less efficient than BOBYQA and (potentially)
more expensive from a computational point of view.

(iii) NOMAD is the most robust code because it incorporates a heuristic search
phase (as opposed to the poll phase) in which quadratic models are used to
try to improve the current iterate. This phase can surely help improving the
quality of the solution, especially for nonconvex problems.

To better understand the behaviors of CS-DFN and NOMAD, we now limit the
comparison to those problems where both methods find the same solution. More
precisely, given a problem and the solution points x∗,1 and x∗,2 returned by the two
solvers, the solutions are considered the same if

|f(x∗,1)− f(x∗,2)|
f(x0)−min{f(x∗,1), f(x∗,2)} ≤ τ

for a given precision τ > 0. These results are reported in Figure 4, where it can be
noted that the gap between CS-DFN and NOMAD in terms of robustness is con-
siderably reduced. Figure 4 also shows the good behavior of the linesearch strategy
of CS-DFN in terms of efficiency. Since the results in Figure 4 report convergence
to the same stationary point, we claim that, for these problems, the search phase of
NOMAD possibly does not help to improve efficiency.

These latter results motivate us to better investigate the behavior of the codes. We
report the results of a further comparison between CS-DFN and NOMAD, where we

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 21

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1
τ=10−3

Number of simplex gradients, κ

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(κ
)

CS−DFN

NOMAD

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1
τ=10−7

Number of simplex gradients, κ

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1
τ=10−3

Performace ratio, α

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(α
)

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1
τ=10−7

Performace ratio, α

Fig. 5. Data (top) and performance (bottom) profiles for the 142 bound-constrained problems.
Comparison of CS-DFN and NOMAD (without quadratic local models).

run NOMAD disabling the search phase with quadratic models by setting
MODEL SEARCH to NO, again on the whole set of 142 bound constrained problems.

The results reported in Figure 5 suggest that when NOMAD does not exploit the
model search phase, to a large extent CS-DFN and NOMAD show similar performance
in terms of robustness (with a slight preference for CS-DFN). On the other hand, it can
be noted that the globalization strategy of CS-DFN, based on the use of linesearches,
outperforms the strategy of NOMAD, based on the use of a MADS, in terms of
efficiency.

4.2. Nonlinearly constrained problems. In the second part of our numerical
experience, we defined a set of hard nonsmooth nonlinearly constrained test problems
by pairing the objective functions of the collection [32] with the constraint families
proposed in [23], thus obtaining 296 problems. The problems in this collection have
a number of constraints m in the range [1,199] and a number of variables n in the
range [1,200] (see Table 2). We note that 205 of 296 problems have a starting point
x0, which is not feasible, that is,

h(x0) > 10−6 with h(x) = max
{
0, max

i=1,...,m
{gi(x)}

}
.

In order to adapt the procedure for constructing performance and data profiles, as
proposed in [37], to the nonlinearly constrained case, we considered the convergence
test

f̃0 − f(x) ≥ (1− τ)(f̃0 − fL),

22 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

Table 2

Distribution of problem dimensions (n number of variables, m number of constraints) for the
nonlinearly constrained test set.

n 2 3 4 5 6 10 20 50 100 200

Number of problems 96 30 40 10 10 20 40 10 20 20

m 1 2 3 4 5 6 8 9 11 12

Number of problems 151 39 17 24 9 1 3 2 3 2

m 18 19 22 23 48 49 98 99 198 199

Number of problems 9 6 3 2 3 2 6 4 6 4

where f̃0 is the objective function value of the worst feasible point determined by all
the solvers (note that in the bound-constrained case, f̃0 = f(x0)), τ > 0 is a tolerance,
and fL is computed for each problem as the smallest value of f (at a feasible point)
obtained by any solver within 20,000 function evaluations. We notice that when a
point is not feasible (i.e., h(x) > 10−6) we set f(x) = +∞.

As concerns the penalty parameter ε that defines Algorithm DFNcon, we first
tried different fixed values for this parameter, namely, 10−1, 10−3, 10−5. Then, we
tried a more sophisticated managing and updating strategy. In particular, we used a
vector of penalty parameters ε ∈ R

m and considered the penalty function

Zε(x) = f(x) +
m∑
i=1

1

εi
max{0, gi(x)},

which trivially preserves all the theoretical results proved in section 3. The vector
of penalty parameters is iteratively updated during progress of the algorithm and, in
particular, we chose

(ε0)i =

{
10−3 if max{0, gi(x0)} < 1,

10−1 otherwise,
i = 1, . . . ,m,

and adopted the updating rule

(εk+1)i =

{
10−2(εk)i if (εk)igi(xk) > max{αk, α̃k},

(εk)i otherwise,
i = 1, . . . ,m.

The above updating rule is applied right before computation of the new iterate
xk+1. We notice that the rule described above takes inspiration from derivative-based
exact penalty approaches (see, e.g., [30], [38]), where the updating rule for the penalty
parameter is based on the (scaled) comparison between the stationarity measure of
the point and the constraint violation. In a derivative-free context, the stationarity
measure can be approximated by means of the steplengths selected along the search
directions, as shown in [26].

First we compare the different versions of DFNcon with the above described strate-
gies for the parameter ε. The results of this comparison are reported in Figure 6,

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 23

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1
τ=10−3

Number of simplex gradients, κ

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(κ
)

DFN
con

(ε=10−1)

DFN
con

(ε=10−3)

DFN
con

(ε=10−5)

DFN
con

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1
τ=10−7

Number of simplex gradients, κ

1 2 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1
τ=10−3

Performace ratio, α

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(α
)

1 2 4
0

0.2

0.4

0.6

0.8

1
τ=10−7

Performace ratio, α

Fig. 6. Data (top) and performance (bottom) profiles for the 296 constrained problems.
Comparison of different versions of DFNcon with different strategies for updating the penalty
parameter ε.

from which it emerges that, though the performances of the algorithms are quite
similar to each other, the scheme where parameter ε is adaptively updated looks
preferable.

Then, in Figure 7, we report the comparison among DFNcon, NOMAD, and
COBYLA [39]. NOMAD was run by setting the constraints type to PEB [7], so
that constraints are treated first with the progressive barrier and, once satisfied,
with the extreme barrier approach. COBYLA was run by setting RHOBEG = 1 and
RHOEND = 10−13. As already said, a maximum number of 20,000 function evalua-
tions was specified for all the solvers. As can be seen, when relatively low precision
is required, COBYLA has an initial fast progress but is not as robust as the other
two codes. This is mainly due to the nonsmoothness of the problems which likely
yields convergence to nonstationary points. Indeed, as already said for BOBYQA,
for smooth problems the performances of COBYLA tend to improve sensibly. When
high precision is required, NOMAD is the most robust solver and DFNcon is slightly
more efficient with respect to the data profiles.

Again, as done for the bound constrained case, to better understand the behavior
of NOMAD and DFNcon, we now limit the comparison of the two codes to those
problems where both the solvers find the same feasible solution. These results are
reported in Figure 8. It emerges that the gap between NOMAD and DFNcon is
considerably reduced. This seems to confirm that NOMAD has a greater ability to
find better solutions with respect to those found by DFNcon.

Finally, we again compare DFNcon and NOMAD on the whole test set but by
setting the parameter MODEL SEARCH to NO in NOMAD. The results are reported in

24 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
τ=10−3

Number of simplex gradients, κ

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(κ
)

DFN
con

NOMAD
COBYLA

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
τ=10−7

Number of simplex gradients, κ

1 2 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1
τ=10−3

Performace ratio, α

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(α
)

1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1
τ=10−7

Performace ratio, α

Fig. 7. Data (top) and performance (bottom) profiles for the 296 constrained problems. Com-
parison of DFNcon, NOMAD, and COBYLA.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
τ=10−3

Number of simplex gradients, κ

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(κ
)

DFN
con

NOMAD

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1
τ=10−7

Number of simplex gradients, κ

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1
τ=10−3

Performace ratio, α

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(α
)

1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1
τ=10−7

Performace ratio, α

Fig. 8. Data (top) and performance (bottom) profiles for DFNcon and NOMAD on the set of
problems where they find the same solution.

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 25

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1
τ=10−3

Number of simplex gradients, κ

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(κ
)

DFN
con

NOMAD
COBYLA

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1
τ=10−7

Number of simplex gradients, κ

1 2 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1
τ=10−3

Performace ratio, α

P
or

tio
n

of
 p

ro
bl

em
s

so
lv

ed
, ρ

(α
)

1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1
τ=10−7

Performace ratio, α

Fig. 9. Data (top) and performance (bottom) profiles for the 296 constrained problems. Com-
parison of DFNcon, NOMAD (without quadratic models), and COBYLA.

Figure 9 and confirm that the robustness of NOMAD was largely due to the use of
quadratic models to heuristically improve the current iterate.

5. Conclusions. In this paper, we described new methods for dealing with
nonsmooth optimization problems when no first-order information is available. We
adopted a projected linesearch approach. In particular, we extended the linesearch
approach with sufficient decrease for smooth minimization problems. This approach
gives a twofold achievement. On the one hand, by means of the sufficient decrease
we can avoid the use of integer lattices. On the other hand, the extrapolation phase
allows us to better exploit a descent direction and hence to characterize all the limit
points of the sequence of iterates, under some density assumptions on the search
directions.

In the first part of the paper, we considered problems with only bound con-
straints on the variables and we proposed two different algorithms for their solution.
We showed that every accumulation point of the sequence of iterates produced by
both the algorithms is Clarke–Jahn stationary. As concerns nonlinear inequality con-
strained problems, we introduced the use of an exact penalty function to transform the
given problem into a bound-constrained one, which is solved by adapting the method
proposed for the bound-constrained case. Similarly to the bound constrained case,
we were able to prove again that every accumulation point of the generated sequence
of iterates is Clarke stationary for the original constrained problem.

The numerical results reported in the paper show that the use of linesearches
gives a large freedom in the choice of the set of used search directions. Further-
more, our analysis highlights the fact that coordinate searches can often improve the

26 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

performance of the proposed algorithms. Finally, we compared the proposed methods
with other state-of-the-art codes on two large test sets of bound-constrained and non-
linearly constrained nonsmooth problems. The numerical experimentation carried out
evidenced that our globalization strategy is promising, as compared to the MADS, and
at the same time showed the importance of using approximating models to determine
good solution points.

Appendix A. Necessary optimality conditions.

Proof of Proposition 3.1. By definition of local optimality of x�, we know that a
constant ρ > 0 exists such that

(A.1) f(x�) ≤ f(x) ∀ x ∈ F ∩ B(x�, ρ),

where B(x�, ρ) = {x ∈ R
n : ‖x− x�‖ ≤ ρ}. Then, let us introduce the functional

Φ(x) = max
{
f(x)− f(x�), g1(x), . . . , gm(x),

(l1 − x1), . . . , (ln − xn), (x1 − u1), . . . , (xn − un)
}

and show that for all x ∈ B(x�, ρ), Φ(x) ≥ 0. Indeed, by contradiction, suppose
that x̂ ∈ B(x�, ρ) exists such that Φ(x̂) < 0. This implies that g(x̂) < 0 and l <
x̂ < u, yielding x̂ ∈ F . Further, f(x̂) < f(x�). This latter condition contradicts the
optimality condition (A.1) of x�.

Now, since x� ∈ F and Φ(x�) = 0, we know that x� is a local minimum of Φ(x)
onto R

n. Hence, by definition of Clarke stationarity

0 ∈ ∂Φ(x�).

Then, considering [9, Proposition 2.3.12], we have that

(A.2) 0 ∈ λ̃0∂f(x
�) +

∑
i∈I0(x�)

λ̃i∂gi(x
�)−

∑
j∈Il(x�)

μ̃jej +
∑

h∈Iu(x�)

μ̃heh

with I0(x
�) = {i : gi(x�) = 0}, Il(x�) = {j : x�

j = lj}, Iu(x�) = {h : x�
h = uh}, λ̃0 ≥ 0,

λ̃i ≥ 0, i ∈ I0(x
�), μ̃j ≥ 0, j ∈ Il(x

�), μ̃h ≥ 0, h ∈ Iu(x
�), and

(A.3) λ̃0 +
∑

i∈I0(x�)

λ̃i +
∑

j∈Il(x�)

μ̃j +
∑

h∈Iu(x�)

μ̃h = 1.

Now, from the linear independence of the set {ej , eh, j ∈ Il(x
�), h ∈ Iu(x

�)}, it turns
out that

λ̃0 +
∑

i∈I0(x�)

λ̃i �= 0.

Indeed, if this was not the case, relation (A.2) would yield

0 = −
∑

j∈Il(x�)

μ̃jej +
∑

h∈Iu(x�)

μ̃heh,

which would then impose μ̃j ’s and μ̃h’s to be all zero, thus contradicting (A.3).

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 27

Hence, by dividing (A.2) by λ̃0 +
∑

i∈I0(x�) λ̃i = Λ �= 0 and by posing

λ0 =
λ̃0

Λ
,

λi =
λ̃i

Λ
∀ i ∈ I0(x

�),

μj =
μ̃j

Λ
∀ j ∈ Il(x

�),

μh =
μ̃h

Λ
∀ h ∈ Iu(x

�),

we get

(A.4) 0 ∈ λ0∂f(x
�) +

∑
i∈I0(x�)

λi∂gi(x
�)−

∑
j∈Il(x�)

μjej +
∑

h∈Iu(x�)

μheh

with λ0 ≥ 0, λi ≥ 0, i ∈ I0(x
�), μj ≥ 0, j ∈ Il(x

�), μh ≥ 0, h ∈ Iu(x
�), and

(A.5) λ0 +
∑

i∈I0(x�)

λi = 1.

From (A.4), it exists that

ξ ∈ λ0∂f(x
�) +

∑
i∈I0(x�)

λi∂gi(x
�),

such that

0 = ξ −
∑

j∈Il(x�)

μjej +
∑

h∈Iu(x�)

μheh.

Then, recalling Definition 2.1 of D(x), we have

(A.6) ξ	d ≥ 0

for all d ∈ D(x�). Thus, for all d ∈ D(x�), we can write

max

⎧⎨
⎩ξ	d : ξ ∈ λ0∂f(x

�) +
∑

i∈I0(x�)

λi∂gi(x
�)

⎫⎬
⎭ ≥ 0

with λ0 ≥ 0, λi ≥ 0, i ∈ I0(x
�), and, by (A.5), not all zero. This concludes the proof,

choosing λi = 0, for all i �∈ I0(x
�).

Taking into account the proof given above, in particular inequality (A.6), we can
state the following result

Lemma A.1. Let x� ∈ F be a local minimum of the problem (3.1). Then, multi-
pliers λ�

0, λ
�
1, . . . , λ

�
m ∈ R not all zero, with

λ�
0 ≥ 0, λ�

i ≥ 0 and λ�
i gi(x

�) = 0 ∀ i = 1, . . . ,m,

and a vector ξ̄ ∈ λ�
0∂f(x

�) +
∑m

i=1 λ
�
i ∂gi(x

�) exist such that

ξ̄	d ≥ 0

for every d ∈ D(x�).

28 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

Proof of Corollary 3.2. By assumption, in particular by condition (3.3), we know
that d̄ ∈ R

n exists such that

(ξgi)	d̄ < 0, ∀ ξgi ∈ ∂gi(x
�) ∀ i ∈ I0(x

�),

−e	j d̄ < 0, ∀ j ∈ Il(x
�),

e	h d̄ < 0, ∀ h ∈ Iu(x
�),

where I0(x
�) = {i : gi(x�) = 0}, Il(x�) = {j : x�

j = lj}, and Iu(x
�) = {h : x�

h = uh}.
Now, by the alternative theorem in [42, Theorem 2.3.4] and [47], there cannot

exist multipliers λ̃i ≥ 0, i ∈ I0(x
�), μ̃j ≥ 0, j ∈ Il(x

�), μ̃h ≥ 0, h ∈ Iu(x
�), with

(A.7)
∑

i∈I0(x�)

λ̃i +
∑

j∈Il(x�)

μ̃j +
∑

h∈Iu(x�)

μ̃h = 1,

such that

(A.8) 0 ∈
∑

i∈I0(x�)

λ̃i∂gi(x
�)−

∑
j∈Il(x�)

μ̃jej +
∑

h∈Iu(x�)

μ̃heh.

On the other hand, by Proposition 3.1, we know that multipliers λ�
0 ≥ 0, λ�

i ≥ 0, with
λ�
i = 0 when gi(x

�) < 0, exist such that (3.2) holds.
Then, we proceed by contradiction and assume that λ�

0 = 0. Note that the
multipliers λ�

i , i = 1, . . . ,m, cannot be all zero, since in this case all the multipliers
would be zero, thus contradicting Proposition 3.1. Thus, we can define new multipliers

λ̄i = λ�
i /β, i ∈ I0(x

�),

where β =
∑

i∈I0(x�) λ
�
i > 0. Hence, we have that

(A.9) λ̄i ≥ 0 and
∑

i∈I0(x�)

λ̄i = 1.

In this case, by Lemma A.1, there exists a vector

(A.10) ξ̄ ∈
m∑
i=1

λ̄i∂gi(x
�)

such that

(A.11) ξ̄	d ≥ 0

for every d ∈ D(x�). Furthermore, by (A.11) the system

−ξ̄	d > 0,

−e	j d ≤ 0 ∀ j ∈ Il(x
�),

e	h d ≤ 0 ∀ h ∈ Iu(x
�)

does not have a solution, where the latter two sets of constraints imply d ∈ D(x�).
As a consequence, by the Farkas theorem (see, e.g., [36, Chapter 2]), we have that
scalars not all zero αj ≥ 0, j ∈ Il(x

�), and αh ≥ 0, h ∈ Iu(x
�), exist such that

(A.12) −ξ̄ = −
∑

j∈Il(x�)

αjej +
∑

h∈Iu(x�)

αheh.

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 29

Now, by (A.9), we know that

σ =
∑

i∈I0(x�)

λ̄i +
∑

j∈Il(x�)

αj +
∑

h∈Iu(x�)

αh ≥ 1.

Then, we can define

λ̂i =
λ̄i

σ
∀ i ∈ I0(x

�),

α̂j =
αj

σ
∀ j ∈ Il(x

�),

α̂h =
αh

σ
∀ h ∈ Iu(x

�),

thus having

(A.13)
∑

i∈I0(x�)

λ̂i +
∑

j∈Il(x�)

α̂j +
∑

h∈Iu(x�)

α̂h = 1.

Equations (A.10), (A.12), and (A.13) are in contradiction with the fact that there
cannot exist multipliers such that (A.7) and (A.8) hold.

Appendix B. Exactness properties of Zε(x). In this section we first prove
that any Clarke stationary point of problem (3.4) is stationary for problem (3.1).
Then we give the proof of Proposition 3.6.

We begin by recalling, from [9], the definition of Clarke stationary point for a
bound constrained problem, namely, a point x̄ ∈ X such that

ZCl
ε (x̄; d) ≥ 0 ∀ d ∈ D(x̄).

Furthermore, we assume throughout this section that Assumption 1 holds.
Proposition B.1. Given problem (3.1) and considering problem (3.4), a thresh-

old value ε� > 0 exists such that, for every ε ∈ (0, ε�], the function Zε(x) has no
Clarke stationary points in X\F .

Proof. We proceed by contradiction and assume that for any integer k an εk ≤ 1/k
and a stationary point for problem (3.4) xk ∈ X\F exists. Then, let us consider a limit
point x̄ ∈ X\F of the sequence {xk} and let us relabel the corresponding subsequence
{xk} again.

Since x̄ �∈ F , Assumption 1 guarantees that a direction d̄ ∈ D(x̄) exists such that

(ξgi)
	
d̄ < 0 ∀ ξgi ∈ ∂gi(x̄), i ∈ {1, . . . ,m : gi(x̄) ≥ 0}.

In particular, it holds that

(ξgi)
	
d̄ < 0 ∀ ξgi ∈ ∂gi(x̄), i ∈ I(x̄),

where I(x̄) = {i ∈ {1, . . . ,m} : gi(x̄) = φ(x̄)} and φ(x) = max {0, g1(x), . . . , gm(x)},
with φ(x̄) > 0 since x̄ �∈ F . The above property can be equivalently expressed by
saying that a positive scalar η exists such that

(B.1) max
ξgi ∈ ∂gi(x̄)

i ∈ I(x̄)

(ξgi)
	
d̄ = −η < 0.

30 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

Recalling that for k sufficiently large, D(x̄) ⊆ D(xk) (see, e.g., [29]), so that d̄ ∈
D(xk), we get, by considering that xk is a Clarke stationary point of problem (3.4),
that

(B.2) ZCl
ε (xk; d̄) ≥ 0.

By [9, Proposition 2.1.2], ZCl
ε (x; d̄) = maxξ∈∂Zε(x) ξ

	d̄, and we know that

∂Zε(x) ⊆ ∂f(x) +
1

ε
∂(max {0, g1(x), . . . , gm(x)})

and (see [9, Proposition 2.3.12])

∂(max {0, g1(x), . . . , gm(x)}) ⊆ Co ({∂gi(x) : i ∈ I(x)}) =
⋃⎧⎨

⎩
∑

i∈I(x)

βi∂gi(x)

⎫⎬
⎭ ,

where βi ≥ 0, i ∈ I(x), and
∑

i∈I(x) β
i = 1. Hence, βi

k, i ∈ I(xk), exist such that

(B.2) can be written as ⎛
⎝ξfk +

1

εk

∑
i∈I(xk)

βi
kξ

gi
k

⎞
⎠

	

d̄ ≥ 0,(B.3)

∑
i∈I(xk)

βi
k = 1, βi

k ≥ 0,

for some ξfk ∈ ∂f(xk), ξ
gi
k ∈ ∂gi(xk).

Now, recalling that m is a finite number, we can consider the subsequence of {xk}
where I(xk) = Ī.

Then, since the generalized gradient of a locally Lipschitz continuous function is
locally bounded, it results that all the considered sequences {ξfk}, {ξgik }, i ∈ Ī, where

ξfk ∈ ∂f(xk), ξ
gi
k ∈ ∂gi(xk), xk ∈ X, are bounded.1 Hence, we get that

ξfk → ξ̄f ,(B.4a)

ξgik → ξ̄gi ∀ i ∈ Ī ,(B.4b)

βi
k → β̄i ∀ i ∈ Ī .(B.4c)

Further, since ∂f and ∂gi, i ∈ Ī, are upper semicontinuous at x̄ (see Proposition 2.1.5
in [9]), it results that ξ̄f ∈ ∂f(x̄), ξ̄gi ∈ ∂gi(x̄), i ∈ Ī.

Now, since by continuity of the problem functions we have for k sufficiently large

{i : gi(x̄)− φ(x̄) < 0} ⊆ {i : gi(xk)− φ(xk) < 0},
it results, for k sufficiently large,

{i : gi(xk)− φ(xk) = 0} = I(xk) ⊆ I(x̄) = {i : gi(x̄)− φ(x̄) = 0},
so that

(B.5) Ī ⊆ I(x̄).

1This result follows by considering that a finite covering of X by bounded sets exists and that

any ξfk , ξ
gi
k , i ∈ Ī, are bounded on the latter sets.

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 31

Then, by (B.1), (B.4), and (B.5), we get, for k sufficiently large,

(B.6) (ξgik)
	
d̄ ≤ −η

2
∀ i ∈ Ī .

Now, by multiplying (B.3) by εk we have

⎛
⎝εkξ

f
k +

∑
i∈Ī

βi
kξ

gi
k

⎞
⎠

	

d̄ ≥ 0,

which, by (B.6), yields

0 ≤
⎛
⎝εkξ

f
k +

∑
i∈Ī

βi
kξ

gi
k

⎞
⎠

	

d̄ ≤ (
εkξ

f
k

)	
d̄− η

2
.

Finally, the above relation, considering (B.4a), gives raise to a contradiction when
εk → 0.

Now we report three further results concerning the exactness of Zε(x) from [15].
Proposition B.2. A threshold value ε� > 0 exists such that for any ε ∈ (0, ε�],

every local minimum point of problem (3.4) is also a local minimum point of problem
(3.1).

Proposition B.3. A threshold value ε� > 0 exists such that for any ε ∈ (0, ε�],
every global minimum point of problem (3.4) is also a global minimum point of problem
(3.1), and conversely.

In order to give stationarity results for problem (3.4), we have the following
proposition.

Proposition B.4. For any ε > 0, every Clarke stationary point x̄ of problem
(3.4), such that x̄ ∈ F , is also a stationary point of problem (3.1).

Proof. Since x̄ is, by assumption, a Clarke stationary point of problem (3.4), then,
by definition of Clarke stationarity, we know that for all d ∈ D(x̄),

max
{
ξ	d : ξ ∈ ∂Zε(x̄)

} ≥ 0,

that is, for all d ∈ D(x̄) there exists ξd ∈ ∂Zε(x̄) such that (ξd)
	d ≥ 0. Now, we recall

that

∂Zε(x) ⊆ ∂f(x) +
1

ε

∑
i∈I(x)

βi∂gi(x)

for some βi, i ∈ I(x), such that
∑

i∈I(x) βi = 1 and βi ≥ 0 for all i ∈ I(x). Hence, we

have that ξd ∈ ∂f(x̄) + 1
ε

∑
i∈I(x̄) βi∂gi(x̄). Then, denoting λi = βi/ε, i ∈ I(x̄), we

can write for all d ∈ D(x̄),

max

⎧⎨
⎩ξ	d : ξ ∈ ∂f(x̄) +

∑
i∈I(x̄)

λi∂gi(x̄)

⎫⎬
⎭ ≥ 0,

with λi ≥ 0. The above condition, along with x̄ ∈ F , proves stationarity of x̄ for
problem (3.1) and concludes the proof.

Finally, we can prove Proposition 3.6.

32 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

Proof of Proposition 3.6. Since x̄ is Clarke–Jahn stationary for problem (3.4), we
have, by Definition 2.3,

(B.7) Z◦
ε (x̄; d) ≥ 0 ∀ d ∈ D(x̄).

Then, by (1.1) and (2.2), we have that

lim sup
y → x̄, t ↓ 0

Zε(y + td)− Zε(y)

t
= ZCl

ε (x̄; d) ≥ Z◦
ε (x̄; d) ∀ d ∈ D(x̄),

which, by (B.7), gives

ZCl
ε (x̄; d) ≥ 0 ∀ d ∈ D(x̄).

Now, the proof follows by considering Propositions B.1 and B.4.

Acknowledgments. We are indebted to three anonymous reviewers and the
associate editor, whose suggestions and stimulating comments greatly helped us im-
prove the quality of the paper. In particular, the comments of one reviewer and a
counterexample of another reviewer spotted a theoretical bug of the paper and forced
us to investigate more deeply some basic aspects of our proposal.

REFERENCES

[1] M. A. Abramson, C. Audet, G. Couture, J. E. Dennis, Jr., S. Le Digabel, and C. Tribes,
The NOMAD Project, http://www.gerad.ca/nomad.

[2] M. A. Abramson, C. Audet, J. E. Dennis, Jr., and S. Le Digabel, Orthomads: A determin-
istic MADS instance with orthogonal directions, SIAM J. Optim., 20 (2009), pp. 948–966.

[3] N. Alexandrov and M. Y. Hussaini, Multidisciplinary Design Optimization: State of the
Art, SIAM, Philadelphia, 1997.

[4] C. Audet, A. Custódio, and J. E. Dennis, Jr., Erratum: Mesh adaptive direct search algo-
rithms for constrained optimization, SIAM J. Optim., 18 (2008), pp. 1501–1503.

[5] C. Audet and J. E. Dennis, Jr., Mesh adaptive direct search algorithms for constrained
optimization, SIAM J. Optim., 17 (2006), pp. 188–217.

[6] C. Audet and J. E. Dennis, Jr., A progressive barrier for derivative-free nonlinear program-
ming, SIAM J. Optim., 20 (2009), pp. 445–472.

[7] C. Audet, J. E. Dennis, Jr., and S. Le Digabel, Globalization strategies for mesh adaptive
direct search, Comput. Optim. Appl., 46 (2010), pp. 193–215.

[8] P. Bratley and B. Fox, Algorithm 659: Implementing Sobol’s quasirandom sequence gener-
ator, ACM Trans. Math. Softw., 14 (1988), pp. 88–100.

[9] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.
[10] A. R. Conn, K. Scheinberg, and L. N. Vicente, Global convergence of general derivative-

free trust-region algorithms to first and second order critical points, SIAM J. Optim., 20
(2009), pp. 387–415.

[11] A. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization,
MPS/SIAM Ser. Optim., SIAM, Philadelphia, 2009.

[12] A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente, Direct multisearch for
multiobjective optimization, SIAM J. Optim., 21 (2011), pp. 1109–1140.

[13] A. L. Custódio and L. N. Vicente, Using sampling and simplex derivatives in pattern search
methods, SIAM J. Optim., 18 (2007), pp. 537–555.

[14] A. L. Custódio, J. E. Dennis, Jr., and L. N. Vicente, Using simplex gradients of
nonsmooth functions in direct search methods, IMA J. Numer. Anal., 28 (2008),
pp. 770–784.

[15] G. Di Pillo and F. Facchinei, Exact barrier function methods for Lipschitz programs, Appl.
Math. Optim., 32 (1995), pp. 1–31.

[16] E. D. Dolan, R. M. Lewis, and V. Torczon, On the local convergence of pattern search,
SIAM J. Optim., 14 (2003), pp. 567–583.

[17] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math.
Program., 91 (2002), pp. 239–269.

http://www.gerad.ca/nomad

DERIVATIVE-FREE NONSMOOTH CONSTRAINED OPTIMIZATION 33

[18] L. Grippo, F. Lampariello, and S. Lucidi, Global convergence and stabilization of uncon-
strained minimization methods without derivatives, J. Optim. Theory Appl., 56 (1988),
pp. 385–406.

[19] J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals, Numer. Math., 2 (1960), pp. 84–90.

[20] W. L. Hare, Using derivative free optimization for constrained parameter selection in a home
and community care forecasting model, in International Perspectives on Operations Re-
search and Health Care, J. Blake and M. Carter, eds., Proceedings of the 34th Meeting
of the EURO Working Group on Operational Research Applied to Health Sciences, 2010,
pp. 61–73.

[21] J. B. Hiriart-Urruty, On optimality conditions in nondifferentiable programming, Math.
Program., 14 (1978), pp. 73–86.

[22] J. Jahn, Introduction to the Theory of Nonlinear Optimization, Springer-Verlag, Berlin, 1996.
[23] N. Karmitsa, Test Problems for Large-Scale Nonsmooth Minimization, Tech. report B. 4/2007,

Department of Mathematical Information Technology, University of Jyväskylä, Finland,
2007.

[24] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspectives
on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385–482.

[25] T. G. Kolda, R. M. Lewis, and V. Torczon, A Generating Set Direct Search Augmented
Lagrangian Algorithm for Optimization with a Combination of General and Linear Con-
straints, Tech. report SAND2006-5315, Sandia National Laboratories, 2006.

[26] T. G. Kolda, R. M. Lewis, and V. Torczon, Stationarity results for generating set search
for linearly constrained optimization, SIAM J. Optim., 17 (2007), pp. 943–968.

[27] S. Le Digabel, Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm,
ACM Trans. Math. Softw., 37 (2011), pp. 1–15.

[28] R. M. Lewis and V. Torczon, A globally convergent augmented Lagrangian pattern search
algorithm for optimization with general constraints and simple bounds, SIAM J. Optim.,
12 (2002), pp. 1075–1089.

[29] C. J. Lin, S. Lucidi, L. Palagi, A. Risi, and M. Sciandrone, Decomposition algorithm
model for singly linearly-constrained problems subject to lower and upper bounds, J. Optim.
Theory Appl., 141 (2009), pp. 107–126.

[30] G. Liuzzi and S. Lucidi, New results on a continuously differentiable exact penalty function,
SIAM J. Optim., 2 (1992), pp. 558–574.

[31] G. Liuzzi, S. Lucidi, and F. Rinaldi, Derivative-free methods for bound constrained mixed-
integer optimization, Comput. Optim. Appl., 53 (2012), pp. 505–526.

[32] G. Liuzzi, S. Lucidi, and M. Sciandrone, A derivative-free algorithm for linearly constrained
finite minimax problems, SIAM J. Optim., 16 (2006), pp. 1054–1075.

[33] G. Liuzzi, S. Lucidi, and M. Sciandrone, Sequential penalty derivative-free methods for
nonlinear constrained optimization, SIAM J. Optim., 20 (2010), pp. 2614–2635.

[34] S. Lucidi and M. Sciandrone, A derivative-free algorithm for bound constrained optimization,
Comput. Optim. Appl., 21 (2002), pp. 119–142.

[35] S. Lucidi and M. Sciandrone, On the global convergence of derivative free methods for un-
constrained optimization, SIAM J. Optim., 13 (2002), pp. 97–116.

[36] O. L. Mangasarian, Nonlinear Programming, Classics in Applied Mathematics, SIAM,
Philadelphia, 1994.

[37] J. J. Moré and S. M. Wild, Benchmarking derivative-free optimization algorithms, SIAM J.
Optim., 20 (2009), pp. 172–191.

[38] G. Di Pillo and S. Lucidi, An augmented Lagrangian function with improved exactness prop-
erties, SIAM J. Optim., 12 (2001), pp. 376–406.

[39] M. J. D. Powell, A direct search optimization method that models the objective and constraint
functions by linear interpolation, in Advances in Optimization and Numerical Analysis,
S. Gomez and J.-P. Hennart, eds., Kluwer Academic Publishers, Dordrecht, Netherlands,
1994, pp. 51–67.

[40] M. J. D. Powell, The BOBYGA Algorithm for Bound Constrained Optimization Without
Derivatives, Tech. report, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, UK, 2009.

[41] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, Princeton University
Press, Princeton, NJ, 1970.

[42] K. Shimizu, Y. Yshizuka, and J. F. Bard, Nondifferentiable and Two-Level Mathematical
Programming, Kluwer Academic Publishers, Norwell, MA, 1997.

[43] I. Sobol, Uniformly distributed sequences with an additional uniform property, USSR Comput.
Math. Math. Phys., 16 (1977), pp. 236–242.

34 G. FASANO, G. LIUZZI, S. LUCIDI, AND F. RINALDI

[44] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997),
pp. 1–25.

[45] J. Vlček and V. Lukšan, Test Problems for Nonsmooth Unconstrained and Linearly Con-
strained Optimization, Tech. report, Institute of Computer Science, Academy of Sciences
of the Czech Republic, 2000.

[46] L. N. Vicente and A. L. Custódio, Analysis of direct searches for discontinuous functions,
Math. Program., 133 (2012), pp. 299–325.

[47] Y. Yshizuka and K. Shimizu, Necessary and sufficient conditions for the efficient solutions
of nondifferentiable multi-objective problems, IEEE Trans. Systems Man Cybernet., 14
(1984), pp. 624–629.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

