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Abstract In this paper, we introduce a parameter-dependent class of Krylov-based
methods, namely Conjugate Directions (C D), for the solution of symmetric linear
systems. We give evidence that, in our proposal, we generate sequences of conju-
gate directions, extending some properties of the standard conjugate gradient (CG)
method, in order to preserve the conjugacy. For specific values of the parameters in
our framework, we obtain schemes equivalent to both the CG and the scaled-CG. We
also prove the finite convergence of the algorithms in C D, and we provide some error
analysis. Finally, preconditioning is introduced for C D, and we show that standard
error bounds for the preconditioned CG also hold for the preconditioned C D.

Keywords Krylov-based methods · Conjugate direction methods ·
Conjugacy loss and error analysis · Preconditioning
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1 Introduction

The solution of symmetric linear systems arises in a wide range of real applications
[1–3], and has been carefully issued in the last 50 years, due to the increasing demand
of fast and reliable solvers. Illconditioning and large number of unknowns are among
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the most challenging issues which may harmfully affect the solution of linear systems,
in several frameworks where either structured or unstructured coefficient matrices are
considered [1,4,5].

The latter facts have required the introduction of a considerable number of tech-
niques, specifically aimed at tackling classes of linear systems with appointed patholo-
gies [5,6]. We remark that the structure of the coefficient matrix may be essential for
the success of the solution methods, both in numerical analysis and optimization con-
texts. As an example, PDEs and PDE-constrained optimization provide two specific
frameworks, where sequences of linear systems often claim for specialized and robust
methods, in order to give reliable solutions.

In this paper, we focus on iterative Krylov-based methods for the solution of sym-
metric linear systems, arising in both numerical analysis and optimization contexts.
The theory detailed in the paper is not limited to consider large-scale linear systems;
however, since Krylov-based methods have proved their efficiency when the scale is
large, without any loss of generality, we will implicitly assume the latter fact.

The accurate study and assessment of methods for the solution of linear systems is
naturally expected from the community of people working on numerical analysis, that
is due to their expertise and great sensibility to theoretical issues, rather than to practical
algorithms implementation or software developments. This has raised a consistent
literature, including manuals and textbooks, where the analysis of solution techniques
for linear systems has become a keynote subject, and where essential achievements
have given strong guidelines to theoreticians and practitioners from optimization [4].

We address here a parameter-dependent class of CG-based methods, which can
equivalently reduce to the CG for a suitable choice of the parameters. We firmly claim
that our proposal is not primarily intended to provide an efficient alternative to the CG.
On the contrary, we mainly detail a general framework of iterative methods, inspired
by polarity for quadratic hypersurfaces, and based on the generation of conjugate
directions. The algorithms in our class, thanks to the parameters in the scheme, may
possibly keep under control the conjugacy loss among directions, which is often caused
by finite precision in the computation. The paper is not intended to report also a
significant numerical experience. Indeed, we think that there are not yet clear rules on
the parameters of our proposal, for assessing efficient algorithms. Similarly, we have
not currently evidence that methods in our proposal can outperform the CG. On this
guideline, in a separate paper, we will carry on selective numerical tests, considering
both symmetric linear systems from numerical analysis and optimization. We further
prove that preconditioning can be introduced for the class of methods we propose, as
a natural extension of the preconditioned CG (see also [2]).

Section 2 briefly reviews both the CG and the Lanczos process, as Krylov-subspace
methods, in order to highlight promising aspects to investigate in our proposal. Sec-
tion 3 details some relevant applications of conjugate directions in optimization frame-
works, motivating our interest for possible extensions of the CG. In Sects. 4 and 5, we
describe our class of methods and some related properties. In Sects. 6 and 7, we show
that the CG and the scaled-CG may be equivalently obtained as particular members of
our class. Then, Sects. 8 and 9 contain further properties of the class of methods we
propose. Finally, Sect. 10 analyzes the preconditioned version of our proposal, and a
section of Conclusions completes the paper, including some numerical results.
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2 The CG Method and the Lanczos Process

In this section, we comment the method in Table 1, and we focus on the relation
between the CG and the Lanczos process, as Krylov-subspace methods. In particular,
the Lanczos process namely does not generate conjugate directions; however, though
our proposal relies on generalizing the CG, it shares some aspects with the Lanczos
iteration, too.

As we said, the CG is commonly used to iteratively solving the linear system

Ay = b, (1)

where A ∈ R
n×n is symmetric positive definite and b ∈ R

n . Observe that the CG is
quite often applied to a preconditioned version of the linear system (1), i.e., MAy =
Mb, where M � 0 is the preconditioner [7]. Though the theory for the CG requires
A to be positive definite, in several practical applications it is successfully used when
A is indefinite, too [8,9]. At Step k the CG generates the pair of vectors rk (residual)
and pk (search direction) such that [2]

orthogonality property : r T
i r j = 0, 0 ≤ i �= j ≤ k, (2)

conjugacy property : pT
i Ap j = 0, 0 ≤ i �= j ≤ k. (3)

Moreover, finite convergence holds, i.e., Ayh = b for some h ≤ n. Relations (2) yield
the Ritz-Galerkin condition rk ⊥ Kk−1(r0, A), where Kk−1(r0, A) is the Krylov-
subspace

Kk−1(r0, A) := span{b, Ab, A2b, . . . , Ak−1b} ≡ span{r0, . . . , rk−1}.

Furthermore, the direction pk is computed at Step k imposing the conjugacy condition
pT

k Apk−1 = 0. It can be easily proved that the latter equality implicitly satisfies rela-
tions (3), with p0, . . . , pk linearly independent. We remark that on practical problems,
due to finite precision and roundoff in the computation of the sequences {pk} and {rk},
when |i − j | is large, relations (2)–(3) may fail. Thus, in the practical implementation

Table 1 The CG algorithm for solving (1)

The Conjugate Gradient (CG) method

Step 0: Set = 0, 0 ∈ , 0 := − 0.
If 0 = 0, then STOP. Else, set 0 := 0; = + 1.
Set −1 = 0 and −1 = 0.

Step : Compute −1 := −1 −1 −1 −1,
:= −1 + −1 −1, := −1 − −1 −1.

If = 0, then STOP. Else, set
– −1 := 2/ −1

2, := + −1 −1
– (or equivalently set := − −1 −1 + (1 + −1) −1 − −2 −2)

Set = + 1, go to Step .
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of the CG some theoretical properties may not be satisfied, and in particular when
|i − j | increases, the conjugacy properties (3) may progressively be lost. As detailed
in [10–13], the latter fact may have dramatic consequences also in optimization frame-
works (see also Sect. 3 for details). To our purposes we note that in Table 1, at Step k
of the CG, the direction pk is usually computed as

pk := rk + βk−1 pk−1, (4)

but an equivalent expression is (see also Theorem 5.4 in [14])

pk := −αk−1 Apk−1 + (1 + βk−1)pk−1 − βk−2 pk−2, (5)

which we would like to generalize in our proposal. Note also that in exact arithmetics
the property (3) is iteratively fulfilled by both (4) and (5).

The Lanczos process (and its preconditioned version) is another Krylov-based
method, widely used to tridiagonalize the matrix A in (1). Unlike the CG method,
here the matrix A may be possibly indefinite, and the overall method is slightly more
expensive than the CG, since further computation is necessary to solve the resulting
tridiagonal system. Similarly to the CG, the Lanczos process generates at Step k the
sequence {uk} (Lanczos vectors) which satisfies

orthogonality property : uT
i u j = 0, 0 ≤ i �= j ≤ k,

and yields finite convergence in at most n steps. However, unlike the CG the Lanczos
process is not explicitly inspired by polarity, in order to generate the orthogonal vectors.
We recall that the CG and the Lanczos process are 3-term recurrence methods, in other
words, for k ≥ 1

pk+1 ∈ span{Apk, pk, pk−1}, for the CG

uk+1 ∈ span{Auk, uk, uk−1}, for the Lanczos process.

When A is positive definite, a full theoretical correspondence between the sequence
{rk} of the CG and the sequence {uk} of the Lanczos process may be fruitfully used
in optimization problems (see also [10,15,16]), being

uk = sk
rk

‖rk‖ , sk ∈ {−1,+1}.

The class C D proposed in this paper provides a framework, which encompasses
the CG and to some extent resembles the Lanczos iteration, since a 3-term recurrence
is exploited. In particular, the C D generates both conjugate directions (as the CG) and
orthogonal residuals (as the CG and the Lanczos process). Moreover, similarly to the
CG, the C D yields a 3-term recurrence with respect to conjugate directions. As we
remarked, our proposal draws its inspiration from the idea of possibly attenuating the
conjugacy loss of the CG, which may occur in (3) when |i − j | is large.

123

Author's personal copy



J Optim Theory Appl

3 Conjugate Directions for Optimization Frameworks

Optimization frameworks offer plenty of symmetric linear systems where CG-based
methods are often specifically preferable with respect to other solvers. Here we justify
this statement by briefly describing the potential use of conjugate directions within
truncated Newton schemes. The latter methods strongly prove their efficiency when
applied to large scale problems, where they rely on the proper computation of search
directions, as well as truncation rules (see [17]).

As regards the computation of search directions, suppose at the outer iteration h
of the truncated scheme we perform m steps of the CG, in order to compute the
approximate solution dm

h to the linear system (Newton’s equation)

∇2 f (zh)d = −∇ f (zh).

When zh is close enough to the solution z∗ (minimum point), then possibly ∇2 f (zh) �
0. Thus, the conjugate directions p1, . . . , pm and the coefficients α1, . . . , αm are gen-
erated as in Table 1, so that the following vectors can be formed

dm
h =

m∑

i=1

αi pi ,

d P
h =

∑

i∈I P
h

αi pi , I P
h =

{
i ∈ {1, . . . , m} : pT

i ∇2 f (zh)pi > 0
}

,

d N
h =

∑

i∈I N
h

αi pi , I N
h =

{
i ∈ {1, . . . , m} : pT

i ∇2 f (zh)pi < 0
}

,

sh = p�

‖r�‖ , � = arg mini∈{1,...,m}

{
pT

i ∇2 f (zh)pi

‖ri‖2 : pT
i ∇2 f (zh)pi < 0

}
.

(6)

Observe that dm
h approximates in some sense Newton’s direction at the outer iteration

h, and as described in [11,12,18,19], the vectors dm
h , d P

h and d N
h can be used/combined

to provide fruitful search directions to the optimization framework. Moreover, d N
h and

sh are suitably used/combined to compute a so called negative curvature direction ‘sm
h ’,

which can possibly force second order convergence for the overall truncated optimiza-
tion scheme (see [18] for details). The conjugacy property is essential for computing
the vectors (6), i.e., to design efficient truncated Newton methods. Thus, introducing
CG-based schemes which deflate conjugacy loss might be of great importance.

On the other hand, at the outer iteration h, effective truncation rules typically attempt
to assess the parameter m in (6), as described in [17,20,21], i.e., they monitor the
decrease of the quadratic local model

Qh(dm
h ) := f (zh) + ∇ f (zh)T (dm

h ) + 1

2
(dm

h )T ∇2 f (zh)(dm
h )
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when ∇2 f (zh) � 0, so that the parameter m is chosen to satisfy some conditions,
including

Qh(dm
h ) − Qh(dm−1

h )

Qh(dm
h )/m

≤ α, for some α ∈ ]0, 1[.

Thus, again the correctness of conjugacy properties among the directions p1, . . . , pm ,
generated while solving Newton’s equation, may be essential both for an accurate
solution of Newton’s equation (which is a linear system) and to the overall efficiency
of the truncated optimization method.

4 Our Proposal: The C D Class

Before introducing our proposal for a new general framework of CG-based algorithms,
we consider here some additional motivations for using the CG.

The careful use of the latter theory is in our opinion a launching pad for possible
extensions of the CG. On this guideline, recalling the contents in Sect. 3, now we
summarize some critical aspects of the CG:

1. The CG works iteratively and at any iteration the overall computational effort is
only O(n2) (since the CG is a Krylov-subspace method);

2. The conjugate directions generated by the CG are linearly independent, so that at
most n iterations are necessary to address the solution; and

3. The current conjugate direction pk+1 is computed by simply imposing the con-
jugacy with respect to the direction pk (computed) in the previous iteration. This
automatically yields that pT

k+1 Api = 0, for any i ≤ k, too.

As a matter of fact, for the design of possible general frameworks including CG-
based methods, the items 1. and 2. are essential in order to respectively control the
computational effort and ensure the finite convergence.

On the other hand, altering the item 3. might be harmless for the overall iterative
process, and might possibly yield some fruitful generalizations, that is indeed the
case of our proposal, where the item 3. is modified with respect to the CG. The latter
modification depends on a parameter which is user/problem-dependent, and may be
set in order to further compensate or correct the conjugacy loss among directions, due
to roundoff and finite precision.

We sketch in Table 2 our new CG-based class of algorithms, namely C D.
The computation of the direction pk at Step k reveals the main difference between

the CG and C D. In particular, in Table 2 the pair of coefficients σk−1 and ωk−1 is
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Table 2 The parameter-dependent class C D of CG-based algorithms for solving (1)

The class

Step 0: Set = 0, 0 ∈ , 0 := − 0, 0 ∈ {0}.
If 0 = 0, then STOP. Else, set 0 := 0, = + 1.
Compute 0 := 0 0 0 0,
1 := 0 + 0 0, 1 := 0 − 0 0.

If 1 = 0, then STOP. Else, set 0 := 0 0
2

0 0,
1 := 0 0 − 0 0, = + 1.

Step : Compute −1 := −1 −1 −1 −1,
:= −1 + −1 −1, := −1 − −1 −1.

If = 0, then STOP. Else, set −1 := −1
−1

2

−1 −1
,

−1 := −1
( −1) −2

−2 −2
= −1

−2

−1 −1

−2 −2
, −1 ∈ {0}

:= −1 −1 − −1 −1 − −1 −2, = + 1.
Go to Step .

computed so that explicitly1

pT
k Apk−1 = 0

pT
k Apk−2 = 0, (8)

i.e., in Cartesian coordinates the conjugacy between the direction pk and both the
directions pk−1 and pk−2 is directly imposed, as specified by (3). As detailed in
Sect. 2, imposing the double condition (8) allows to possibly recover the conjugacy
loss in the sequence {pi }.

On the other hand, the residual rk at Step k of Table 2 is computed by imposing the
orthogonality condition r T

k pk−1 = 0, as in the standard CG. The resulting method is
evidently a bit more expensive than the CG, requiring one additional inner product per
step, as long as an additional scalar to compute and an additional n-vector to store.
From Table 2 it is also evident that C D provides a 3-term recurrence with respect to
the conjugate directions.

In addition, observe that the residual rk is computed at Step k of C D only to check
for the stopping condition, and is not directly involved in the computation of pk .
Hereafter, in this section, we briefly summarize the basic properties of the class C D.

Assumption 4.1 The matrix A in (1) is symmetric positive definite. Moreover, the
sequence {γk} in Table 2 is such that γk �= 0, for any k ≥ 0.

1 A further generalization might be obtained computing σk−1 and ωk−1 so that

⎧
⎨

⎩
pT

k A(γk−1 Apk−1 − σk−1 pk−1) = 0,

pT
k Apk−2 = 0.

(7)
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Note that, as for the CG, Assumption 4.1 is required for theoretical reasons. How-
ever, the C D class may in principle be used also in several cases when A is indefinite,
provided that pT

k Apk �= 0, for any k ≥ 0.

Lemma 4.1 Let Assumption 4.1 hold. At Step k of the C D class, with k ≥ 0, we have

Ap j ∈ span
{

p j+1, p j , pmax{0, j−1}
}
, j ≤ k. (9)

Proof From the Step 0 relation (9) holds for j = 0. Then, for j = 1, . . . , k − 1 the
Step j + 1 of C D directly yields (9). �
Theorem 4.1 (Conjugacy) Let Assumption 4.1 hold. At Step k of the C D class, with
k ≥ 0, the directions p0, p1, . . . , pk are mutually conjugate, i.e., pT

i Ap j = 0, with
0 ≤ i �= j ≤ k.

Proof The statement holds for Step 0, as a consequence of the choice of the coefficient
σ0. Suppose it holds for k − 1; then, we have for j ≤ k − 1

pT
k Ap j = (γk−1 Apk−1 − σk−1 pk−1 − ωk−1 pk−2)

T Ap j

= (γk−1 Apk−1)
T Ap j − σk−1 pT

k−1 Ap j − ωk−1 pT
k−2 Ap j = 0.

In particular, for j = k − 1 and j = k − 2 the choice of the coefficients σk−1 and
ωk−1, and the inductive hypothesis, yield pT

k Apk−1 = pT
k Apk−2 = 0. For j < k − 2,

the inductive hypothesis and Lemma 4.1 again yield the conjugacy property. �
Lemma 4.2 Let Assumption 4.1 hold. Given the C D class, we have for k ≥ 2

(Apk)
T (Api ) =

⎧
⎪⎨

⎪⎩

‖Apk‖2, if i = k,

1
γk−1

pT
k Apk, if i = k − 1,

∅, if i ≤ k − 2.

Proof The statement is a trivial consequence of Step k of the C D, Lemma 4.1 and
Theorem 4.1. �

Observe that from the previous lemma, a simplified expression for the coefficient
ωk−1, at Step k of C D is available, inasmuch as

ωk−1 = γk−1

γk−2
· pT

k−1 Apk−1

pT
k−2 Apk−2

. (10)

Relation (10) has a remarkable importance: it avoids the storage of the vector Apk−2
at Step k, requiring only the storage of the quantity pT

k−2 Apk−2. Furthermore observe
that, unlike the CG, the sequence {pk} in C D is computed independently of the
sequence {rk}. Moreover, as we said, the residual rk is simply computed at Step k
in order to check the stopping condition for the algorithm.

The following result proves that the C D class recovers the main theoretical prop-
erties of the standard CG.

123

Author's personal copy



J Optim Theory Appl

Theorem 4.2 (Orthogonality) Let Assumption 4.1 hold. Let rk+1 �= 0 at Step k + 1
of the C D class, with k ≥ 0. Then, the directions p0, p1, . . . , pk and the residuals
r0, r1, . . . , rk+1 satisfy

r T
k+1 p j = 0, j ≤ k, (11)

r T
k+1r j = 0, j ≤ k. (12)

Proof From Step k + 1 of C D we have rk+1 = rk − ak Apk = r j − ∑k
i= j ai Api , for

any j ≤ k. Then, from Theorem 4.1 and the choice of coefficient α j we obtain

r T
k+1 p j =

⎛

⎝r j −
k∑

i= j

ai Api

⎞

⎠
T

p j = r T
j p j −

k∑

i= j

ai pT
i Ap j = 0, j ≤ k,

which proves (11). As regards relation (12), for k = 0 we obtain from the choice of a0

r T
1 r0 = r T

1 p0 = 0.

Then, assuming by induction that (12) holds for k − 1, we have

r T
k+1r j = (rk − ak Apk)

T r j = (rk − ak Apk)
T

⎛

⎝r0 −
j−1∑

i=0

ai Api

⎞

⎠

= r T
k r0 −

j−1∑

i=0

air
T
k Api − ak pT

k Ar0 +
j−1∑

i=0

ai ak(Apk)
T Api , j ≤ k.

The inductive hypothesis and Theorem 4.1 yield for j ≤ k (in next relation, when
i = 0, then pi−1 ≡ 0)

r T
k+1r j = −

j−1∑

i=0

air T
k

γi
(pi+1 + σi pi + ωi pi−1) +

j−1∑

i=0

ai ak(Apk)
T Api . (13)

Therefore, if j = k the relation (11) along with Lemma 4.2 and the choice of ak yield

r T
k+1rk = −ak−1

γk−1
r T

k pk + ak−1ak

γk−1
pT

k Apk = 0.

On the other hand, if j < k in (13), the inductive hypothesis, relation (11) and Lemma
4.2 yield (12). �

Finally, we prove that, likewise the CG, in at most n iterations C D determines the
solution of the linear system (1), so that finite convergence holds.
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Lemma 4.3 (Finite convergence) Let Assumption 4.1 hold. At Step k of the C D class,
with k ≥ 0, the vectors p0, . . . , pk are linearly independent. Moreover, in at most n
iterations the C D class computes the solution of the linear system (1), i.e., Ayh = b,
for some h ≤ n.

Proof The proof follows very standard guidelines (the reader may also refer to [22]).
Thus, by (11) an integer m ≤ n exists such that rm = b − Aym = 0. Then, if y∗ is the
solution of (1), we have

0 = b − Aym = Ay∗ − A

[
y0 +

m−1∑

i=0

ai pi

]
⇐⇒ y∗ = y0 +

m−1∑

i=0

ai pi .

�
Remark 4.1 Observe that there is the additional chance to replace the Step 0 in Table 2,
with the following CG-like Step 0b

Step 0b : Set k = 0, y0 ∈ R
n, r0 := b − Ay0.

If r0 = 0, then STOP. Else, set p0 := r0, k = k + 1.

Compute a0 := r T
0 p0/pT

0 Ap0,

y1 := y0 + a0 p0, r1 := r0 − a0 Ap0.

If r1 = 0, then STOP. Else, set σ0 := −‖r1‖2/‖r0‖2,

p1 := r1 + σ0 p0, k = k + 1.

5 Further Properties for C D

In this section, we consider some properties of C D which represent a natural extension
of analogous properties of the CG. To this purpose, we introduce the error function

f (y) := 1

2
(y − y∗)T A(y − y∗), with Ay∗ = b, (14)

and the quadratic functional

g(y) := 1

2
(y − yi )

T A(y − yi ), with i ∈ {1, . . . , m}, (15)

which satisfy f (y) ≥ 0, g(y) ≥ 0, for any y ∈ R
n , when A � 0. Then, we have the

following result, where we prove minimization properties of the error function f (y)

(see also Theorem 6.1 in [14]) and g(y) (see also [23]), along with the fact that C D
provides a suitable approximation of the inverse matrix A−1, too.

Theorem 5.1 (Further Properties) Consider the linear system (1) with A � 0, and
the functions f (y) and g(y) in (14)–(15). Assume that the C D has performed m + 1
iterations, with m + 1 ≤ n and Aym+1 = b. Let γi−1 �= 0 with i ≥ 1. Then,
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• σ0 minimizes g(y) on the manifold (y1 + γ0 Ap0) + span{p0},
• σi−1 and ωi−1, i = 2, . . . , m, minimize g(y) on the two dimensional manifold

(yi + γi−1 Api−1) + span{pi−1, pi−2}.
Moreover,

f (yi + ai pi ) = f (yi ) −
(

γi−1

ai−1

)2 ‖ri‖4

pT
i Api

, i = 1, . . . , m, (16)

and we have

[
A+ −

m∑

i=0

pi pT
i

pT
i Api

]
r0 = 0, for any y0 ∈ R

n, (17)

where A+ is the Moore–Penrose pseudoinverse matrix of A.

Proof Observe that for i = 1, indicating in Table 2 p1 = γ0 Ap0 + ap0, with a ∈ R,
by (15)

g(y2) = g(y1 + a1 p1) = a2
1

2
(γ0 Ap0 + ap0)

T A(γ0 Ap0 + ap0),

and we have

0 = ∂g(y2)

∂a

∣∣∣∣
a=a∗

= a2
1 pT

0 A(γ0 Ap0 + a∗ p0) ⇐⇒ a∗ = −γ0
‖Ap0‖2

pT
0 ap0

= −σ0.

For i ≥ 2, if we indicate in Table 2 pi = γi−1 Api−1 + bpi−1 + cpi−2, with b, c ∈ R,
then by (15)

g(yi + ai pi ) = a2
i

2
(γi−1 Api−1 + bpi−1 + cpi−2)

T A(γi−1 Api−1 + bpi−1 + cpi−2),

and by Assumption 4.1, after some computation, the equalities

⎧
⎪⎨

⎪⎩

∂g(yi+1)
∂b

∣∣∣
b=b∗,c=c∗ = ∂g(yi +ai pi )

∂b

∣∣∣
b=b∗,c=c∗ = 0

∂g(yi+1)
∂c

∣∣∣
b=b∗,c=c∗ = ∂g(yi +ai pi )

∂c

∣∣∣
b=b∗,c=c∗ = 0

imply the unique solution

b∗ = −γi−1
‖Api−1‖2

pT
i−1 Api−1

= −σi−1

c∗ = −γi−1
(Api−1)

T (Api−2)

pT
i−2 Api−2

= − γi−1
γi−2

pT
i−1 Api−1

pT
i−2 Api−2

= −ωi−1.

(18)
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As regards (16), from Table 2 we have that, for any i ≥ 1,

f (yi + ai pi ) = f (yi ) + ai (yi − y∗)T Api + 1

2
a2

i pT
i Api

= f (yi ) − air
T
i pi + 1

2
a2

i pT
i Api

= f (yi ) − 1

2

(r T
i pi )

2

pT
i Api

. (19)

Now, since ri = ri−1 − ai−1 Api−1 we have

pi = γi−1

(
ri−1 − ri

ai−1

)
− σi−1 pi−1, i = 1,

pi = γi−1

(
ri−1 − ri

ai−1

)
− σi−1 pi−1 − ωi−1 pi−2, i ≥ 2,

so that from Theorem 4.2

r T
i pi = −γi−1

ai−1
‖ri‖2.

The latter relation and (19) yield (16).
As regards (17), since Aym+1 = b, then b ∈ R(A), where R(A) is the range of A,

and from Table 2 then ri ∈ Ki (b, A) ⊆ R(A), i = 0, . . . , m, where Ki+1(b, A) ⊇
Ki (b, A). In addition, by the definition of Moore-Penrose pseudoinverse matrix (see
[24]), and since ym+1 is a solution of (1), we have

PrR(A)(ym+1) = A+b = A+(r0 + Ay0)

= A+r0 + PrR(A)(y0), (20)

being PrR(A)(y0) the projection of y0 onto R(A). Moreover, we have that ym+1 =
y0 + ∑m

i=0 ai pi , and by induction pi ∈ Ki (b, A) ⊆ R(A), thus

PrR(A)(ym+1) = PrR(A)(y0) + PrR(A)

(
m∑

i=0

ai pi

)

= PrR(A)(y0) +
m∑

i=0

ai pi . (21)

By (20), (21) and recalling that for C D we have

pT
i ri = pT

i (ri−1 − ai−1 Api−1) = pT
i ri−1 = · · · = pT

i r0,
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we obtain

A+r0 =
m∑

i=0

ai pi =
m∑

i=0

pT
i ri

pT
i Api

pi =
m∑

i=0

pi pT
i

pT
i Api

r0,

which yields (17). �
Observe that the result in (18) may be seen as a consequence of the Theorem 3.6

in [8], which holds for a general quadratic functional g(x).

Corollary 5.1 (Inverse Approximation) Let Assumption 4.1 hold and suppose that
Aym+1 = b, where ym+1 is computed by C D and m = n − 1. Then, we have

A−1 =
n−1∑

i=0

pi pT
i

pT
i Api

.

Proof The proof follows from (17), recalling that the directions p0, . . . , pn−1 are
linearly independent and when A is nonsingular A−1 ≡ A+. �

6 Basic Relation Between the CG and C D

Observe that the geometry of vectors {pk} and {rk} in C D might be substantially
different with respect to the CG. Indeed, in the latter scheme the relation pk = rk +
βk−1 pk−1 implies r T

k pk = ‖rk‖2 > 0, for any k. On the contrary, for the C D, using
relation rk = rk−1−ak−1 Apk−1 and Theorem 4.2 we have that possibly r T

k pk �= ‖rk‖2

and

pT
k Apk

pT
k−1 Apk−1

= γk−1
(Apk−1)

T Apk

pT
k−1 Apk−1

= − γk−1‖rk‖2

akak−1 pT
k−1 Apk−1

= −γk−1
‖rk‖2 pT

k Apk

(r T
k pk)(r T

k−1 pk−1)
,

so that, when A � 0, we obtain

γk−1(r
T
k pk)(r

T
k−1 pk−1) < 0. (22)

The latter result is a consequence of the fact that in the C D class, the direction pk is
not generated directly using the vector rk . In addition, a similar conclusion also holds
if we compute the quantity pT

k p j > 0, k �= j , for both the CG and the C D (see also
Theorem 5.3 in [14]).

As another difference between the CG and C D, we have that in the first algorithm,
the coefficient βk−1, at Step k in Table 1, is always positive. On the other hand, the
coefficients γk−1, σk−1 and ωk−1 at Step k of Table 2 might be possibly negative.

We also observe that the CG in Table 1 simply stores at Step k the vectors rk−1 and
pk−1, in order to compute, respectively, rk and pk . On the other hand, at Step k the

123

Author's personal copy



J Optim Theory Appl

C D requires the storage of one additional vector, which contains some information
from iteration k − 2. The idea of storing at Step k some information from iterations
preceding Step k − 1 is not new for Krylov-based methods. Some examples, which
differ from our approach, may be found in [7], for unsymmetric linear systems.

In any case, it is not difficult to verify that the CG may be equivalently obtained
from C D, setting γk−1 = −αk−1, for k = 1, 2, . . ., in Table 2. Indeed, though in Table
1 the coefficient βk−1 explicitly imposes the conjugacy only between pk and pk−1, the
pair (αk−1, βk−1) implicitly imposes both the conditions (8) for the CG. Now, by (5)
and comparing with Step k of Table 2, we want to show that, setting γk−1 = −αk−1
in Table 2 we obtain

{
σk−1 = −(1 + βk−1), k ≥ 1,

ωk−1 = βk−2, k ≥ 2,
(23)

which implies that C D reduces equivalently to the CG.
For the CG r T

i r j = 0, for i �= j , and pT
i ri = ‖ri‖2, so that

βk−1 := ‖rk‖2

‖rk−1‖2 = −r T
k (αk−1 Apk−1)

‖rk−1‖2 = − r T
k Apk−1

pT
k−1 Apk−1

.

Thus, recalling that rk−1 = rk−2 − αk−2 Apk−2 and pk−1 = rk−1 + βk−2 pk−2, we
obtain for γk−1 = −αk−1, with k ≥ 2,

−(1 + βk−1) = − pT
k−1 Apk−1 − r T

k Apk−1

pT
k−1 Apk−1

= − (pk−1 − rk−1 + αk−1 Apk−1)
T Apk−1

pT
k−1 Apk−1

= −αk−1
‖Apk−1‖2

pT
k−1 Apk−1

= σk−1 (24)

and

βk−2 = − r T
k−1 Apk−2

pT
k−2 Apk−2

= ‖rk−1‖2

αk−2

1

pT
k−2 Apk−2

= αk−1

αk−2

pT
k−1 Apk−1

pT
k−2 Apk−2

= ωk−1. (25)

Finally, it is worth noting that for C D, the following two properties hold, for any k ≥ 2
((i)–(ii) also hold for k = 1, with obvious modifications to (i)):

(i) r T
k pk = r T

k

[
γk−1

(
rk−1 − rk

ak−1

)
− σk−1 pk−1 − ωk−1 pk−2

]
= −γk−1

ak−1
‖rk‖2

(ii) r T
k Apk = r T

k

(
rk − rk+1

ak

)
= 1

ak
‖rk‖2 = ‖rk‖2

r T
k pk

pT
k Apk ,
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Fig. 1 At the kth iteration of the CG and C D, the directions pCG
k and pC D

k are respectively generated,

along the line �. Applying the CG, the vectors pCG
k and rk have the same orthogonal projection on ApCG

k ,

since (pCG
k )T ApCG

k = r T
k ApCG

k . Applying C D, the latter equality with pC D
k in place of pCG

k is not
necessarily satisfied

which indicate explicitly a difference with respect to the CG. Indeed, for any γk−1 �=
−ak−1 we have, respectively from (i) and (ii),

r T
k pk �= ‖rk‖2

r T
k Apk �= pT

k Apk .

Figure 1 clarifies the geometry of items (i) and (ii) for both the CG and C D.
Relations (24)–(25) suggest that the sequence {γk} must satisfy specific conditions

in order to reduce C D equivalently to the CG. For a possible generalization of the
latter conclusion, consider that equalities (23) are by (5) sufficient conditions in order
to reduce C D equivalently to the CG. Thus, now we want to study general conditions
on the sequence {γk}, such that (23) are satisfied. By (23) we have

−(1 + ωk) = σk−1,

which is equivalent from Table 2 to

−
(
γk−1‖Apk−1‖2 + pT

k−1 Apk−1

)
= γk

γk−1
pT

k Apk (26)

or

− γ 2
k−1‖Apk−1‖2 − γk−1 pT

k−1 Apk−1 − γk pT
k Apk = 0. (27)

The latter equality, for k ≥ 1, and the choice of σ0 in Table 2 yield the following
conclusions.

Lemma 6.1 (Reduction of C D) The scheme C D in Table 2 can be rewritten as in
Table 3 (i.e., with the CG-like structure of Table 1), provided that the sequence {γk}
satisfies γ0 := −a0 and
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Table 3 The new C D-red class for solving (1), obtained by setting at Step k of C D the parameter γk as in
relation (28)

The -red class

Step 0: Set = 0, 0 ∈ , 0 := − 0.
If 0 = 0, then STOP. Else, set 0 := 0, = + 1.
Compute 0 := 0 0 0 0, 0 := − 0,
1 := 0 + 0 0, 1 := 0 − 0 0.

If 1 = 0, then STOP. Else, set 0 := 0 0
2

0 0, 0 = −(1 + 0)
1 := 1 + 0 0, = + 1.

Step : Compute −1 := −1 −1 −1 −1,
:= −1 + −1 −1, := −1 − −1 −1.

If = 0, then STOP. Else, use (28) to compute −1.

Set −1 := −1
−1

2

−1 −1
, −1 := −(1 + −1)

:= + −1 −1, = + 1.
Go to Step .

γk := −γ 2
k−1‖Apk−1‖2 + γk−1 pT

k−1 Apk−1

pT
k Apk

, k ≥ 1. (28)

In particular, the positions γi = −ai , i ≥ 0, in C D satisfy (28).

Proof By the considerations which led to (26)–(27), relation (28) yields (23), so that
the scheme C D-red in Table 3 follows from C D with the position (28), and setting
γ0 = −a0.
Furthermore, replacing in (28) the conditions γi = −ai , i ≥ 1, and recalling (i)–(ii),
we obtain the condition a2

k−1‖Apk−1‖2 = ‖rk−1‖2 + ‖rk‖2, which is immediately
fulfilled using condition rk = rk−1 − ak−1 Apk−1. �

Note that the C D-red scheme substantially is more similar to the CG than to C D.
Indeed, the conditions (8), explicitly imposed at Step k of C D, reduce to the unique
condition pT

k Apk−1 = 0 in C D-red.
The following result is a trivial consequence of Lemma 4.3, where the alternate use

of CG and C D steps is analyzed.

Lemma 6.2 (Combined Finite Convergence) Let Assumption 4.1 hold. Let y1, . . . , yh

be the iterates generated by C D, with h ≤ n and Ayh = b. Then, finite convergence
is preserved (i.e., Ayh = b) if the Step k̂ of C D, with k̂ ∈ {k1, . . . , kh} ⊆ {1, . . . , h},
is replaced by the Step k̂ of the CG.

Proof First observe that both in Tables 1 and 2, for any k ≤ h, the quantity ‖rk‖ > 0
is computed. Thus, in Table 1 the coefficient βk−1 is well defined for any n > k ≥ 1.
Now, by Table 2, note that if we set at Step k̂ ∈ {k1, . . . , kh} ⊆ {1, . . . , h} the
following
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Table 4 The scaled-CG algorithm for solving (1)

The Scaled-CG method

Step 0: Set = 0, 0 ∈ , 0 := − 0.
If 0 = 0, then STOP. Else, set 0 := 0 0, 0 > 0, = + 1.

Step : Compute −1 := −1 −1
2

−1 −1, −1 > 0,
:= −1 + −1 −1, := −1 − −1 −1.

If = 0, then STOP. Else, set −1 := − −1 −1 −1 or
−1 := 2/( −1 −1

2)
:= ( + −1 −1), > 0, = + 1,

Go to Step .

⎧
⎪⎨

⎪⎩

γk̂−1 = −ak̂−1, if k̂ ≥ 1

σk̂−1 = −(1 + βk̂−1), if k̂ ≥ 1

ωk̂−1 = βk̂−2, if k̂ ≥ 2,

the Step k̂ of C D coincides formally with the Step k̂ of CG. Thus, finite convergence
with Ayh = b is proved recalling that Lemma 4.3 holds for any choice of the sequence
{γk}, with γk �= 0. �

7 Relation Between the Scaled-CG and C D

Similarly to the previous section, here we aim at determining the relation between our
proposal in Table 2 and the scheme of the scaled-CG in Table 4 (see also [8], page
125). In [8] a motivated choice for the coefficients {ρk} in the scaled-CG is also given.
Here, following the guidelines of the previous section, we first rewrite the relation

pk+1 := ρk+1(rk+1 + βk pk),

at Step k + 1 of the scaled-CG, as follows

pk+1 = ρk+1(rk − αk Apk) + ρk+1βk pk

= ρk+1

[
pk

ρk
− βk−1 pk−1 − αk Apk

]
+ ρk+1βk pk

= −ρk+1αk Apk + ρk+1

(
βk + 1

ρk

)
pk − ρk+1βk−1 pk−1. (29)

We want to show that for a suitable choice of the parameters {γk}, the C D yields the
recursion (29) of the scaled-CG, i.e., for a proper choice of {γk} we obtain from CD
a scheme equivalent to the scaled-CG. On this purpose, let us set in C D

γk = −ρk+1αk, k ≥ 0, (30)
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where αk is given at Step k of Table 4. Thus, by Table 2

σk = γk
‖Apk‖2

pT
k Apk

= −ρk+1αk
‖Apk‖2

pT
k Apk

, k ≥ 0, (31)

and for k ≥ 1

ωk = γk

γk−1

pT
k Apk

pT
k−1 Apk−1

= ρk+1αk

ρkαk−1

pT
k Apk

pT
k−1 Apk−1

. (32)

Now, comparing the coefficients in (29) with (30), (31) and (32), we want to prove
that the choice (30) implies

σk = −ρk+1

(
βk + 1

ρk

)
, k ≥ 0, (33)

ωk = ρk+1βk−1, k ≥ 1, (34)

so that the C D class yields equivalently the scaled-CG.
As regards (33), from Table 4 we have, for k ≥ 0

βk + 1

ρk
=

1
ρk

pT
k Apk − r T

k+1 Apk

pT
k Apk

=
(

1
ρk

pk − rk+1

)T
Apk

pT
k Apk

=
(

1
ρk

pk − rk + αk Apk

)T
Apk

pT
k Apk

= (rk + βk−1 pk−1 − rk + αk Apk)
T Apk

pT
k Apk

= αk
‖Apk‖2

pT
k Apk

,

so that from (31) the condition (33) holds, for any k ≥ 0. As regards (34) from Step
k of Table 4 we know that βk−1 = ‖rk‖2/(ρk−1‖rk−1‖2) and, since r T

k pk−1 = 0, we
obtain r T

k pk = ρk‖rk‖2; thus, relation (30) yields

βk−1 = ‖rk‖2

ρk−1‖rk−1‖2 = αk

ρkαk−1

pT
k Apk

pT
k−1 Apk−1

= γk

ρk+1γk−1

pT
k Apk

pT
k−1 Apk−1

, k ≥ 1.

Relation (34) is proved using the latter equality and (32).
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8 Matrix Factorization Induced by C D

We first recall that considering the CG in Table 1 and setting at Step h

Ph :=
(

p0

‖r0‖ · · · ph

‖rh‖
)

Rh :=
(

r0

‖r0‖ · · · rh

‖rh‖
)

,

along with

Lh :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−√
β0 1

−√
β1 1

. . . 1

−√
βh−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
h×h

and Dh := diagi {1/αi }, we obtain the three matrix relations

Ph LT
h = Rh (35)

APh = Rh Lh Dh −
√

βh

αh

rh+1

‖rh+1‖eT
h (36)

RT
h ARh = Th = Lh Dh LT

h . (37)

Then, in this section we are going to use the iteration in Table 2 in order to possibly
recast relations (35)–(37) for C D.

On this purpose, from Table 2 we can easily draw the following relation between
the sequences {p0, p1, . . .} and {r0, r1, . . .}

p0 = r0

p1 = γ0

a0
(r0 − r1) − σ0 p0

pi = γi−1

ai−1
(ri−1 − ri ) − σi−1 pi−1 − ωi−1 pi−2, i = 2, 3, . . . ,
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and introducing the positions

Ph := (p0 p1 · · · ph)

Rh := (r0r1 · · · rh)

R̄h :=
(

r0

‖r0‖ · · · rh

‖rh‖
)

,

along with the matrices

Uh,1 :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 σ0 ω1 0 · · · · · · 0
1 σ1 ω2 0 · · · 0

1 σ2
. . . 0

...

1
. . .

. . . 0
. . .

. . . ωh−1

. . . σh−1

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(h+1)×(h+1),

Uh,2 :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

‖r0‖ ‖r0‖ 0 · · · · · · 0
−‖r1‖ ‖r1‖ 0 · · · 0

−‖r2‖ ‖r2‖ 0
...

. . .
. . . 0

−‖rh−1‖ ‖rh−1‖
−‖rh‖

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(h+1)×(h+1)

and

Dh := diag

{
1, diag

i=0,...,h−1
{γi/ai }

}
∈ R

(h+1)×(h+1),

we obtain after h − 1 iterations of C D

PhUh,1 = R̄hUh,2 Dh,

so that

Ph = R̄hUh,2 DhU−1
h,1 = R̄hUh,

where Uh = Uh,2 DhU−1
h,1. Now, observe that Uh is upper triangular since Uh,2 is upper

bidiagonal, Dh is diagonal and U−1
h,1 may be easily seen to be upper triangular. As a
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consequence, recalling that p0, . . . , ph are mutually conjugate we have

R̄T
h AR̄h = U−T

h diagi {pT
i Api }U−1

h ,

and in case h = n − 1, again from the conjugacy of p0, . . . , pn−1

PT
n−1 APn−1 = U T

n−1 R̄T
n−1 AR̄n−1Un−1 = diag

i=0,...,h−1
{pT

i Api }.

From the orthogonality of R̄n−1, along with relation

det(Un−1) = ‖r0‖
n−1∏

j=1

(
−‖r j‖γ j−1

a j−1

)
=

(
n−1∏

i=0

‖ri‖
)(

n−2∏

i=0

−γi

ai

)
,

we have

det
(

U T
n−1 R̄T

n−1 AR̄n−1Un−1

)
=

n−1∏

i=0

pT
i Api ⇐⇒ det(A) =

n−1∏

i=0

pT
i Api

det(Un−1)2 .

Thus, in the end

det(A) =
[

n−1∏

i=0

pT
i Api

‖ri‖2

]
·

[
n−2∏

i=0

a2
i

]

[
n−2∏

i=0

γ 2
i

] . (38)

Note that the following considerations hold:

– for γi = ±ai (which includes the case γi = −ai , when by Lemma 6.1 C D reduces
equivalently to the CG), by (i) of Sect. 6 |pT

k rk | = ‖rk‖2, so that we obtain the
standard result (see also [14])

det(A) =
[

n−1∏

i=0

pT
i Api

‖ri‖2

]
=

n−1∏

i=0

1

ai
;

– if |γi | �= |ai | we obtain the general formula (38).

9 Issues on the Conjugacy Loss for C D

Here we consider a simplified approach to describe the conjugacy loss for both the
CG and C D, under Assumption 4.1 (see also [14] for a similar approach). Suppose
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that both the CG and C D perform Step k + 1, and for numerical reasons, a nonzero
conjugacy error εk, j respectively occurs between directions pk and p j , i.e.,

εk, j := pT
k Ap j �= 0, j ≤ k − 1.

Then, we calculate the conjugacy error

εk+1, j = pT
k+1 Ap j , j ≤ k,

for both the CG and C D. First observe that at Step k + 1 of Table 1 we have

εk+1, j = (rk+1 + βk pk)
T Ap j (39)

= (pk − βk−1 pk−1 − αk Apk)
T Ap j + βkεk, j (40)

= (1 + βk)εk, j − βk−1εk−1, j − αk(Apk)
T Ap j . (41)

Then, from relation Ap j = (r j − r j+1)/α j and relations (2)–(3) we have for the CG

(Apk)
T Ap j =

{
− pT

k Apk
αk−1

, j = k − 1,

∅, j ≤ k − 2.

Thus, observing that for the CG we have εi,i−1 = 0 and εi,i = pT
i Api , for

1 ≤ i ≤ k + 1, after some computation we obtain from (2), (3) and (41)

εk+1, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅, j = k,

∅, j = k − 1,

(1 + βk)εk,k−2, j = k − 2,

(1 + βk)εk, j − βk−1εk−1, j − �k j , j ≤ k − 3,

(42)

where �k j ∈ R summarizes the contribution of the term αk(Apk)
T Ap j , due to a

possible conjugacy loss.
Let us consider now for C D a result similar to (42). We obtain the following

relations for j ≤ k

εk+1, j = pT
k+1 Ap j = (γk Apk − σk pk − ωk pk−1)

T Ap j

= γk(Apk)
T Ap j − σkεk, j − ωkεk−1, j

= γk

γ j
(Apk)

T (
p j+1 + σ j p j + ω j p j−1

) − σkεk, j − ωkεk−1, j

= γk

γ j
εk, j+1 +

(
γk

γ j
σ j − σk

)
εk, j + γk

γ j
ω jεk, j−1 − ωkεk−1, j ,
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and considering now relations (8), the conjugacy among directions p0, p1, . . . , pk

satisfies

εh,l = pT
h Apl = 0, for any | h − l |∈ {1, 2}. (43)

Thus, relation (10) and the expression of the coefficients in C D yields for εk+1, j the
expression

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, j = k,

∅, j = k − 1,

γk
γk−2

ωk−2εk,k−3, j = k − 2,
(

γk
γk−3

σk−3 − σk

)
εk,k−3 + γk

γk−3
ωk−3εk,k−4, j = k − 3,

γk
γ j

εk, j+1 +
(

γk
γ j

σ j − σk

)
εk, j + γk

γ j
ω jεk, j−1 − ωkεk−1, j , j ≤ k − 4.

(44)

Finally, comparing relations (42) and (44) we have

– in case j = k − 2, the conjugacy error εk+1,k−2 is nonzero for both the CG and
C D, as expected. However, for the CG

|εk+1,k−2| > |εk,k−2|

since (1 + βk) > 1, which theoretically can lead to an harmful amplification of
conjugacy errors. On the contrary, for C D the positive quantity |γkωk−2/γk−2| in
the expression of εk+1,k−2 can be possibly smaller than one.

– choosing the sequence {γk} such that

∣∣∣∣
γk

γk−i

∣∣∣∣ � 1 and/or

∣∣∣∣
γk

γk−i
ωk−i

∣∣∣∣ � 1, i = 2, 3, . . . (45)

from (44) the effects of conjugacy loss may be attenuated. Thus, a strategy to
update the sequence {γk} so that (45) holds might be investigated.

9.1 Bounds for the Coefficients of C D

We want to describe here the sensitivity of the coefficients σk and ωk , at Step k + 1
of C D, to the condition number κ(A). In particular, we want to provide a comparison
with the CG, in order to identify possible advantages/disadvantages of our proposal.
From Table 2 and Assumption 4.1 we have

|ωk | =
∣∣∣∣∣

γk

γk−1

pT
k Apk

pT
k−1 Apk−1

∣∣∣∣∣ , |σk | =
∣∣∣∣∣γk

‖Apk‖2

pT
k Apk

∣∣∣∣∣ ,
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so that (we indicate withλm(A) andλM (A) the smallest/largest eigenvalue of matrix A)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|ωk | ≥
∣∣∣∣

γk

γk−1

∣∣∣∣
λm(A)‖pk‖2

λM (A)‖pk−1‖2 =
∣∣∣∣

γk

γk−1

∣∣∣∣
1

κ(A)

‖pk‖2

‖pk−1‖2

|ωk | ≤
∣∣∣∣

γk

γk−1

∣∣∣∣
λM (A)‖pk‖2

λm(A)‖pk−1‖2 =
∣∣∣∣

γk

γk−1

∣∣∣∣ κ(A)
‖pk‖2

‖pk−1‖2 ,

(46)

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|σk | ≥ |γk | λ
2
m(A)‖pk‖2

λM (A)‖pk‖2 = |γk |λm(A)

κ(A)

|σk | ≤ |γk |λ
2
M (A)‖pk‖2

λm(A)‖pk‖2 = |γk |λM (A)κ(A).

(47)

On the other hand, from Table 1 we obtain for the CG

βk = −r T
k+1 Apk

pT
k Apk

= −1 + αk
‖Apk‖2

pT
k Apk

= −1 + ‖rk‖2

pT
k Apk

‖Apk‖2

pT
k Apk

,

so that, since βk > 0 and using relation ‖rk‖ ≤ ‖pk‖, along with relation pT
k Apk =

r T
k Ark − ‖rk‖4

‖rk−1‖4 pT
k−1 Apk−1 > 0, we have

⎧
⎪⎨

⎪⎩

βk ≥ max

{
0,−1 + ‖rk‖2

r T
k Ark

λm (A)
κ(A)

}
≥ max

{
0,−1 + 1

[κ(A)]2

}
= 0

βk ≤ −1 + ‖pk‖2

pT
k Apk

λM (A)κ(A) ≤ −1 + [κ(A)]2.

(48)

In particular, this seems to indicate that, on those problems where the quantity
|γk |λM (A) is reasonably small, C D might be competitive. However, as expected,
high values for κ(A) may determine numerical instability for both the CG and C D.
In addition, observe that any conclusion on the comparison between the numerical
performance of the CG and C D, depends both on the sequence {γk} and on how tight
are the bounds (47) and (48) for the problem in hand.

10 The Preconditioned C D Class

In this section, we introduce preconditioning for the class C D, in order to better cope
with possible illconditioning of the matrix A in (1).
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Let M ∈ R
n×n be nonsingular and consider the linear system (1). Since we have

Ay = b ⇐⇒
(

MT M
)−1

Ay =
(

MT M
)−1

b (49)

⇐⇒
(

M−T AM−1
)

My = M−T b

⇐⇒ Ā ȳ = b̄, (50)

where

Ā := M−T AM−1, ȳ := My, b̄ := M−T b, (51)

solving (1) is equivalent to solve (49) or (50). Moreover, any eigenvalue λi ,

i = 1, . . . , n, of M−T AM−1 is also an eigenvalue of
(
MT M

)−1
A. Indeed, if

(MT M)−1 Azi = λi zi , i = 1, . . . , n, then

(
M−1 M−T

)
AM−1 (Mzi ) = λi zi

so that

M−T AM−1 (Mzi ) = λi (Mzi ) .

Now, let us motivate the importance of selecting a promising matrix M in (50), in
order to reduce κ( Ā) (or equivalently to reduce κ[(MT M)−1 A]).

Observe that under the Assumption 4.1 and using standard Chebyshev polynomials
analysis, we can prove that in exact algebra, for both the CG and C D, the following
relation holds (see [2] for details, and a similar analysis holds for C D)

‖yk − y∗‖A

‖y0 − y∗‖A
≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

, (52)

where Ay∗ = b and ‖v‖2
A = vT Av, for any v ∈ R

n . Relation (52) reveals the strong
dependency of the iterates generated by the CG and C D, on κ(A). In addition, if the
CG and C D are used to solve (50) in place of (1), then the bound (52) becomes

‖yk − y∗‖A

‖y0 − y∗‖A
≤ 2

(√
κ[(MT M)−1 A] − 1√
κ[(MT M)−1 A] + 1

)k

, (53)

which definitely encourages to use the preconditioner (MT M)−1 whenever we have
κ[(MT M)−1 A] < κ(A).

On this guideline we want to introduce preconditioning in our scheme C D, for
solving the linear system (50), where M is non-singular. We do not expect that neces-
sarily, when M = I (i.e., no preconditioning is considered in (50)), C D outperforms
the CG. Indeed, as stated in the previous section, M = I along with bounds (46), (47)
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and (48) do not suggest a specific preference for C D with respect to the CG. On the
contrary, suppose a suitable preconditioner M = (MT M)−1 is selected when κ(A) is
large. Then, since the class C D for suitable values of γk−1 at Step k possibly imposes
stronger conjugacy conditions with respect to the CG, it may possibly better recover
the conjugacy loss.

We will soon see that, if the preconditioner M is adopted in C D, it is just used
throughout the computation of the product M × v, v ∈ R

n , i.e., it is not necessary to
store the possibly dense matrix M.

The algorithms in C D for (50) are described in Table 5, where each ‘bar’ quantity
has a corresponding quantity in Table 2. Then, after substituting in Table 5 the positions

ȳk := Myk

p̄k := Mpk

r̄k := M−T rk

M :=
(

MT M
)−1

, (54)

the vector p̄k becomes

p̄k = Mpk = γ̄k−1 M−T AM−1 Mpk−1 − σ̄k−1 Mpk−1 − ω̄k−1 Mpk−2,

hence

pk = γ̄k−1MApk−1 − σ̄k−1 pk−1 − ω̄k−1 pk−2

Table 5 The C D class for solving the linear system Ā ȳ = b̄ in (50)

The class for (50)

Step 0: Set = 0, 0̄ ∈ , 0̄ := ¯ − ¯ 0̄, ¯0 ∈ 0}.
If 0̄ = 0, then STOP. Else, set 0̄ := 0̄, = + 1.
Compute ¯0 := 0̄ 0̄/ 0̄

¯ 0̄,
1̄ := 0̄ + ¯0 0̄, 1̄ := 0̄ − ¯0 ¯ 0̄.

If 1̄ = 0, then STOP. Else, set ¯0 := ¯0 ¯ 0̄
2/ 0̄

¯ 0̄,
1̄ := ¯0 ¯ 0̄ − ¯0 0̄, = + 1.

Step : Compute ¯ −1 := ¯ −1¯ −1/¯ −1
¯¯ −1, ¯ −1 ∈ 0},

¯ := ¯ −1 + ¯ −1¯ −1, ¯ := ¯ −1 − ¯ −1 ¯¯ −1.
If ¯ = 0, then STOP. Else, set

¯ −1 := ¯ −1
¯¯ −1

2

¯ −1
¯¯ −1

, ¯ −1 := ¯ −1
¯ −2

¯ −1
¯¯ −1

¯ −2
¯¯ −2

,

¯ := ¯ −1 ¯¯ −1 − ¯ −1¯ −1 − ¯ −1¯ −2, = + 1.
Go to Step .
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with

σ̄k−1 = γ̄k−1
‖M−T Apk−1‖2

pT
k−1 Apk−1

= γ̄k−1
(Apk−1)

T MApk−1

pT
k−1 Apk−1

(55)

ω̄k−1 = γ̄k−1

γ̄k−2

pT
k−1 MT M−T AM−1 Mpk−1

pT
k−2 MT M−T AM−1 Mpk−2

= γ̄k−1

γ̄k−2

pT
k−1 Apk−1

pT
k−2 Apk−2

.

Moreover, relation r̄0 = b̄ − Ā ȳ0 becomes

M−T r0 = M−T b − M−T AM−1 My0 ⇐⇒ r0 = b − Ay0,

and since p̄0 = Mp0 = r̄0 = M−T r0, then p0 = Mr0, so that the coefficients σ̄0 and
ā0 become

σ̄0 = γ̄0
pT

0 MT M−T AM−1 M−T AM−1 Mp0

pT
0 Ap0

= γ̄0
(Ap0)

T M(Ap0)

pT
0 Ap0

= γ̄0
‖Ap0‖2

M
pT

0 Ap0

ā0 = r T
0 M−1 Mp0

pT
0 MT M−T AM−1 Mp0

= r T
0 p0

pT
0 Ap0

. (56)

As regards relation p̄1 = γ̄0 Ā p̄0 − σ̄0 p̄0, we have

Mp1 = γ̄0 M−T AM−1 Mp0 − σ̄0 Mp0,

hence

p1 = γ̄0MAp0 − σ̄0 p0.

Finally, r̄k = M−T rk so that

r̄k = M−T rk = M−T rk−1 − āk−1 M−T AM−1 Mpk−1

and therefore

rk = rk−1 − āk−1 Apk−1,

with

āk−1 = r T
k−1 M−1 Mpk−1

pT
k−1 MT M−T AM−1 Mpk−1

= r T
k−1 pk−1

pT
k−1 Apk−1

.
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The overall resulting preconditioned algorithm C DM is detailed in Table 6. Observe
that the coefficients ak−1 and ωk−1 in Tables 2 and 6 are invariant under the introduc-
tion of the preconditioner M. Also note that from (55) and (56), now in C DM the
coefficient σk−1 depends on AMA and not on A2 (as in Table 2).

Moreover, in Table 6 the introduction of the preconditioner simply requires at Step
k the additional cost of the product M × (Apk−1) (similarly to the preconditioned
CG, where at iteration k the additional cost of preconditioning is given by M× rk−1).

Furthermore, in Table 6 at Step 0 the products Mr0 and M(Ap0) are both required,
in order to compute σ0 and a0. Considering that Step 0 of C D is equivalent to two
iterations of the CG, then the cost of preconditioning either CG or C D is the same.
Finally, similar results hold if C DM is recast in view of Remark 4.1.

11 Numerical Examples

The theory in Sects. 5–9 seems to provide yet premature criteria, for a fruitful choice of
the sequence {γk} on applications. Furthermore, we do not have clear ideas about the
real importance of the scheme C D-red in Table 3, where the choice (28) is privileged.
Anyway, to suggest the reader some numerical clues about our proposal, consider that
the apparently simplest choice γk = 1, k ≥ 0, proved to be much inefficient in practice,
while the choices γk = ±ak gave appreciable results on different test problems (but
still unclear results on larger test sets).

In particular, we preliminarily tested the C D class on two (small but) illconditioned
problems described in Section 4 of [13]. The first problem, whose coefficient matrix is
addressed as A10 ∈ R

50×50, is ‘obtained from a one-dimensional model, consisting of
a line of two-node elements with support conditions at both ends and a linearly varying
body force’. The second problem has the coefficient matrix A20 ∈ R

170×170, which
is ‘the stiffness matrix from a two-dimensional finite element model of a cantilever
beam’.

Table 6 The preconditioned C D, namely C DM, for solving (1)

The class

Step 0: Set = 0, 0 ∈ , 0 := − 0, ¯0 ∈ 0}, 0.
If 0 = 0, then STOP. Else, set 0 := 0, = + 1.
Compute 0 := 0 0 0 0,
1 := 0 + 0 0, 1 := 0 − 0 0.

If 1 = 0, then STOP. Else, set 0 := ¯0 0
2

0 0,
1 := ¯0 ( 0) − 0 0, = + 1.

Step : Compute −1 := −1 −1 −1 −1, ¯ −1 ∈ 0},
:= −1 + −1 −1, := −1 − −1 −1.

If = 0, then STOP. Else, set

−1 := ¯ −1
−1

2

−1 −1
, −1 := ¯ −1

¯ −2

−1 −1

−2 −2
,

:= ¯ −1 ( −1) − −1 −1 − −1 −2, = + 1.
Go to Step .
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Fig. 2 Conjugacy loss for an illconditioned problem described by the coefficient matrix A10 in [13], using
the CG, C Da (the C D class setting γ0 = 1 and γk = ak , k ≥ 1), C D1 (the C D class setting γk = 1,
k ≥ 0) and C D−a (the C D class setting γ0 = 1 and γk = −ak , k ≥ 1). The quantity pT

1 Apk is reported
for k ≥ 3. As evident, the choice γk = 1, k ≥ 0, can yield very harmful results when the coefficient matrix
is illconditioned
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Fig. 3 Conjugacy loss for an illconditioned problem described by the coefficient matrix A10 in [13], using
only the CG, C Da (the C D class setting γ0 = 1 and γk = ak , k ≥ 1) and C D−a (the C D class setting
γ0 = 1 and γk = −ak , k ≥ 1). The quantity pT

1 Apk is reported for k ≥ 3. The choices γk = ak and
γk = −ak are definitely comparable, and are preferable to the CG for k ∈ {3, 6, 8, 11, 20}

In Figs. 2 and 3 we report the resulting experience on just the first of the two problems
(similar results hold for the other one), where the CG is compared with algorithms
in the class C D, setting γk ∈ {ak, 1,−ak}. As a partial justification for the reported
numerical experience, we note that in the C D class the coefficient σk depends on the
quantity ‖Apk‖2. Thus, ‖Apk‖2 may be large when A is illconditioned, so that the
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choice γk = 1 possibly is inadequate to compensate the effect of illconditioning. On
the other hand, setting γk = ±a and considering the expression of ak , the coefficient
σk is possibly re-scaled, taking into account the condition number of matrix A.

12 Conclusions

We have investigated a novel class of CG-based iterative methods. This allowed us
to recast several properties of the CG within a broad framework of iterative methods,
based on generating mutually conjugate directions. Both the analytical properties
and the geometric insight where fruitfully exploited, showing that general CG-based
methods, including the CG and the scaled-CG, may be introduced. Our resulting
parameter dependent CG-based framework has the distinguishing feature of including
conjugacy in a more general fashion, so that numerical results may strongly rely on the
choice of a set of parameters. We urge to recall that in principle, since conjugacy can
be generalized to the case of A indefinite (see for instance [8,11,18,25]) potentially
further generalizations with respect to C D can be conceived (allowing the matrix A
in (1) to be possibly indefinite).

Our study and the present conclusions are not primarily inspired by the aim of
possibly beating the performance of the CG on practical cases. On the contrary, we
preferred to justify our proposal in the light of a general analysis, which in case (but
not necessary) may suggest competitive new iterative algorithms, for solving positive
definite linear systems. In a future work, we are committed to consider the following
couple of issues:

1. assessing clear rules for the choice of the sequence {γk} in C D;
2. performing an extensive numerical experience, where different choices of the para-

meters {γk} in our framework are considered, and practical guidelines for new
efficient methods might be investigated.

Observe that the algorithms in C D are slightly more expensive than the CG, and
they require the storage of one further vector with respect to the CG. However, we
proved for C D some theoretical properties, which extend those provided by the CG,
in order to possibly prevent from conjugacy loss. In addition, when specific values of
the parameters in C D are chosen, then we obtain schemes equivalent to both the CG
and the scaled-CG.

Furthermore, we have also introduced preconditioning in our proposal, as a possible
extension of the preconditioned CG, so that illconditioned linear systems might be
possibly more efficiently tackled. Our methods are also aimed to provide an effective
tool in optimization contexts where a sequence of conjugate directions is sought.
Truncated Newton methods are just an example of such contexts from unconstrained
nonlinear optimization, as detailed in Sect. 3.

We are considering in a further study a numerical experience, over convex opti-
mization problems, where C D and the relative preconditioned scheme are adopted to
solve Newton’s equation. Indeed, in case the matrix A in (1) is indefinite, the choices
γk ∈ {ak, |ak |,−ak,−|ak |} are of some interest and might be compared on a significant
test set.
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In addition, it might be worth also to investigate the choice where the preconditioner
M in Table 6 is computed by a Quasi-Newton approximation of the inverse matrix
A−1 (see also [13,26]), or by using the conjugate directions generated by C D, for a
suitable choice of the parameters (see also [27]).

Furthermore, observe that conditions (8) or (7) cannot be further generalized impos-
ing explicitly relations (� ≥ 1)

pT
k Ap j = 0, j = k − 1, k − 2, . . . , k − �,

since (8) and (7) automatically imply pT
k Ap j = 0, for any j ≤ k−3 (see also Lemmas

4.1 and 4.2).
Finally, note that for the minimization of a convex quadratic functional in R

n ,
the complete relation between the search directions generated by BFGS or L-BFGS
updates and the CG was studied (see also [21]). Thus, we think that possible extensions
may be considered by replacing the CG with the algorithms in our framework. In this
regard, recalling that polarity (see [8]) plays a keynote role for generating conjugate
directions, there is the chance that a possible relation between the BFGS update and
C D could spot some light on the role of polarity for Quasi-Newton schemes.
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