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a b s t r a c t

Connectivity and communication interference are two key aspects in mobile ad-hoc
networks (MANETs). This paper proposes a process algebraic model targeted at the
analysis of both such aspects. The framework includes a probabilistic process calculus
and a suite of analytical techniques based on a probabilistic observational congruence
and an interference-sensitive preorder. The former enables the verification of behavioural
equivalences; the lattermakes it possible to evaluate the interference level of behaviourally
equivalent networks. The result is a comprehensive and effective framework for the
behavioural analysis and a quantitative assessment of interference for wireless networks
in the presence of node mobility. We show our techniques at work on two realistic case
studies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mobile ad-hoc networks are systems of mobile devices communicating over wireless links without a pre-established
connectivity structure. Connectivity and communication interference are two key aspects in such networks. Node mobility
is unconstrained: each device in a MANET moves autonomously, thereby seamlessly modifying the underlying topology,
and hence creating the need for dynamic routing algorithms to ensure the desired level of connectivity among the mobile
network nodes. Communication interference, in turn, is especially challenging in MANETs, as the half-duplex nature
of wireless channels makes it impossible for a transmitter to automatically detect the presence of other, conflicting
transmitters on the same channel. As a consequence, interfering transmissions may only be detected by receivers located at
the intersection of the emitters’ transmission ranges. The problem is even more complex in the presence of node mobility
due to the dynamic structure of the network topology. While ad-hoc protocols that address these problems exist in the
current literature [1,2], controlling interferences remains one of the pivotal aspects in the design of MANETs.

Drawing on earlier work on the subject (by the authors [3,4], and by others [5,6]), the present paper introduces a calculus
to provide a formal basis for the analysis of connectivity and the evaluation of interference in MANETs. Like its predecessors
[3,6], the new calculus is built around nodes, representing the devices of the systems, and locations, identifying the position
cells acrosswhich each devicemaymove inside the network. Nodemobility is governed by probability distributions as in [3].
Conversely, wireless synchronization is non-deterministic, and controlled by (sequential) processes inside the nodes: each
transmission broadcasts a message at a given radio frequency and within a given transmission range. Importantly, multiple
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nodes may simultaneously transmit along the same channel, within overlapping areas: the calculus provides for an explicit
representation of the collisions that may occur at the receiver sites.

The semantics of the calculus is inspired by Segala’s probabilistic automata [7], and driven by schedulers to resolve the
non-deterministic choice among the probability distributions over target states. We define a probabilistic observational
congruence in the style of [8] to equate networks exhibiting the same observable behaviour. As in [4,3], and in contrast
to [6], the notion of observability is associated with nodes listening at specific locations in the network, so as to allow a
fine grained analysis of connectivity and interference at different network areas. We give a co-inductive characterization
of observational congruence based on a labelled transition semantics. Then, we introduce interference-sensitive preorders
over networks to measure the relative interference level of different, but observationally equivalent, networks.

The result is a comprehensive framework for the behavioural analysis and a quantitative assessment of interference for
wireless networks in the presence of node mobility. We demonstrate the effectiveness of this framework on two cases
studies. The first is an in-depth analysis of the well-known Alternating Bit Protocol, in which we contrast the standard
implementation of the protocol with an alternative implementation that exploits an interference cancellation scheme for
CDMA transmissions. Based on our framework, we are able to show that the two solutions are observationally equivalent,
but the latter is superior as it guarantees a strictly lower level of interference. The second case study focuses on routing
protocols with a comparative analysis of simple route discovery protocols based on AODV-like flooding policies [9] and
Location Aided Routing (LAR) protocols [10] which try to control the flooding by addressing route requests to specific areas
of the network based on information about the nodes’ locations. We show that the LAR heuristic is equally effective in path
discovery with respect to the flooding algorithms.
Related Work. The analysis of mobile and sensor networks has attracted broad interest in the literature on process algebraic
and probabilistic models.

Various proposals target the analysis of behavioural properties related to node mobility, network connectivity,
communication andmessage routing in non-deterministic settings.Merro introduces CMN [6], a value-passing CCS style [11]
calculus with nodes and locations which has inspired a number of the initial design choices of our calculus. Singh,
Ramakrishnan and Smolka define the ω-calculus [12], a conservative extension of the π-calculus which combines node
mobility, and various forms of communication with the pi-calculus native mechanisms of scope extrusion by which nodes
may also be connected with private channels. Nanz and Hankin introduce CBS# [13], an extension of the Calculus of
Broadcasting Systems [14]: their mechanisms for communication is related to ours in that transmissions are not atomic
(when a node executes an output the topology of the network may change arbitrarily before the reception of the message
by the neighbours of the sender). Sangiorgi and Lanese also address non-atomic transmissions in their calculus CWS [5],
and specifically target a detailed analysis of interferences. Their framework, however, does not include node mobility
nor do they introduce any interference metric. van Glabbeek et al. proposes AWN [15], a process algebra equipped with
communication mechanisms and data structures specifically targeted at very precise and detailed modelling of wireless
mesh routing protocols.

Several other papers propose probabilistic and stochastic models to provide quantitative analysis for various purposes.
Song and Godskesen [16] propose a probabilistic broadcast calculus for mobile and wireless networks with unreliable
connections. They do no address interference, and focus instead onmessage loss which in their calculus may only arise with
a certain inherent probability and as a consequence of change in connectivity, determined by mobility (which, in turn, is
governed by probabilities). Palamidessi et al. [17] define an extension of the applied pi-calculus with non-deterministic and
probabilistic choice operators: our notion of probabilistic observational congruence is directly inherited from their work.
Merro et al. discuss TCWS [18], a timed broadcasting process calculus targeted at security analysis of wireless networks
with fixed nodes communicating at the same transmission power and over the same transmission frequency. Lanotte and
Merro propose a probabilistic version of TCWS [19], aimed at the analysis of communication protocols. Themain peculiarity
of this calculus is the definition of a relation of simulation up to probability, which allows one to compare networks which
exhibit the same behaviour up to a certain probability. This is an interesting result with respect, e.g., to the probabilistic
applied π-calculus, presented in [17], where two networks can be compared only if they have exactly the same probability
of performing observable actions. On the other hand, their model inherits the limitations due to the absence of mobility
and of multiple frequencies of the original proposal in [18]. Hennessy and Cerone [20] propose a calculus to model the high-
level behaviour ofWireless Systems (i.e., MAC-layer protocols). The calculus is characterized by a two-level structure: on one
hand, it includes probabilistic and non-deterministic processes behaviour, as well as communications through a fixed set of
channels; on the other hand, the topology is expressed through an undirected graph where each edge represents the direct
link between a pair of network nodes. There is no notion of distance, nor of transmission radius; furthermore, modelling
communication links with an undirected graph presupposes that all nodes use the same fixed radius to communicate, an
assumption that is not realistic for MANETs, which include different kinds of devices, with different physical structure and
power resources.

In the context of performance evaluation, Hillston [21] introduces the Performance Evaluation Process Algebra (PEPA)
which is used for modelling systems composed of concurrently active components which co-operate and share work.
Bernardo et al. introduce the Extended Markovian Process Algebra (EMPAgr ) [22]. All those calculi are built upon atomic
actions and do not allow multiple devices to transmit at the same time. Although these shortcomings are overcome by
the Hermanns’ Interactive Markov Chains (IMCs) [23], the process algebra we propose deals both with non-determinism
and probabilistic behaviours. This allows us to naturally model node mobility, transmission interferences and define
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Table 1
Syntax.

Networks Processes

M,N::= 0 Empty network P,Q ::= 0 Inactive process
| n[P]l Node (or device) | in(c, x̃).P Input
| (νc)M Channel restriction | out�cL,r , w̃�.P Output
| M1|M2 Parallel composition | [w1 = w2]P,Q Matching

| A�w̃� Recursion

observational relations aimed at capturing the peculiar aspects of ad-hoc wireless networks. In our model, the time is
partially abstracted out andwe leave to the schedulers the role of solving the non-determinism rather than using a semantics
based on the activity durations.

Finally, existing frameworks based on Petri Nets and queueing networks fall short of accounting for node mobility while
maintaining a good accuracy in specifying the protocol design [24,25].
Plan of the paper. Section 2 introduces the calculus and its observational semantics. Section 3 defines the LTS semantics and
the associated notion of probabilistic bisimilarity. Section 4 develops a technique for measuring the level of interference.
Sections 5 and 6 shows our framework at work on the two case studies. Section 7 concludes the paper.

The present paper is a revised version of [26], extended with proofs for all results, a new case study (in Section 6) and an
extended review of related work.

2. The calculus

The calculus extends the Probabilistic Energy-aware Broadcast Unicast andMulticast (PEBUM) calculus introduced in [3]
with a new semantics of communication. The novelty of the present extension is the non-atomicity of the output and input
actions, which we define after [5] to capture the presence of interference caused by the simultaneous transmissions of two
(or more) nodes using the same channel in a common transmission area.

We use letters c for channels, n for nodes, l for locations, r for transmission radii, x and y for variables. Closed values contain
nodes, locations, transmission radii and any basic value (booleans, integers, . . . ). Values include also variables. We use u and
v for closed values and w for (open) values, and write ṽ, w̃ for tuples of values, N for the set of networks, C for the set of
channels and Loc for the set of all locations. As anticipated, whilemovementsmay be assumed to be continuous, we identify
locations as the countable set of cells that constitute the observing areas within the network. The syntax of our calculus is
shown in Table 1.

Networks are collections of nodes, devices that run concurrently and use channels to exchange messages. 0 denotes
the empty network and M1|M2 the parallel composition of two networks. n[P]l is a network node named n located at the
physical location l, and executing the process P . In (νc)M the channel c is private with scope M , and we say it is bound in
M: we denote by fc(M) the set of channels which are not bound in M . We remark that in our calculus channels are distinct
from values and cannot be transmitted; furthermore, given the structure of the syntactic productions, channels may not be
dynamically created and thus (νc)M simply plays the role of a CCS-style hiding operator.1

Processes are sequential and run inside nodes: 0 is the inactive process; in(c, x̃).P is ready to listen to a transmission,
while out�cL,r , w̃�.P is ready to transmit. In in(c, x̃).P , the variables in x̃ are bound with scope in P . In out�cL,r , w̃�.P , the
tag r represents the transmission radius of the sender: the choice of specific transmission ranges may depend on various
parameters, and is left to the process running inside the transmitter node. The tag L, in turn, signals the locations fromwhich
the transmission will be observed.

The remaining syntactic forms are: [w1 = w2]P,Q behaves as P if w1 = w2, and as Q otherwise. A�w̃� is the process
defined via a (possibly recursive) definition A(x̃) def= P , with |x̃| = |w̃| where x̃ contains all channels and variables that are
free in P .

Two further process forms arise as a result of reduction. In particular, processes that are ready to send or receive evolve
into active senders and receivers:

P,Q ::= . . . The expressions of Table 1
| c(x̃).P Active input
| c̄L,r�w̃�.P Active output.

Here, c(x̃).P is actively receiving a tuple w̃ of (closed) values via channel c and continues as P{w̃/x̃}, i.e., as P with w̃
substituted for x̃ (where |x̃| = |w̃|). Dually, c̄L,r�w̃�.P is transmitting a tuple of values w̃ via channel c and then continues
as P. Processes of the form c(x̃).P or c̄L,r�w̃�.P are called active. Predicate Active(P) is true when P is active, and A(M)
denotes the network composed of all the active nodes inM , i.e., all nodes n[P]l in M with P active.

1 Since channels represent radio frequencies, they are all public, hence they need not be transmitted, and may not be hidden in practice. Indeed, the use
of the hiding operator is only meant to specialize the verification method to some specific class of contexts.
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Node connectivity is verified by looking at the physical location and the transmission radius of the sender: a message
broadcast by a node is received only by the nodes that lie in the area delimited by the transmission radius of the sender. We
presuppose a function d(·, ·) which takes two locations and returns the distance separating them (function d can be simply
the euclidean distance between two locations, or a more complex function dealing with potential obstacles).

A network M is defined as the parallel composition of nodes with pairwise-distinct names moving independently from
each other. We denote by

�
i∈I Mi the parallel composition of the networks Mi, for i ∈ I . Each node n is associated with a

pair �rn, Jn�, where rn is a non-negative real number denoting the maximum transmission radius that n can use to transmit,
while Jn is the transition matrix of a discrete time Markov chain: each entry Jnlk denotes the probability that the node n
located at l may move to the location k. Hence,

�
k∈Loc J

n
lk = 1 for all locations l ∈ Loc. Static nodes are associated with the

identity Markov chain, i.e., the identity matrix Jnll = 1 for all l ∈ Loc and Jnlk = 0 for all l �= k. We note by µn
l the probability

distribution associated with node n located at l, that is, the function over Loc such that µn
l (k) = Jnlk, for all k ∈ Loc.2

Let n be a node of a network M and l its location. In the following we denote by M{n : l�/l} the network obtained by
substituting l by l� inside the node n and by [[M ]]µn

l
the probability distribution over the set of networks induced by µn

l and
defined as follows: for all networkM �,

[[M ]]µn
l
(M �) =

�
µn

l (l
�) if M � = M{n : l�/l}

0 otherwise.

Intuitively, [[M ]]µn
l
(M �) is the probability that the network M evolves to M � due to the movement of its node n located at l.

We say thatM � is in the support of [[M ]]µn
l
if [[M ]]µn

l
(M �) �= 0. We write [[M ]]∆ for the Dirac distribution on the networkM ,

namely the probability distribution defined as: [[M ]]∆(M) = 1 and [[M ]]∆(M �) = 0 for allM � such thatM � �= M . Finally, we
let θ range over {µn

l | n is a node and l ∈ Loc} ∪ {∆}.

Example 2.1 (Probability Distributions). Consider a network

M = n1[out�cL,r1 , ṽ1�.P1]l1 | n2[out�cL,r2 , ṽ2�.P2]l2 | m[in(c, x̃).P3]k
consisting of two mobile sender nodes, n1 and n2, communicating with a static receiver node m. Node n1 moves back and
forth between locations l1 and l2 according to the probability distribution defined by the discrete time Markov chain with
the following transition matrix

J =
����
1 − p p

q 1 − q,

����

where 0 < p, q < 1. Similarly, n2 moves between l2 and l1 according to the same transition matrix J. Then the probabilistic
mobility of the network induced by the movement of the node n1 is

[[M ]]
µ
n1
l1

(M �) =
�1 − p ifM � = M{n1 : l1/l1} = M
p ifM � = M{n1 : l2/l1}
0 otherwise.

Similarly for the second node we have

[[M ]]
µ
n2
l2

(M �) =
�1 − q ifM � = M{n2 : l2/l2} = M
q ifM � = M{n2 : l1/l2}
0 otherwise

while for the static receiver we have

[[M ]]µm
k
(M �) =

�
1 ifM � = M{m : k/k} = M
0 otherwise.

Note that for the static node movement, we have [[M ]]µm
k

= [[M ]]∆.
The dynamics of the calculus is specified by the probabilistic reduction relation (−→), described in Table 3. It relies on an

auxiliary relation, called structural congruence (≡), which is the least contextual equivalence relation satisfying the rules
defined in Table 2. The probabilistic reduction relation takes the form M −→ [[M � ]]θ denoting a transition that leaves from
networkM and leads to a probability distribution [[M � ]]θ .

The synchronization over awireless channel is described by the two rules (R-Bgn-Bcast) and (R-End-Bcast). (R-Bgn-Bcast)
models the start of a transmission, with node n transiting from ready to active state to transmit message ṽ on channel c with

2 Notice that Jn is a matrix, while µn
l is a function. We also remark that when the set of locations is infinite, the transition matrix is infinite. There are

indeed possible situations: (i) the set of locations is infinite but each node moves only in a finite portion or, (ii) the locations reachable from a node also
are infinitely many. In the first case the model is tractable with a sparse representation; in the second case, we may resort to the common assumption that
transition matrix associated with the Markov chain has a regular block structure, hence admits a finite representation.
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Table 2
Structural congruence.

n[0]l ≡ 0 (Struct Zero)
n[[v = v]P,Q ]l ≡ n[P]l (Struct Then)
n[[v1 = v2]P,Q ]l ≡ n[Q ]l v1 �= v2 (Struct Else)
n[A�ṽ�]l ≡ n[P{ṽ/x̃}]l if A(x̃) def= P ∧ |x̃| = |ṽ| (Struct Rec)
M|N ≡ N|M (Struct Par Comm)
(M|N)|M � ≡ M|(N|M �) (Struct Par Assoc)
M|0 ≡ M (Struct Zero Par)
(νc)0 ≡ 0 (Struct Zero Res)
(νc)(νd)M ≡ (νd)(νc)M (Struct Res Res)
(νc)(M | N) ≡ M | (νc)N if c �∈ fc(M) (Struct Res Par)

Table 3
Reduction semantics.

(R-Bgn-Bcast)
∀i ∈ I.d(l, li) > ri ∀i ∈ I ∀j ∈ J.d(li, lj) > ri ∀h ∈ (J ∪ K).d(l, lh) ≤ r

n[out�cL,r , ṽ�.P]l | M −→ [[n[c̄L,r �ṽ�.P]l | M � ]]∆
where
M ≡

�
i∈I

ni[c̄Li,ri �ṽi�.Pi]li |
�

j∈J
nj[in(c, x̃j).Pj]lj |

�
k∈K

nk[c(x̃k).Pk]lk ,
M � ≡

�
i∈I

ni[c̄Li,ri �ṽi�.Pi]li |
�

j∈J
nj[c(x̃j).Pj]lj |

�
k∈K

nk[Pk{⊥/x̃i}]lk
(R-End-Bcast)

∀j ∈ J.d(l, lj) ≤ r
n[c̄L,r �ṽ�.P]l | �

j∈J nj[c(x̃j).Pj]lj −→ [[n[P]l | �
j∈J nj[Pj{ṽ/x̃j}]lj ]]∆

(R-Res)
M −→ [[M � ]]θ

(νc)M −→ [[(νc)M � ]]θ
(R-Move)

Active(P) = false
n[P]l −→ [[n[P]l ]]µn

l

(R-Par)
M −→ [[M � ]]θ

M|N −→ [[M �|N ]]θ
(R-Struct)
N ≡ M M −→ [[M � ]]θ M � ≡ N �

N −→ [[N � ]]θ

radius r . The state change in n may cause a collision, which the rule captures as follows. We abuse the notation and write
nh ∈ H to note nodes nh with h ∈ H , for any index set H . The premise of the rule describes a situation in which nodes nk ∈ K
and ni ∈ I are actively involved in a synchronization, while node n and the nj ∈ J are in (output and input, respectively) ready
state. Given that all the active transmitters are out of n’s range (because d(l, li) > ri), n transits into active state: this awakes
the nj ∈ J , as they are now in range of an active transmitter, and at the same time causes a collision at the nk ∈ K , which
also are in range and were already active on input: as a result the nk ∈ K exit their active state, receiving the error signal ⊥.
All the remaining active receivers that do not sense a collision, and are in the range of an active sender may conclude the
synchronization (see the R-End-Bcast rule).

As we mentioned earlier, the label L signals the set of locations at which the transmission will be observed. Notice that L
does not play a role in a synchronization reduction, as messages are broadcast and observable (and received) by any active
receiver in range. On the other hand, we use L to fine-tune our notion of observation in the definition of barb, to be discussed
shortly.

Example 2.2 (Interference). Consider again the network of the previous examplewhere the two sender nodes are not within
the radius of each other, i.e., d(l1, l2) > max(r1, r2), and they are both able to reach the receiver, i.e., d(l1, k) ≤ r1 and
d(l2, k) ≤ r2. Then the following reductions, obtained by applying rule (R-Bgn-Bcast), lead to a state where an interference
is caused at the receiver node:

M → [[n1[c̄L,r1�ṽ1�.P1]l1 | n2[out�cL,r2 , ṽ2�.P2]l2 | m[c(x̃).P3]k ]]∆
and if M � = n1[c̄L,r1�ṽ1�.P1]l1 | n2[out�cL,r2 , ṽ2�.P2]l2 | m[c(x̃).P3]k then

M � → [[n1[c̄L,r1�ṽ1�.P1]l1 | n2[c̄L,r2�ṽ2�.P2]l2 | m[P3{⊥/x̃}]k ]]∆ .

The first sender node starts broadcasting on the channel c causing the receiver to become active. Then the second sender
being too far away from n1 to notice that the channel is occupied starts broadcasting on the same channel and hence causes
an interference at the receiver side. If we are interested in observing the transmissions at location k, i.e., k ∈ L then our
semantics will allows us to detect the interference.

Rule (R-Move) describes node mobility. A node n located at l and executing a move action will reach a location with a
probability described by the distribution µn

l that depends on the Markov chain Jn statically associated with n. We assume
that a node can move only if it is not actively involved in any synchronization: as a result, nodes may move before starting
a synchronization (when they are in a ready, but not active state), while they are static during the actual synchronization.
This is a reasonable assumption in wireless network analysis, since, in most practical situations, packet transmission delays
may be assumed to be orders of magnitude faster than node mobility.
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All the remaining rules are standard [11], but a further remark is in order about the (R-Par) rule and its interaction with
the rules that govern synchronization. In fact, such interactions may give rise to inconsistent network configurations. To see
that, observe that an application of the (R-Par) rule may cause messages to be lost by active receivers located within the
range of an active sender, even when there is no interference. Similarly, an application of (R-Par) may exclude any set of
active sender and/or receiver from a synchronization: in both cases, the network is left in an inconsistent state, with active
senders (dually receivers) and no receiver (sender) in range.

Example 2.3 (Inconsistent Networks). Consider again the network of the previous examplewhere now the two sender nodes
are within the radius of each other, that is d(l1, l2) ≤ min(r1, r2). By applying rule (R-Bgn-Bcast) we obtain

M → [[n1[out�cL,r1 , ṽ1�.P1]l1 | n2[c̄L,r2�ṽ2�.P2]l2 | m[c(x̃).P3]k ]]∆ .

Now let M � = n1[out�cL,r1 , ṽ1�.P1]l1 | n2[c̄L,r2�ṽ2�.P2]l2 | m[c(x̃).P3]k. The following reduction obtained by applying rule
(R-Par)

M � → [[n1[c̄L,r1�ṽ1�.P1]l1 | n2[c̄L,r2�ṽ2�.P2]l2 | m[c(x̃).P3]k ]]∆
leads to an inconsistent statewhere both sender nodes are broadcasting on the same channel while beingwithin a reachable
distance of each other. Similarly, consider the following application of rule (R-Bng-Bcast):

M → [[n1[c̄L,r1�ṽ1�.P1]l1 | n2[out�cL,r2 , ṽ2�.P2]l2 | m[c(x̃).P3]k ]]∆ .

If M �� = n1[c̄L,r1�ṽ1�.P1]l1 | n2[out�cL,r2 , ṽ2�.P2]l2 | m[c(x̃).P3]k then by an application of rule (R-Par) we obtain

M �� → [[n1[P1]l1 | n2[out�cL,r2 , ṽ2�.P2]l2 | m[c(x̃).P3]k ]]∆
leading to an inconsistent state wherem is actively receiving a message while there is no active sender.

While it would be possible to rectify the problem by including conditions to exclude critical pairs for the (R-Par) and
the synchronization rules, it is technically more convenient to simply disregard any undesired reduction. This is achieved in
our framework by resorting to the notion of ‘‘admissible scheduler’’ (discussed shortly) to guide the dynamics of networks
through ‘‘well-formed’’ executions.

Formally, given a network M , we write M−→θN if M −→ [[M � ]]θ and N is in the support of [[M � ]]θ . Following [17], an
execution for M is a (possibly infinite) sequence of steps M−→θ1M1−→θ2M2 . . .. We write ExecM for the set of all possible
executions starting from M , last(e) for the final state of a finite execution e, ej for the prefix execution M−→θ1M1 · · · −→θjMj

of length j of the execution e = M−→θ1M1 · · · −→θjMj−→θj+1Mj+1 · · · , and e↑ for the set of e� such that e is a prefix of e�. We
writeM−→∗M � if there exists a finite execution e ∈ ExecM such that last(e) = M �.

Following [8], we formalize the observational semantics for our calculus in terms of a notion of barb that provides the
basic unit of observation. As in other calculi for wireless communication [6,27], the definition of barb is naturally expressed
in terms of message transmission.

We denote by behave(M) = {[[M � ]]θ | M −→ [[M � ]]θ } the set of the possible behaviours of M . In order to solve the
non-determinism in a network execution, we consider each possible probabilistic transition M −→ [[M � ]]θ as arising from
a scheduler (see [7,17]). Let Execf be the set of all finite executions and Behave(Execf ) the set of all the distributions in
behave(last(e)) with e ∈ Execf . Then, a scheduler is a total function F from Execf to Behave(Execf ) assigning to a finite
execution e a distribution [[N ]]θ ∈ behave(last(e)). Notice that we consider deterministic schedulers in the style of [17]
rather than randomized ones as in [7]. Indeed, we aim at modelling network behaviours where probabilities are used to
describe only node mobility while leaving the control of the transmissions to the standard deterministic scheduler. We
define the set of executions starting from a networkM and driven by a scheduler F as:

ExecFM = {e = M−→θ1M1−→θ2M2 . . . | ∀j, Mj−1 −→ [[M �
j ]]θj ,

[[M �
j ]]θj = F(ej−1) and Mj is in the support of [[M �

j ]]θj}.
Given a finite execution e = M−→θ1M1 · · · −→θkMk starting from M and driven by a scheduler F we define

PF
M(e) = [[M �

1 ]]θ1(M1) · . . . · [[M �
k ]]θk(Mk)

where ∀j ≤ k, [[M �
j ]]θj = F(ej−1). We define the probability space on the executions starting from a given network M

as follows. Given a scheduler F , σ FieldFM is the smallest sigma field on ExecFM that contains the basic cylinders e ↑, where
e ∈ ExecFM . The probability measure ProbFM is the unique measure on σ FieldFM such that ProbFM(e ↑) = PF

M(e). Given a
measurable set of networksH , we note by ExecFM(H) the set of executions starting fromM and crossing a state inH . Formally
ExecFM(H) = {e ∈ ExecFM | last(ej) ∈ H for some j}. We denote the probability for a networkM to evolve into a network in H
according to the policy given by F as ProbFM(H) = ProbFM(ExecFM(H)).

As anticipated, we restrict to suitable subclasses of networks and executions, namely well-formed networks and
executions driven by admissible schedulers, respectively. Well formed-networks are such that (1) before transiting to active
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state, each transmitter checks (locally) that the communication channel is not busy with other transmissions, and (2) each
active receiver in the network is in the transmission cell of exactly one transmitter. Below we give the formal definition.

We recall the reader that A(M) is the network composed by active nodes inM and introduce the auxiliary operator Top(·)
over networks, used as follows: a channel c is at the top level of a network M , denoted c ∈ Top(M), if M ≡ (νd̃)(n[P]l | N)
and P is of the form c(x̃).Q or c̄L,r�w̃�.Q .

Definition 2.4 (Well-formed Network). A networkM iswell-formed if either A(M) ≡ 0 or A(M) ≡ (νd̃)
��

i∈I ni[c̄Li,ri�ṽi�.Pi]li |�
j∈J nj[c(x̃j).Pj]lj |A(N)

�
for some N and the following conditions hold:

• ∀i, i� ∈ I.d(li, li�) > max(ri, ri�),
• ∀j ∈ J.∃!i ∈ I such that d(li, lj) ≤ ri,
• c �∈ Top(A(N)), and N is well-formed.

Back to Example 2.3, we see that the final states of the reductions are not well-formed. In the first case, the inconsistent state
breaks the first well-formedness condition in Definition 2.4, since there are two active senders on the same channel within
the radius of each other; the second inconsistent state, in turn, breaks the second well-formedness condition as there is no
single active sender reaching the active receiver. Restricting to admissible schedulers rules out any unwanted transition and
inconsistent state, preserving network well-formedness along execution.

Definition 2.5 (Admissible Scheduler). A scheduler F is admissible if for all executions e and for all networksM in the support
of F(e), M is well-formed. We let Sched note the set of all admissible schedulers.

Schedulers constitute an essential feature for modelling communication protocols, as they provide freedom inmodelling
implementation and incomplete knowledge of a system. Therefore in introducing our notion of network equivalence
(cf. Definition 2.12 below) we seek parametricity with respect to the schedulers driving execution, so as to provide
corresponding flexibility in the analysis. In addition, as it is customary in process algebraic frameworks, we expect our
equivalence to be a congruence (equivalently, contextual).

In order to define a congruence relation among networks, we have to select a set of schedulers guaranteeing that network
behaviour is preserved when the network in included in any possible context. We henceforth define a context as a network
term with a hole [·], defined by the following grammar:

C[·] ::= [·] | [·]|M | M|[·] | (νc)[·].
The following definition introduces a relation between the executions of a network M and those of the same network once
embedded into a context.

Definition 2.6. Let M0 and O0 ≡ M0 be networks, F , F � ∈ Sched admissible schedulers, C0 a context, and e ∈ ExecFM0
and

e� ∈ ExecF �
C0[O0] two executions such that:

e = M0−→θ1M1−→θ2M2 · · · −→θhMh

e� = C0[O0]−→θ �
1
C1[O1]−→θ �

2
C2[O2] · · · −→θ �

k
Ck[Ok].

We say that e and e� have the same behaviour with respect to M0 – written e∼M0 e
� – if there exists a monotonic surjective

function f from [0..k] to [0..h] such that:

(i) ∀i ∈ [0..k], Oi ≡ Mf (i)
(ii) ∀j ∈ [1..k], θ �

j = θf (j) whenMf (j−1)−→θf (j)Mf (j).

The next definition helps formalize our notion of observational congruence. Intuitively it defines a set of schedulers FM
C

that depends on F and a network M , and which includes F and all the schedulers driving M in an arbitrary context. The
schedulers in FM

C
are selected based on the way they drive the interactions between the contexts andM , so as to ensure that

they preserve the behaviour of M according to F (and are otherwise unconstrained in their driving any context behaviour
independent ofM).

Definition 2.7. Given a networkM and an admissible scheduler F ∈ Sched, we define the set FM
C

as follows:

FM
C

= {F � ∈ Sched | ∀C[·] context, ∀e� ∈ ExecF
�

C[M] there exists e ∈ ExecFM such that e∼M e�}.

We say that FM
C

is consistent with F if F ∈ FM
C
. Hereafter, we consider only schedulers F ensuring that FM

C
is consistent.

Given a networkM and F ⊆ Sched, we also define F
M

C
= �

F∈F
FM
C
.
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Example 2.8. LetM0 ≡ m[out�cL,r , v�.P]l and F ∈ Sched such that

M0−→∆M1−→∆M2 ∈ ExecFM0
,

withM1 ≡ m[c̄L,r�v�.P]l andM2 ≡ m[P]l.
Consider N0 ≡ n[in(c, x).Q ]k such that d(l, k) ≤ r . All the admissible schedulers allowing M0 and N0 to interact are

candidate for being in FM0
C

. Indeed, consider F1 ∈ Sched such that, by applying rules (Struct-Bgn-Bcast) and (Struct-End-
Bcast)

M0 | N0−→∆M1 | N1−→∆M2 | N2 ∈ ExecF1M0|N0

with N1 ≡ n[c(x).Q ]k and N2 ≡ n[Q {v/x}]k, and consider also F2 such that, by applying rule (R-Par)

M0 | N0−→∆M1 | N0−→∆M2 | N0 ∈ ExecF2M0|N0
.

Both F1 and F2 satisfy the properties of Definition 2.7 when considering the context N0|[·].
Consider now the network L0 defined as L0 ≡ �[out�cL,r , w�.R]j with d(j, k) ≤ r . Consider also the admissible scheduler

F1 for the networkM0|N0 and let F3 be a scheduler for L0|M0|N0 such that:

L0|M0|N0−→∆L0|M1|N1−→∆L1|M1|N3 ∈ ExecF3L0|M0|N0
,

with L1 ≡ �[c̄L,r�w�.R]j and N3 ≡ n[Q {⊥/x}]k. Then, according to Definition 2.7, F3 �∈ FM0|N0
1C

. Notice that this example
shows that although the contexts and a network can interact, the class of interactions allowed by Definition 2.7 are not
completely arbitrary. Indeed, the scheduler F which is initially selected for the network will have an important role in the
definition of our observational equivalence since only the behaviours admitted by the schedulers in FM

C
will be considered

for the proposed definition of equivalence.

We are now ready to discuss our notion of observation. We first introduce a notation for strong barbs: for any network
M , we write M↓c@K whenever M ≡ (νd̃)(n[c̄L,r�ṽ�.P]l | M �) with c �∈ d̃, K ⊆ L, K �= ∅ and for all k in K , d(l, k) ≤ r . In other
words, the strong barb M↓c@K signals that an active transmission from c can be observed in M from some of the intended
observation points in L for that transmission. This notion of strong barb generalizes the corresponding notion in related
calculi, notably [6]: indeed, taking L to be Loc uniformly on all output prefixes, our definition coincides with that in [6].

Example 2.9. Consider the networkM of Example 2.2. If k ∈ L thenM↓c@{k} otherwise M c@{k}.

Definition 2.10 (Probabilistic Barb). A well-formed networkM has a barbwith probability p on a channel c at locations in K
according to the scheduler F , written M⇓F

pc@K , if ProbFM(H) = p with H = {M � | M−→∗M �↓c@K }.

Intuitively, for a given network M and scheduler F , if M⇓F
pc@K then p is the positive probability that M , driven by F ,

performs a transmission on channel c and at least one of the nodes in the intended observation locations is able to correctly
listen to it.

In the following, we introduce a probabilistic observational congruence, in the style of [17], parametrically with respect
to a set of schedulers.

Definition 2.11. Given a set F ∈ Sched of schedulers, and a relation R over networks:

• Barb preservation. R is barb preserving w.r.t. F ifMRN andM⇓F
pc@K for some F ∈ F

M
C

implies that there exists F � ∈ F
N

C

such that N⇓F �
p c@K .

• Reduction closure. R is reduction closed w.r.t. F if MRN implies that for all F ∈ F
M

C
, there exists F � ∈ F

N
C

such that for
all classes C ∈ N /R, ProbFM(C) = ProbF �

N (C).
• Contextuality. R is contextual if MRN implies that for every context C[·] such that C[M] and C[N] are well formed, it

holds that C[M] R C[N].

Definition 2.12 (Probabilistic Observational Congruence w.r.t. F ). Given a set F of schedulers, the probabilistic observational
congruence w.r.t. F , written ∼=F

p , is the largest symmetric relation over networks which is reduction closed, barb preserving
and contextual.

3. A bisimulation-based proof technique

We develop a co-inductive proof technique for the probabilistic observational congruence ∼=F

p .
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Table 4
LTS rules for processes.

(Beg-Out)
−

out�cL,r , ṽ�.P c̄L,r−→ c̄L,r �ṽ�.P
(End-Out)

−
c̄L,r �ṽ�.P c̄L,r ṽ−−→ P

(Beg-In)
−

in(c, x̃).P c−→ c(x̃).P
(End-In)

−
c(x̃).P cϑ−→ P{ϑ/x̃}

(Then)
P

η−→ P �

[ṽ = ṽ]P,Q
η−→ P �

(Else)
Q

η−→ Q � ṽ1 �= ṽ2

[ṽ1 = ṽ2]P,Q
η−→ Q �

(Rec)
P{ṽ/x̃} η−→ P � A(x̃) def= P

A�ṽ� η−→ P �

Table 5
LTS rules for networks.

(Beg-Snd)
P

c̄L,r−→ P �

n[P]l
cL ![l,r]−−−→ [[n[P �]l ]]∆

(End-Snd)
P

c̄L,r ṽ−−→ P �

n[P]l
cL !ṽ[l,r]−−−−→ [[n[P �]l ]]∆

(Beg-Rcv)
P c−→ P �

n[P]l c?@l−−→ [[n[P �]l ]]∆
(End-Rcv)

P cϑ−→ P �

n[P]l c?ϑ@l−−−→ [[n[P �]l ]]∆
(Beg-Bcast)

M
cL ![l,r]−−−→ [[M � ]]∆ N c?@l�−−→ [[N � ]]∆ d(l, l�) ≤ r ∧ As

N (c, l) = As
N (c, l�) = ∅

M|N cL ![l,r]−−−→ [[M �|N � ]]∆

(Coll-Bcast)
M

cL ![l,r]−−−→ [[M � ]]∆ N c?⊥@l�−−−→ [[N � ]]∆ d(l, l�) ≤ r ∧ As
N (c, l) = ∅

M|N cL ![l,r]−−−→ [[M �|N � ]]∆

(End-Bcast)
M

cL !ṽ[l,r]−−−−→ [[M � ]]∆ N c?ṽ@l�−−−→ [[N � ]]∆ d(l, l�) ≤ r

M|N cL !ṽ[l,r]−−−−→ [[M �|N � ]]∆
(Lose1)

M
cL ![l,r]−−−→ [[M � ]]∆

M τ−→ [[M � ]]∆
(Lose2)

M
cL !ṽ[l,r]−−−−→ [[M � ]]∆

M τ−→ [[M � ]]∆

(Move)
Active(P) = false

n[P]l τ−→ [[n[P]l ]]µn
l

(Res)
M

γ−→ [[M � ]]θ Chan(γ ) �= c

(νc)M
γ−→ [[(νc)M � ]]θ

(Obs)
M

cL !ṽ[l,r]−−−−→ [[M � ]]∆ R = {l� : d(l, l�) ≤ r ∧ | As
M (c, l�) |= 1} K ⊆ R ∩ L, K �= ∅

M c!ṽ@K�R−−−−→ [[M � ]]∆
(Par)

M
γ−→ [[M � ]]θ

M|N γ−→ [[M �|N ]]θ

3.1. Labelled transition semantics

As for its predecessor, we define a LTS semantics for our calculus, which is built upon two sets of rules: one for processes
and one for networks. Table 4 presents the LTS rules for processes. Transitions are of the form P

η−→ P �, where η ranges over
input and output actions of the form:

η ::= c|cϑ |c̄L,r |c̄L,r ṽ with ϑ ::= ṽ | ⊥.

Rules (Beg-Out) and (End-Out) model the beginning and the end of an output action. Rule (Beg-In) models a process
beginning listening to a channel in order to receive a value. Rule (End-In) models either the correct reception of a message
or the reception of a ⊥ due to a collision. All the remaining rules are standard as in [11].

Table 5 presents the LTS rules for networks. The transitions are of the form M
γ−→ [[M � ]]θ , where M is a network, [[M � ]]θ

is a distribution over networks, and γ ranges over the following labels:

γ ::= c?@l|c?ϑ@l|cL![l, r]|cL!ṽ[l, r]|c!ṽ@K � R|τ .

We denote by As
M(c, l) the set of active senders of M on channel c reaching l, i.e., if A(M) ≡ (νd̃)

��
i∈I ni[c̄Li,ri�ṽi�.Pi]li |�

j∈J nj[c(x̃j).Pj]lj | N
�
and c �∈ Top(N) then As

M(c, l) = {ni : i ∈ I, d(l, li) ≤ ri}.
Rules (Beg-Snd) and (End-Snd) model the transmission of a message ṽ through channel c with radius r to the set L of

observers. Transmissions are non-atomic actions: indeed, since mobile ad-hoc networks are not controlled by any fixed
infrastructure, we have to take into account the possibility for nodes to be not perfectly synchronized with each other.
(Beg-Rcv) models the beginning of a message reception, while (End-Rcv) models both the successful reception of a message
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or the reception of a failure message (denoted by ⊥) due to an interference. Rule (Beg-Bcast) models the beginning of a
broadcastmessage propagation: all the nodes lyingwithin the transmission cell of the sendermay begin to receive amessage
(regardless of the fact that they are in L). Rule (Coll-Bcast) models the collision occurred at the location of a receiver lying
within the intersection of the transmission area of different nodes transmitting simultaneously through the same channel.
Rule (End-Bcast) models the conclusion of a broadcast message propagation: all the nodes lying within the transmission cell
of the sender will successfully receive a message. Rule (Obs) models the observability of a transmission: every transmission
may be detected (and hence observed) by any recipient located within the transmission cell of one sender and outside
the ‘‘interference area’’, that is the intersection of the transmission areas of the active senders of the network. The label
c!ṽ@K � R represents the transmission of the tuple ṽ of messages via c to the subset K of observers inside the reachable
locations R within the transmission cell of the sender. Notice that collisions are not observable and only a correctly ended
transmission may be observed. Rule (Move) models migration of a mobile node n from a location l to a location k according
to the probability distributionµn

l , which depends on theMarkov chain Jn statically associatedwith n. Nodes canmove only if
they are not executing any active action (i.e., nodes cannot move while transmitting or receiving). Rules (Lose1) and (Lose2)
model both message loss and a local activity of the network which an observer is not party to. As usual [11], τ -transitions
are used to denote non-observable actions. Finally, rule (Res) models the standard channel restriction, where Chan(γ ) = c
if γ is of the form: c?@l; c?ϑ@l; cL![l, r]; cL!ṽ[l, r] or c!ṽ@K � R, and Chan(τ ) = ⊥. Rule (Par) is defined as in [11].

We prove that the LTS-based semantics coincides with the reduction semantics and the notion of observability (barb)
given in the previous section.

We first prove that ifM
γ−→ [[M � ]]∆, then the structure ofM and M � can be determined up to structural congruence.

Lemma 3.1. Let M be a network.

1. If M c?@l−−→ [[M � ]]∆, then there exist n, x̃, a (possibly empty) sequence d̃ such that c �∈ d̃, a process P and a (possibly empty)
network M1 such that: M ≡ (νd̃)(n[in(c, x̃)P]l | M1) and M � ≡ (νd̃)(n[c(x̃).P]l|M1).

2. If M c?ϑ@l−−−→ [[M � ]]∆, then there exist n, x̃, a (possibly empty) sequence d̃ such that c �∈ d̃, a process P and a (possibly empty)
network M1 such that M ≡ (νd̃)(n[c(x).P]l|M1) and M � ≡ (νd̃)(n[P{ϑ/x̃}]l|M1).

3. If M
cL![l,r]−−−→ [[M � ]]∆, then there exist n, ṽ, a (possibly empty) sequence d̃ such that c �∈ d̃, a process P, two

(possibly empty) sets J and K such that ∀h ∈ J ∪ K d(l, lh) ≤ r and a (possibly empty) network M1 such that: M ≡
(νd̃)(n[out�cL,r , ṽ�.P]l|

�
j∈J nj[in(c, x̃j).Pj]lj |

�
k∈K nk[c(x̃k).Pk]lk |M1) and M � ≡ (νd̃)(n[c̄L,r�ṽ�.P]l|

�
j∈J nj[c(x̃j).Pj]lj |�

k∈K nK [Pk{⊥/x̃k}]lk |M1).

4. If M
cL!ṽ[l,r]−−−−→ [[M � ]]∆, then there exist n, a (possibly empty) sequence d̃ such that c �∈ d̃, a process P, a (possibly empty) set J ,

such that ∀j ∈ J d(l, lj) ≤ r and a (possibly empty) network M1 such that: M ≡ (νd̃)(n[c̄L,r�ṽ�.P]l|
�

j∈J nj[c(x̃j).Pj]lj | M1)

and M � ≡ (νd̃)(n[P]l|
�

j∈J nj[Pj{ṽ/x̃j}]lj | M1).

Proof. See Appendix. �

Now we show that structural congruence respects the transitions of Table 5.

Lemma 3.2. If M
γ−→ [[M � ]]θ and M ≡ N, then there exists N � such that N

γ−→ [[N � ]]θ and M � ≡ N �.

Proof. By induction on the depth of the inferenceM
γ−→ [[M � ]]θ . �

The following theorem establishes the relationship between the reduction semantics and the LTS one.

Theorem 3.3 (Harmony). Let M be a network.

1. If M −→ [[M � ]]θ then there exist N and N � such that N τ−→ [[N � ]]θ , M ≡ N and M � ≡ N �.

2. M↓c@K iff M is well-formed and N c!ṽ@K�R−−−−→ [[M � ]]∆ for some R, ṽ, N ≡ M and M �.

3. If M τ−→ [[M � ]]θ then M −→ [[M � ]]θ .
4. If M c!ṽ@K�R−−−−→ [[M � ]]∆ then M −→ [[M � ]]∆.

Proof. See Appendix. �
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3.2. Probabilistic labelled bisimilarity

As for the previous versions of the calculus, we define a probabilistic labelled bisimilarity that is a complete
characterization of our probabilistic observational congruence. It is built upon the following actions:

α ::= c?@l | c?ϑ@l | c!ṽ@K � R | τ .

Again, we write M α−→θN if M α−→ [[M � ]]θ and N is in the support of [[M � ]]θ . Moreover we write M α−→ N if M α−→θN for
some θ . A labelled execution e of a networkM is a finite (or infinite) sequence of steps:M

α1−→θ1M1
α2−→θ2M2 · · · αk−→θkMk. With

abuse of notation, we define ExecM , last(e), ej and e↑ as for unlabelled executions. We denote by lbehave(M) the set of all
possible behaviours of M, i.e., lbehave(M) = {(α, [[M � ]]θ ) | M α−→ [[M � ]]θ }. Labelled executions arise by resolving the non-
determinism of both α and [[M ]]θ . As a consequence, a scheduler3 for the labelled semantics is a function F assigning a pair
(α, [[M ]]θ ) ∈ lbehave(last(e)) with a finite labelled execution e. We denote by LSched the set of (admissible) schedulers for
the LTS semantics, i.e., the set of all the schedulers F such that, for each network M in the support of F , M is well formed.
Given a network M and a scheduler F ∈ LSched, we define ExecFM as the set of all labelled executions starting from M and
driven by F .

Sincewe are interested inweak observational equivalences, that abstract over τ -actions, we introduce the notion ofweak
action.

Definition 3.4 (Weak Action). We denote by =⇒ the transitive and reflexive closure of τ−→ and by α=⇒ the weak action
=⇒ α−→=⇒. We denote by α̂=⇒ the weak action α=⇒ if α �= τ , and =⇒ otherwise.

In the following we will give the definition of probabilistic labelled bisimilarity with respect to a given set of schedulers.

Definition 3.5. Given a networkM0 and an admissible scheduler F ∈ Sched, we denote by F̂M0
C

⊆ LSched the set of admissible
schedulers F̂ ∈ LSched such that ∀e ∈ ExecF̂M0

of the form

e = M0
α1−→θ1M1 · · · αh−→θhMh

∃F � ∈ FM0
C

, a context C0 and e� ∈ ExecF �
C0[O0] with O0 ≡ M0 such that

e� = C0[O0]−→θ �
1
C1[O1] · · · −→θ �

k
Ck[Ok]

and there exists a monotone surjective function f from [0..k] to [0..h] such that:
(i) ∀i ∈ [0..k], Oi ≡ Mf (i)

(ii) ∀j ∈ [1..k], θ �
j = θf (j) whenMf (j−1)

αf (j)−−→θf (j)Mf (j).

Given a set F ⊆ Sched of schedulers and a networkM0, we define F̂
M0

C
= �

F∈F
F̂M0
C

.

Example 3.6. Consider the networks M0 and N0, and the schedulers F and F1 introduced in the Example 2.8. If we take
F̂1 ∈ LSched such that

M0
cL![l,r]−−−→∆M1

cL!v[l,r]−−−−→∆M2 ∈ ExecF̂1
M0

M0
,

then, since

M0−→∆M1−→∆M2 ∈ ExecFM0

the conditions of Definition 3.5 are satisfied when considering the empty context C[·] = 0 | · and the identity function
f (i) = i for i ∈ [0..2]. Hence F̂1 is a candidate for being in F̂M0

C
.

Moreover, if we consider F̂2 ∈ LSched such that

N0
c?@k−−→∆N1

c?v@k−−−→∆N2 ∈ ExecF̂2N0
,

since

M0 | N0−→∆M1 | N1−→∆M2 | N2 ∈ ExecF1M0|N0

with F1 ∈ FM0
C

, by considering the contexts Ci[·] ≡ Mi | · for i ∈ [0..2], and the identity function f (i) = i for i ∈ [0..2] we
get that F̂2 is a candidate for being in F̂M0

C
.

3 We abuse notation and still use F to denote a scheduler for the LTS semantics.



12 M. Bugliesi et al. / Performance Evaluation ( ) –

Proposition 3.7. 1. SchedC = Sched
2. �SchedC = LSched

Proof. 1. The Proof follows straightforwardly from Definition 2.7.
2. ∀F ∈ LSched, ∀M0 ∈ N and ∀e ∈ ExecFM0

of the form:

e = M0
α1−→θ1M1 · · · αk−→θkMk

it is always possible to find a context C0[·] and a scheduler F � ∈ LSched such that e� ∈ ExecF �
C0[M0] with

e� = C0[M0] τ−→θ1 · · · C1[M1] · · · τ−→θkCk[Mk].
By Theorem 3.3, ∃F �� ∈ Sched such that e�� ∈ ExecF ��

C0[M0] with

e�� = C0[M0]−→θ1 · · · C1[M1] · · · −→ Ck[Mk],
meaning that F ∈ �SchedC as required. �

In the probabilistic setting, while considering a computation with observable content, it is necessary to take into account
the actual probability of this computation to ensure that weakly bisimilar systems may not only match one another’s
transitions but also perform these transitions with matching probabilities. To achieve this, we denote by ExecFM(

α=⇒,H)

the set of executions that, starting from M , according to the scheduler F , lead to a network in the set H by performing α=⇒.
Moreover, we define the probability of reaching a network in H from M by performing α=⇒, according to a scheduler F as
ProbFM(

α=⇒,H) = ProbFM(ExecFM(
α=⇒,H)).

Definition 3.8 (Probabilistic Labelled Bisimilarity). Let M and N be two networks. An equivalence relation R over networks
is a probabilistic labelled bisimulation w.r.t. F if MRN implies: for all scheduler F ∈ F̂

M
C

there exists a scheduler F � ∈ F̂
N

C

such that for all α and for all classes C in N /R it holds:

1. if α = τ or α = c!ṽ@K � R then ProbFM(
α−→, C) = ProbF �

N (
α̂=⇒ C);

2. if α = c?@l or α = c?ϑ@l then either ProbFM(
α−→, C) = ProbF �

N (
α=⇒, C) or ProbFM(

α−→, C) = ProbF �
N (=⇒, C).

Probabilistic labelled bisimilarity, written ≈F

p , is the largest probabilistic labelled bisimulation w.r.t. F over networks.

Notice that, in the above definition, input actions are allowed to be matched by τ actions. This reflects the fact that
reception of messages cannot be directly observed by an external observer (see, e.g., [6]).

We prove that our probabilistic labelled bisimulation is a complete characterization of our notion of probabilistic barbed
congruence.

The following proposition will be useful.

Proposition 3.9. Let M and N be two networks. If MRN for some bisimulation R w.r.t. F , then for all schedulers F ∈ F̂
M

C
there

exists a scheduler F � ∈ F̂
N

C
such that for all α and for all classes C in N /R it holds:

1. if α = τ or α = c!ṽ@K � R then ProbFM(
α̂=⇒, C) = ProbF �

N (
α̂=⇒, C);

2. if α = c?@l or α = c?ϑ@l then either ProbFM(
α=⇒, C) = ProbF �

N (
α=⇒, C) or ProbFM(

α=⇒, C) = ProbF �
N (=⇒, C).

Proof. The proof follows by induction on the length of the weak transition α̂=⇒. �

We can now prove that our bisimilarity is a proof method for our observational congruence, i.e., that ≈F

p is contained in
∼=F

p .

Theorem 3.10 (Soundness). Let M and N be two networks and F ⊆ Sched. If M ≈F

p N then M ∼=F

p N.

Proof. See Appendix. �

Finally, we prove that the observational congruence is contained in the labelled bisimilarity.

Theorem 3.11 (Completeness). Let M and N be two networks and F ⊆ Sched. If M ∼=F

p N then M ≈F

p N.

The following result is a consequence of Theorems 3.10 and 3.11.

Theorem 3.12 (Characterization). For every set F ⊆ Sched, ∼=F

p = ≈F

p .
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4. Interference metrics

Wedefine a preorder over networkswhich allows us to compare the average level of interferences of networks exhibiting
the same connectivity behaviour relative to a specific set of schedulers F . We consider two metrics. The first focuses on
emitters, and counts how many currently broadcasting nodes might interfere with each other due to an overlap in their
communication ranges. The secondmetric is centred on receiver nodes and counts the number of active receivers which are
simultaneously reached by two (or more) transmissions.

4.1. Sender-based interference

Let M be a network. Given a channel c , we denote by Overlaps(M, c) the set of nodes currently broadcasting over c and
whose transmission areas are overlapping at some locations. Formally, let

A(M) ≡ (νd̃)
��

i∈I

ni[c̄Li,ri�ṽ�.Pi]li |
�

j∈J

nj[c(x̃j).Pj]lj | M �
�

be the active nodes ofM , where c �∈ Top(M �), then

Overlaps(M, c) = {ni | i ∈ I, ∃i� ∈ I.i �= i� and d(li, li�) ≤ ri + ri�}.
For example, consider the following network

M̂ = n1[out�cL1,r1 , ṽ1�.P1]l1 | n2[c̄L2,r2�ṽ2�.P2]l2 | n3[c̄L3,r3�ṽ3�.P3]l3 | n4[d̄L,r�ṽ�.P4]l4
| n5[c(x̃).P5]l5 | n6[in(c, ỹ).P6]l6

where d(li, li�) > ri for all i, i� ∈ {1, 2, 3}with i �= i�, i.e., the nodes n1, n2, and n3 are all far enough away from each other and
can broadcast at the same time over the channel c . In this case, function Overlaps(M̂, c) is defined as follows: for all c � �= c
(e.g., c � = d) Overlaps(M̂, c �) = ∅, while

Overlaps(M̂, c) =
�
{n2, n3} if d(l2, l3) ≤ r2 + r3
∅ otherwise.

We define the sender-based level of interference induced by a probabilistic transition as follows:

Interfs(M,N) =






|Overlaps(N, c)| − |Overlaps(M, c)|
ifM

cL![l,r]−−−→ [[N ]]∆ for some L, l, r;
0 otherwise.

Consider again the above network M̂ . Since d(l1, li) > r1 for i ∈ {2, 3}, we have M̂
cL1 ![l1,r1]−−−−−→ [[N̂ ]]∆, where

N̂ = n1[c̄L1,r1�ṽ1�.P1]l1 | n2[c̄L2,r2�ṽ2�.P2]l2 | n3[c̄L3,r3�ṽ3�.P3]l3 | n4[d̄L,r�ṽ�.P4]l4
| n5[P �

5]l5 | n6[P �
6]l6 .

The sender-based level of interference induced by M̂
cL1 ![l1,r1]−−−−−→ [[N̂ ]]∆ is, e.g.:

• If n1 is too far away from both n2 and n3, i.e., d(l1, lj) > r1 + rj for j ∈ {2, 3}, then Overlaps(N̂, c) = Overlaps(M̂, c).
Hence:

Interfs(M̂, N̂) = 0.
• If n2 and n3 were already overlapping, i.e., d(l2, l3) ≤ r2 + r3 and n1 is not too far away from at least one of them,

i.e., d(l1, l2) ≤ r1 + r2 or d(l1, l3) ≤ r1 + r3 then Overlaps(N̂, c) = {n1, n2, n3}. Therefore, Interfs(M̂, N̂) = 1. The
additional potentially disturbed communication is the one just started by n1.

• If n2 and n3 were not overlapping, but n1 is not too far away of both of them, then Overlaps(N̂, c) = {n1, n2, n3}. Thus,
InterfS(M,N) = 3. Here the started broadcast by n1 overlaps with both the previously safe existing transmission areas.

• Finally, n2 and n3 were not overlapping, but n1 is not too far away of exactly one of them (e.g., n2), thenOverlaps(N̂, c) =
{n1, n2}, and InterfS(M,N) = 2.

4.2. Receiver-based interference

Hereafter, we denote by Collr(M, c, l, r) the set of nodes inM which are currently listening over channel c and lie in the
transmission range of a sender located at lwith radius r . Formally, let A(M) ≡ (νd̃)

��
i∈I ni[c̄Li,ri�ṽ�.Pi]li | �

j∈J nj[c(x̃j).Pj]lj |
M �� be the active nodes of M , where c �∈ Top(M �), then

Collr(M, c, l, r) = {nj|j ∈ J and d(l, lj) ≤ r}.
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The number of receiver-based interferences induced by a probabilistic step is defined as follows:

Interfr(M,N) =






|Collr(M, c, l, r)|
if M

cL![l,r]−−−→ [[N ]]∆ for some L;
0 otherwise.

For instance, if we consider again our previous networks M̂ and N̂ , assuming that n1 can reach both l5 and l6 then
P �
5 = P5{⊥/x̃} and P �

6 = c(ỹ).P6. Then, Collr(M̂, c, l1, r1) = {n5}. Hence Interfr(M̂, N̂) = 1.
Now, let χ ∈ {s, r}. The χ-type number of interferences induced by an execution e = M0

α1−→θ1M1 · · · αk−→θkMk is

Interfχ(e) =
k�

i=1

Interfχ(Mi−1,Mi).

LetH be a set of networks, we denote by PathsFM(H) the set of all executions fromM ending inH and driven by F which are
not prefixes of any other execution ending in H . Formally, PathsFM(H) = {e ∈ ExecFM(H) | last(e) ∈ H and ∀e� such that e is
a prefix of e�, e� �∈ PathsFM(H)}. The average number of interferences is computed by weighting the number of interferences
of each execution by its probability according to F and normalized by the overall probability of reaching H .

Definition 4.1. Let H be a set of networks. The average number of interferences to reach H from M according to scheduler
F is

InterfχM,F (H) =

�

e∈PathsFM (H)

Interfχ(e) × PF
M(e)

�

e∈PathsFM (H)

PF
M(e)

Definition 4.2. LetH be a countable set of sets of networks andF a set of schedulers.We say thatN is at least as interference
efficient as M relative to H and F , written

N �χ
�H,F � M,

if N ≈F

p M and, for all H ∈ H and for all schedulers F ∈ F , there exists a scheduler F � ∈ F such that InterfχN,F �(H) ≤
InterfχM,F (H).

5. Case study: the alternating bit protocol

The alternating bit protocol (ABP) is a simple network protocol designed to achieve a point to point reliable transmission
on unreliable channels. Messages are sent from a transmitter to a receiver and include the payload (i.e., the meaningful
data) and some control information (e.g., the address identifying the destination, a checksum for the integrity checks, etc.).
Among the control information, there is packet sequence number of 1 bit. When the sender sends a message with sequence
number b, it waits for an acknowledge (ack) identified with the same sequence number from the receiver. If the ack does
not arrive before a given deadline then the sender assumes that the packet has been lost and tries to resent it. The deadline
is chosen according to the channel characteristics and must be greater than its round trip time. When the ack is received
correctly, the sender flips the sequence number and starts a new transmission.

We consider a network consisting of two mobile sender nodes, n1 and n2, communicating with a static receiver nodem.
Node n1 moves back and forth between locations l1 and l2 according to the probability distribution defined by the discrete
time homogeneous Markov chain with the following transition matrix (where 0 < p, q < 1):

J =
����
1 − p p

q 1 − q.

����

Node n2 moves similarly between l3 and l4 according to a discrete time Markov chain with the same transition matrix J. We
also assume that the receiver node is always in the transmission range of both senders (and that the senders are always in
the range of the receiver) regardless of where the senders are located. This guarantees that m receives any packet from the
senders (unless a collision occurs), and that both senders receive any ack sent by m.

Furthermore, we assume that the transmission ranges of the senders overlap only when n1 is at l1 and n2 is at l3. As a
result, unless n1 is at l1 and n2 is at l3, the senders are in the condition to attempt a simultaneous transmission (as they do
not sense each other) leading to an interference (see Fig. 1): in literature, this is known as the hidden station problem. Notice
that while communications can be damaged bymany factors, we shall consider only the interference factor in this analysis.

Table 6 shows an encoding of the sender and receiver processes. SNDj runs inside node nj, sending a queue of messages
Tj with sequence bit bj; RCV , in turn, runs inside the receiver nodem, expecting messages with sequence bits b1 and b2 from
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Table 6
ABP .

SNDj�bj, Tj� = [empty(T ) = false](out�c{k},rj , (bj, head(Tj), nj)�.WAIT_Ackj�bj, Tj�),
out�ok{k},rj , (nj, END)�

WAIT_Ackj�bj, Tj� = in(c, (x, y, z)).[y = nj]([(x = bj) ∧ (z = ACK)]SNDj�¬bj, dequeue(Tj)�,
SNDj�bj, Tj�),WAIT_Ackj�bj, Tj�

RCV �b1, b2� = in(c, (x, y, z)).[z = n1]
�
([x = b1]out�c{l1,l2,l3,l4},r , (b1, n1, ACK)�.

RCV �¬b1, b2�, out�c{l1,l2,l3,l4},r , (b1, n1,NACK)�.RCV �b1, b2�),
[z = n2]([x = b2]out�c{l1,l2,l3,l4},r , (b2, n2, ACK)�.RCV �b1, ¬b2�,
out�c{l1,l2,l3,l4},r , (b2, n2,NACK)�.RCV �b1, b2�)

�
,

out�c{l1,l2,l3,l4},r , (b1, n1,NACK)�.out�c{l1,l2,l3,l4},r , (b2, n2,NACK)�.
RCV �b1, b2�

ABP = (νc)
�
n1[SND1�1, T1�]l1 | n2[SND2�1, T2�]l3 m[RCV �1, 1�]k

�

Fig. 1. Graphical representation of node mobility.

Table 7
SIC_ABP .

RCVSIC �b1, b2� = in(c, (x1, x2, x3))[x3 = n1]
�
([x1 = b1]out�c{l1,l2,l3,l4},r , (b1, n1, ACK)�.

RCVSIC �¬b1, b2�, out�c{l1,l2,l3,l4},r , (b1, n1,NACK)�.RCVSIC �b1, b2�),
[x3 = n2]([x1 = b2]out�c{l1,l2,l3,l4},r , (b2, n2, ACK)�.RCVSIC �b1, ¬b2�,
out�c{l1,l2,l3,l4},r , (b2, n2,NACK)�.RCVSIC �b1, b2�)

�
,

out�c{l1,l2,l3,l4},r , (b1, n1,NACK)�.WAIT �⊥x1,x2,x3 , b1, b2�
WAIT �⊥p1,p2,p3 , b1, b2� = in(c, (x1, x2, x3))[x3 = n1][x1 = b1](out�c{l1,l2,l3,l4},r , (b1, n1, ACK)�.

[f (x3, p3) = n2][b2 = f (x1, p1)](out�c{l1,l2,l3,l4},r , (b2, n2, ACK)�.
RCVSIC �¬b1, ¬b2�), out�c{l1,l2,l3,l4},r , (b2, n2,NACK)�.RCVSIC �¬b1, b2�),
out�c{l1,l2,l3,l4},r , (x1, n1,NACK)�.WAIT �⊥x1,x2,x3 , b1, b2�

SIC_ABP = (νc)
�
n1[SND1�1, T1�]l1 | n2[SND2�1, T2�]l3 | m[RCVSIC �1, 1�]k

�

n1 and n2, respectively. We presuppose few auxiliary functions: empty(), dequeue() and head() implement the standard
queue operations, while ¬b flips the value of the bit b. Finally, ok is a channel name and a location introduced for the
purposes of our analysis.

5.1. Successive interference cancellation (SIC) for CDMA

Here, we sketch a simplified version of the successive interference cancellation (SIC) method for CDMA/CA [2]
transmission scheme. Assume that nodes n1 and n2 cause an interference at m by sending packets encoded by signals xA
and xB. Node m receives the signal y1 = xA + xB, detects the interference and stores y1 in memory. In the successive time
slot, n1 successfully resends xA, i.e., m receives y2 = xA and sends an ack to n1. Now, xB may be extracted from y1 by m
without further retransmissions as the result of y1 − xA. Although in practice this procedure is not always successful, we
assume that messages can always be recovered correctly.

In modelling this protocol, the sender processes remain the same as in the simple ABP protocol defined in Table 6, while
the receiver process is defined as shown in Table 7.

In order to compare the observational behaviours of the protocols, we assume that a successful completion of
transmission of the packets by a sender, indicated by broadcasting the message ‘‘END’’ over the channel ok, is observable to
any observer node located at k. In this analysis, we are only interested in the levels of interference due to the internal nodes
of the protocols. Therefore, we restrict communications over the channel c to the internal nodes of the protocols.
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5.2. Measuring the interference level of the protocols

Schedulers constitute an essential feature for modelling communication protocols as they provide freedom in modelling
implementation and incomplete knowledge of the system.However,many schedulers could be unrealistic or useless. Indeed,
schedulers giving priority to communications over movements will, for instance, cancel the two-state nature of the sender
nodes, while those giving priority to end broadcasting actions over begin broadcasting actions will prevent any interference.
Therefore, we consider the following set Ffas of fair alternating schedulerswhich:

1. always alternate between sending packets and node movements so that at each interaction of the transmitters with the
receiver, the formers could be far enough away from each other to cause interference or not;

2. give priority to acknowledgement actions (ACK and NACK ) to model our assumption of an error-free feedback channel;
3. give priority to begin broadcasting actions (Beg-Bcast) over end broadcasting actions (End-Bcast).

Notice that the analysis of the model under the set of fair alternating schedulers is general because it establishes a
relative speed between the packet transmissions and node movements that, in practice, can be regulated by means of the
transition probabilities of J. Moreover, all the events that may influence the performance of the protocols, and in particular
the interferences, are allowed.

We now prove some preliminary results needed to show that applying the SIC method to the alternating bit protocol
reduces the level of interference in the system.We first prove that the two networks exhibit the same observable behaviour
relative to Ffas.

Proposition 5.1. ABP ≈Ffas
p SIC_ABP.

Proof. For brevity, we give just a sketch of the proof. In both protocols, the only observable actions, are the final messages
sent by n1 and n2 through the channel ok, that occur when all the messages of their respective queues are completely and
correctly received bym, since the other actions are either silent, or hidden by the restriction operator applied to the channel
c. Hence, in both protocols the only observable actions are of the form:

=⇒ ok!(n1,END)@k�k−−−−−−−−−→=⇒,

or

=⇒ ok!(n2,END)@k�k−−−−−−−−−→=⇒ .

We can conclude that ABP and SIC_ABP are probabilistic bisimilar, because they exhibit the same behaviour, with the
same probability. Indeed, the characteristics of matrix J ensures that for both the protocols the probability of eventually
transmitting the whole queue of messages in 1. �

Now let T1 and T2 be the queues of messages to be transmitted by the senders. We compare the interference efficiency
of the protocols in the context of the set H(T1, T2) = {Hρ(T1, T2) | ρ ≤ max(|T1|, |T2|)} where Hρ(T1, T2) means that all
the packets up to ρ have been correctly transmitted by both senders and is defined as Hρ(T1, T2) = H1

ρ(T1, T2) ∪ H2
ρ(T1, T2)

where

H1
ρ(T1, T2) =

�
M |M ≡ (νc)

�
n1[SND1�b1, dequeueρ(T1)�]l� | n2[SND2�b2, dequeueρ(T2)�]k� | m[RCV �b1, b2�]k

��

with the assumption that dequeue(∅) = ∅, and b1, b2 ∈ {0, 1}. Similarly

H2
ρ(T1, T2) =

�
N |N ≡ (νc)

�
n1[SND1�b1, dequeueρ(T2)�]l�� | n2[SND2�b2, dequeueρ(T2)�]k�� | m[RCVSIC �b1, b2�]k

��

with b1 and b2 in {0, 1}, l�, l�� in {l1, l2}, and k�, k�� in {l3, l4}. Then, we compute the interference level of the protocols assuming
thatwe start by amove action for each sender node so that their first transmissions could create an interference if theymove
too far away from each other.4 The results are summarized in the following propositions.

Proposition 5.2. For all F in Ffas and for all ρ ≤ max(|T1|, |T2|) we have:

InterfsABP,F (Hρ(T1, T2)) = 2 × InterfrABP,F (Hρ(T1, T2)) = 2 ×
�

(p + q)2

q2
− 1

�
× min(ρ, |T1|, |T2|)

with 0 < p, q < 1.

The proof relies on the observation that correct packets are sent only when the mobile nodes are in the locations l1 and
l3. Hence, by exploiting the independence between the stochastic processes underlying the node movements, the result
follows by standard analysis of absorbing Markov chains.

Note that our sender-based interferencemetric coincides with the number of lost packets. For the ABP with SIC , we have:

4 The analysis for the other case is similar.
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(a) Plotting of InterfrABP,F (Hρ) given by Proposition 5.2. (b) Plotting of InterfrSIC_ABP,F (Hρ) given by Proposition 5.3.

(c) Plotting of InterfrABP,F (Hρ) − InterfrSIC_ABP,F (Hρ).

Fig. 2. Interference levels for ABP and SIC_ABP and their comparison.

Proposition 5.3. For all F in Ffas and each ρ ≤ max(|T1|, |T2|) we have:

InterfsSIC_ABP,F (Hρ(T1, T2)) = 2 × InterfrSIC_ABP,F (Hρ(T1, T2))

= 2 × p
(p + q)3

�
n(p + q)(p + 2q)

− ((1 − p − q)n − 1)(p + q − 1)(p2 − p(1 − p − q)n+1 − 4q + 3pq + 2q2 − p)
p + q − 2

�

× min(ρ, |T1|, |T2|)
with 0 < p, q < 1.

Also in this case the proof is based on standard transient Markov chain analysis and exploits the independence among
the processes that regulate the node movements. Indeed, the nth steps transition probability matrix (J)n is:

(J)n =

�������

p(1 − p − q)n + q
p + q

p − p(1 − p − q)n

p + q
q − q(1 − p − q)n

p + q
p + q(1 − p − q)n

p + q

�������
.

According to the SIC specification, nodes need only to send one packet for a successful packet transmission if they are in
the locations l1 and l3. All the other location combinations require one of the nodes to send two packets for each successful
transmission (while the other sends just one). Starting from states l1 and l3, the probability of being still in the same state
after i > 0 steps is given by (p(1−p−q)i+q)2/(p+q)2 (by independence).We derive the expression given by Proposition 5.3
as the closed expression of the following sumwhich represents the expected number of observed interferences for sending
n packets:

n�

i=1

�

1 −
�
p(1 − p − q)i + q

p + q

�2
�

.

Let us denote by Hρ the set Hρ(T1, T2). In Fig. 2 (a) and (b) we show a plot of InterfsABP,F (Hρ) and InterfrSIC_ABP,F (Hρ),
respectively, as a function of p and q, for min(ρ, |T1|, |T2|) = 100, while Fig. 2 (c) shows a plot of InterfrABP,F (Hρ) −
InterfrSIC_ABP,F (Hρ). Finally, from Propositions 5.1–5.3, we can conclude that the SIC-based ABP protocol is at least efficient
as the flooding version in terms of interference.
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Theorem 5.4. SIC_ABP �χ
�Ffas,H(T1,T2)� ABP.

Proof. Apply Propositions 5.1–5.3. �

6. Case study: location aided routing protocols

Our second case study shows how to exploit our framework to model a location based routing protocol, specifically
the Location Aided Routing (LAR) [10]. Informally, location based routing algorithms assume that each node of the wireless
network is aware of its own location thanks to a Global Positioning System (GPS) device or thanks to othermechanisms such
as the knowledge of the distances between its location at a given epoch and some other static stations. Themain idea behind
the development of these algorithms is that in very large mobile networks using a flooding policy in an AODV style [9] may
turn out to be very expensive in terms of number of sent packets and hence of energy consumption. Location based routing
algorithms aim at controlling the flooding by guessing the possible location of the destination node. The guess can be driven
by several factors, such as the knowledge of the destination node’s location in the latest communication joint with some
assumptions on the node’s maximum movement speed. In this section, we show our framework at work on a simplified
version of the LAR protocol, and prove that, under mild assumptions on the node mobility, it is equivalent to the flooding
algorithm in terms of the probability of discovering a path. Obviously, it is not possible to establish a general interference
preorder between the two protocols, but this can be done (algorithmically) for specific instances of wireless networks.

6.1. Simple flooding: description

Protocol LAR extends the route discovery based on flooding by exploiting information about locationswithin the network.
The simplest route discovery algorithm based on flooding consists of three simple packets: request, reply and error [28],
which are forwarded within the network. They are structured as follows:

• Route Request packet (RREQ) has the form:

(S, Bid,D, seq#S, hop_counter),

where S is the permanent source address, Bid is the Request Id (unique identifier), D is the permanent address of the
destination, seq#S denotes the sequence number of the source, and hop_counter is the number of hops to reach the
destination (which is initially set to 0 and then incremented at each request forwarding).

• Route Reply packet (RREP) has the form:

(S, Bid,D, seq#D, hop_counter, Lifetime),

where S, Bid and D are as above, seq#D is the sequence number of the destination, hop_counter is the number of hops
to reach the destination and Lifetime is the duration of the route validity.

• Route Error packet (RERR) has the form:

(S,D, seq#D),

where S D and seq#D are as in the previous case.

Normally, a node looking for a path to a given destination, simply broadcasts a RREQwithin the network. Having sent the
packet, the node sets a timeout to manage the cases when the destination does not receive the request, or the reply packet
is lost. If the timeout expires, the node broadcasts a new request, using a different sequence number to avoid loops. When
the destination finally receives the RREQ, it immediately sends back the corresponding RREP, using unicast communication,
i.e., each intermediate node forwards the RREP using the information in its routing table. When, during a communication, a
node realizes that a link failed, it broadcasts a RERR and each node will update its routing table.

6.2. Exploiting location data: the LAR policy

LAR extends the simple flooding algorithm described above by directing the propagation of the discovery packets to a
particular network area based on the expected locations of the destination node. In the LAR specification, the Expected Zone
is the network area where the source expects to find the destination node. This is determined by means of the information
that the source has previously retrieved about the destination location. In practice, if node S knows that destination node
D was located at location l1 at epoch t , and it moves with a speed v, then it can calculate the circle area centred at l1, with
radius v(t � − t), where t � is the current epoch. If S does not know anything about D, then the Expected Zone coincides with
the entire network.

The Request Zone is the network area that the source defines to specify a candidate route to the destination. An
intermediate node forwards a route request only if it is within the Request Zone. There are different ways to define a Request
Zone: usually choosing a smaller area reduces the message overhead (because it reduces the number of forwarded packets),
while a larger area reduces the latency of the route discovery because the network finds a path with higher probability.
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Fig. 3. Expected and Request Zones in the LAR protocol.

(a) A simple route request packet. (b) A route request packet with location information.

Fig. 4. Different route request packets of LAR - Scheme 1.

LAR behaves similarly to the simple flooding, with the difference that a node that is not inside the Request Zone does not
forward the request. LAR can use two different policies for determining the Request Zone: we focus on the first such policy,
known as LAR Scheme 1.

LAR Scheme 1 uses a rectangular Request Zone, depending on the position of the source with respect to the Expected Zone.
In particular, the Request Zonewill be the smallest rectangle containing both the Expected Zone and the position of the source
node, as shown in Fig. 3.

Let (XS, YS) and (XD, YD) the Cartesian coordinates of S and D, and R the radius of the Expected Zone. If S is outside the
Expected Zone, the coordinates of the rectangle area are:

A :→ (XS, YD + R) B :→ (XD + R, YD + R)
C :→ (XD + R, YS) D :→ (XS, YS).

If S falls inside the Expected Zone, the coordinates of the rectangle area are:

A :→ (XD − R, YD + R) B :→ (XD + R, YD + R)
C :→ (XD − R, YD − R) D :→ (XD + R, YD − R).

When S broadcasts its request, it includes the coordinates of the Request Zone rectangle (see Fig. 4). Once an intermediate
node receives a RREQ, this is discarded if its location does not fall within the rectangle specified in the packet. To take into
account the location measuring error, a positive value e is added to the radius of the Expected Zone, consequently enlarging
also the Request Zone.

6.3. Modelling the network

We encode the simple flooding and the LAR protocols using PEBUM. We abstract out all details about how the Expected
Zone and Request Zone are determined, by using pre-defined functions that are implemented according to the specifications
of LAR Scheme 1.

We first introduce some auxiliary functions to simplify the protocol specification:

• gps: returns the actual geographical position of the node executing the process (by means, e.g., of GPS technology);
• dist(l): returns the distance from location l and the location of the node executing the process;
• self: returns the name (permanent address) of the node executing the process;
• geq(k, l) = true if k ≥ l, false otherwise;
• inside(s, A) = true if s ∈ A, false otherwise;
• unable(n) = refreshes the route table, removing the existing path to n;
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Table 8
Process specifications used in the case study of Section 6.

Q _X = in(c, x1, x2, x3, x4, x5, x6, x7).
[x1 = rreq]([control(x3) = false]([x4 = self]
out�cnext_hopx2 ,r , (rrep, s, Bid, d, seq#s, hop_counter)�.Q _X, RREQ _X�x̃�),Q _X),

[x1 = rrep]([x2 = self]out�udgps,r , x2, x3, x4, x5, x6, x7�,
out�cnext_hopx2 ,r , (rrep, s, Bid, d, seq#s, hop_counter)�.Q _X),

[x1 = rerr]unable(x4).Q _X,Q _X
RREQ _SIMPLE�(rreq, s, Bid, d, seq#s, hop_counter)� =

[find_path(d) = true].
out�cnext_hopd,r , (rrep, s, Bid, d, seq#d, hop_counter + 1 + hopcountd, timeout)�,
out�cRequest_Zone,r , (rreq, s, Bid, d, seq#s, (hop_counter) + 1)�.Q _SIMPLE

RREQ _LAR1�(rreq, s, Bid, d, Request_Zone, seq#s, hop_counter)� =
([inside(gps, Request_Zone) = true]

([find_path(d) = true]
out�cnext_hopd,r , (rrep, s, Bid, d, seq#d, hop_counter + 1 + hopcountd, timeout)�,
out�cRequest_Zone,r , (rreq, s, Bid, d, Request_Zone, seq#s, (hop_counter) + 1)�)).Q _LAR1

• find_path(n) = true if there exists a valid path for n in the route table of the node executing the process;
• newBid: generates a new unique Bid identifier for a packet;
• lastBid: returns the latest generated Bid identifier;
• control(Bid) = true if the request associated with Bid has been already received by the node executing the process.

Each node maintains a routing table containing information about the paths to the other nodes in the network. Each entry
has the following form:

(d, seq#d, next_hopd, hopcountd, locd, vd, timeout),

where d is the destination name, seq#d is the sequence number of the route to d, next_hopd is the name of the next node
to reach d, hopcountd is the number of hops to reach d, locd is the last location known for d, vd is the average speed of d
and timeout is the timeout associated with the entry.

Each node is also associated with a request table containing the list of all the requests already processed by the node; this
is needed to prevent loops during the route request forwarding. For brevity, we model a network in which all the nodes use
a common transmission radius r .

Let us now consider N = (νc)(n[P]l | �
i∈I ni[Q _SIMPLE]li) where a node n broadcasts a route request using the simple

flooding algorithm to find a path to m in the network
�

i∈I ni, and M = (νc)(n[P]l | �
i∈I ni[Q _LAR1]li) which is the same

network but with nodes in I using the LAR protocol (Scheme 1) instead of the simple flooding algorithm.
The process executed by node n simply broadcasts a RREQ packet for nodem and waits for a RREP packet until a timeout

expires. The timeout ismodelled using the operator⊕ that behaves as the non-deterministic choice and can be implemented
in our calculus by means of the parallel composition is the standard way. In case of timeout, a new RREQ is sent.

P = out�c∅,r , (rreq, n, newBid,m, Request_Zone, seq#n, 0)�.P �

P � = P ⊕ in(c, x1, x2, x3, x4, x5, x6, x7).[x1 = rrep][x2 = n][x3 = lastBid]
× [x4 = m][geq(hop_countm, x7)]out�okgps,r , route_found�, P �

wherem = ni for some i ∈ I , and x7 = hop_count in the RREP packet received. Basically, once a route is found, n broadcasts
on channel ok a packet that signals this event. Therefore, we consider that the two networks are probabilistic equivalent
with respect to their ability to find a route to m if we observe this transmission with the same probability. Notice that, the
output on channel c will not be observed by any location because we want to allow the route discovery packets used in the
two networks to be arbitrary different.

Hereafter, we use X ∈ {SIMPLE, LAR1} to denote the simple flooding or LAR Scheme 1. The RREQ _SIMPLE and the
RREQ _LAR1 subprocess are defined as shown by Table 8.

In order to compare the behaviour of the protocols, we focus our attention on the following restricted set F ⊆ Sched of
admissible schedulers:

1. the timeout for a RREQ identified by Bid occurs when in the networks there are no packets related to Bid;
2. nodes’ movements are allowed at least every time a timeout occurs;
3. begin broadcasting actions (Beg-Bcast) have priority over end broadcasting actions (End-Bcast).

Condition 1 on F is a requirement inherited by the protocol design; the timeout is usually set by knowing the physical
dimension of the network. Roughly speaking, we aim at preventing that in the analysis we consider unrealistic schedulers
that always choose the timeout option too quickly and hence a route to the destination is never found and those schedulers
that wait for an answer indefinitely long. Condition 2 is needed because we do not want to consider those schedulers that
never allow for nodemovements. Finally, Condition 3 gives us the worst case scenario about the interference, i.e., whenever
an interference could occur it is measured.
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Proposition 6.1. Let M, N and F as above. A sufficient condition for M ≈F

p N is that the Markov chains Jni associated with the
mobile nodes ni (i ∈ I) are ergodic.

For brevity we omit the formal proof. This relies on the fact that the probability of finding a route is always 1 both for the
LAR and the flooding protocol. Indeed, nodem keeps sending RREQ until it gets an answer thanks to the timeout mechanism
that is eventually chosen by the hypothesis onF . A route is surely eventually found thanks to the second assumption on the
schedulers in F and the condition on the ergodicity of the chains modelling the nodes’ movements (there is at least a node
spatial configuration reachable with non zero probability in which the route fromm to n is found without interference).

The comparison between LAR and flooding protocols in terms of interferencemust be carried out using PEBUM given the
physical properties of the networks. Indeed, the interference levels can depend on several factors such as the node density
and the good estimation of the Request Zone and the Expected Zone in the LAR.

7. Conclusion

One of the most critical challenges in managing mobile ad-hoc networks is to find a good trade off between
network connectivity, power saving and interference reduction. We have proposed an effective framework for analyzing
protocol connectivity and measuring the level of interference and, based on that for developing novel interference-aware
communication strategies. Though other models exist in the literature, ours appears to be the most comprehensive and
effective for the behavioural analysis and a quantitative assessment of interference for wireless networks in the presence of
node mobility.

Plans for the future, include work on developing a model checker for our calculus based on PRISM [29,30] to perform
automated, quantitative verification and analysis of wireless networks for a range of performance metrics. PRISM appears
an excellent tool for the purpose, as it allows one to model process algebra operators, it supports models where non-
deterministic and probabilistic aspects coexist, and provides support for the specification of a wide range of properties
and rewards.
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Appendix

This supplement contains the proofs of some of the main results presented in the paper.

Proof of Lemma 3.1. By induction on the transition rules of Table 5.
Case 1: M c?@l−−→ [[M � ]]∆
(Beg-Rcv) Let M c?@l−−→ [[M � ]]∆ inferred by rule (Beg-Rcv), then there exist n, P, l, r such that M ≡ n[P]l, M � ≡ n[P �]l and
P = in(c, x̃).Q and P � = c(x̃).Q . If we consider the empty networkM1 and the empty sequence d̃ the lemma is proved.
(Par) Let M c?@l−−→ [[M � ]]∆ inferred by rule (Par), where M ≡ M1 | N , M � ≡ M �

1 | N and M1
c?@l−−→ [[M �

1 ]]∆. By induction
hypothesis we have M1 ≡ (νd̃)(n[in(c, x̃).P]l|M2) and M �

1 ≡ (νd̃)(n[c(x̃).P]l|M2), for some n, P , x̃, (possibly empty) d̃
such that c �∈ d̃, and (possibly empty)M2. By applying rule (Struct Cxt Par), (Struct Par Assoc), (Struct Res Par) and (Struct
Trans) we obtain

M ≡ M1 | N ≡ (νd̃)(n[in(c, x̃).P]l|(M2 | N))

and

M � ≡ M �
1 | N ≡ (νd̃)(n[in(c, x̃).P]l|(M2 | N)),

as required.
(Res) Let M c?@l−−→ [[M � ]]∆ inferred by rule (Res), where M ≡ (νd)M1, M � ≡ (νd)M �

1 and M1
c?@l−−→ [[M �

1 ]]∆ and c �= d. By
induction hypothesis we have M1 ≡ (νd̃�)(n[in(c, x̃).P]l|M2) and M �

1 ≡ (νd̃�)(n[c(x̃).P]l|M2) for some n, P , x̃, (possibly
empty) d̃� such that c �∈ d̃�, and (possibly empty)M2. If we consider d̃�� = d̃� ∪ d, since c �∈ d̃��, we get:

M ≡ (νd̃��)(n[in(c, x̃).P]l|M2) and M � ≡ (νd̃��)(n[in(c, x̃).P]l|M2).

Case 2: M c?ϑ@l−−−→ [[M � ]]∆. The proof of this case is analogous to the previous one.
Case 3: M

cL![l,r]−−−→ [[M � ]]∆
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(Beg-Snd) Let M
cL![l,r]−−−→ [[M � ]]∆ inferred by rule (Beg-Snd). Then there exist ṽ and P such that: M ≡

n[out�cL,r , ṽ�.P]l. Since out�cL,r , ṽ�.P ¯cL,r−→ c̄L,r�ṽ�.P , if we suppose d̃, J , K and M1 empty, lemma is proved because
M ≡ (νd̃)(n[out�cL,r , ṽ�.P]l|

�
j∈J nj[in(c, x̃j)Pj]lj |

�
k∈K nk[c(x̃k)Pk]lk |M1) and M � ≡ (νd̃)(n[c̄L,r�ṽ�.P]l|

�
j∈J nj[c(x̃j)Pj]lj |�

k∈K nk[Pk{⊥/x̃k}]lk | M1).

(Beg-Bcast) Let M
cL![l,r]−−−→ [[M � ]]∆ because M ≡ M1 | N , M � ≡ M �

1 | N �, M1
cL![l,r]−−−→ [[M �

1 ]]∆ and N c?@l�−−→ [[N � ]]∆,
with d(l, l�) ≤ r . By induction hypothesis: M1 ≡ (νd̃1)(n[out�cL,r , ṽ�.P]l|

�
j∈J nj[in(c, x̃j)Pj]lj |

�
k∈K nk[c(x̃k)Pk]lk |M2)

and M �
1 ≡ (νd̃1)(n[c̄L,r�ṽ�.P]l|

�
j∈J nj[c(x̃j)Pj]lj |

�
k∈K nk[Pk{⊥/x̃k}]lk | M2), for some n, P , ṽ, l, some (possible empty)

sequence d̃1 such that c �∈ d̃1, some (possibly empty) sets J and K and some (possibly empty) network M2, and by
induction hypothesis we get:

N ≡ (νd̃2)(m[in(c, x̃).Q ]l� |N1) and N � ≡ (νd̃2)(m[c(x̃).Q ]l� |N1),

for some m, Q , x̃, some (possible empty) sequence d̃2 such that c �∈ d̃2 and (possibly empty) network N1. By applying
rules (Struct Cxt Par), (Struct Par Assoc), (Struct Res Par) and (Struct Trans), if we consider d̃ = d̃1 ∪ d̃2, we get:

M ≡ (νd̃)

�

n[out�cL,r , ṽ�.P]l|m[in(c, x̃).Q ]l� |
�

j∈J

nj[in(c, x̃j)Pj]lj |
�

k∈K

nk[c(x̃k)Pk]lk | (M2 | N1)

�

and

M � ≡ (νd̃)

�

n[c̄L,r�ṽ�.P]l|m[c(x̃).Q ]l� |
�

j∈J

nj[c(x̃j)Pj]lj |
�

k∈K

nk[Pk{⊥/x̃k}]lk | (M2 | N1)

�

.

(Coll) Let M
cL![l,r]−−−→ [[M � ]]∆ because M ≡ M1 | N , M � ≡ M �

1 | N , M1
cL![l,r]−−−→ [[M �

1 ]]∆ and N c?⊥@l�−−−→ [[N � ]]∆, with
d(l, l�) ≤ r . By induction hypothesis: M1 ≡ (νd̃1)(n[out�cL,r , ṽ�.P]l|

�
j∈J nj[in(c, x̃j)Pj]lj |

�
k∈K nk[c(x̃k)Pk]lk |M2) and

M �
1 ≡ (νd̃1)(n[c̄L,r�ṽ�.P]l|

�
j∈J nj[c(x̃j)Pj]lj |

�
k∈K nk[Pk{⊥/x̃k}]lk | M2), for some n, P , some (possibly empty) sequence d̃1

such that c �∈ d̃1, some (possibly empty) sets J and K and some (possibly empty) networkM2, and by induction hypothesis
we get: N ≡ (νd̃2)(m[c(x̃).Q ]l� |N1) and N � ≡ (νd̃2)(m[Q {⊥/x̃}]l� |N1), for somem, Q , x̃, some (possibly empty) sequence
d̃2 such that c �∈ d̃2 and (possibly empty) network N1. By applying rules (Struct Cxt Par), (Struct Par Assoc), (Struct Res
Par) and (Struct Trans), if we consider d̃ = d̃1 ∪ d̃2 we get:

M ≡ (νd̃)

�

n[out�cL,r , ṽ�.P]l|
�

j∈J

nj[in(c, x̃j)Pj]lj |
�

k∈K

nk[c(x̃k)Pk]lk | m[c(x̃).Q ]l� |(M2 | N1)

�

and

M � ≡ (νd̃)

�

n[c̄L,r�ṽ�.P]l|
�

j∈J

nj[c(x̃j)Pj]lj |
�

k∈K

nk[Pk{⊥/x̃k}]lkm[Q {⊥/x̃}]l� | (M2 | N1)

�

.

The proof of the other cases is analogous to the first part of the lemma.
Case 4: M

cL!ṽ[l,r]−−−−→ [[M � ]]∆.

(End-Snd) Let M
cL!ṽ[l,r]−−−−→ [[M � ]]∆ inferred by rule (End-Snd), then there exists P such that M ≡ n[c̄L,r�ṽ�.P]l. Since

c̄L,r�ṽ�.P ¯cL,r ṽ−−→ P , if we suppose J , d̃ andM1 empty, lemma is proved because

M ≡ (νd̃)

�

n[c̄L,r�ṽ�.P]l|
�

j∈J

nj[c(x̃j)Pj]lj | M1

�

and

M � ≡ (νd̃)

�

n[P]l|
�

j∈J

nj[Pj{ṽ/x̃j}]lj | M1

�

.

(End-Bcast) Let M
cL!ṽ[l,r]−−−−→ [[M � ]]∆ because M ≡ M1 | N , M � ≡ M �

1 | N , M1
cL!ṽ[l,r]−−−−→ [[M �

1 ]]∆ and N c?ṽ@l�−−−→ [[N � ]]∆, with
d(l, l�) ≤ r . By induction hypothesis:

M1 ≡ (νd̃1)

�

n[c̄L,r�ṽ�.P]l|
�

j∈J

nj[c(x̃j)Pj]lj | M2

�
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and

M �
1 ≡ (νd̃1)

�

n[P]l|
�

j∈J

nj[Pj{ṽ/x̃j}]lj | M2

�

,

for some n, P , some (possibly empty) sequence d̃1 such that c �∈ d̃1, some (possibly empty) set J and some (possibly
empty) networkM2, and by induction hypothesis we get:

N ≡ (νd̃2)(m[c(x̃).Q ]l� |N1) and N � ≡ (νd̃2)(m[Q {ṽ/x̃}]l� |N1),

for some m, Q , x̃, some (possibly empty) sequence d̃2 such that c �∈ d̃2 and (possibly empty) network N1. By applying
rules (Struct Cxt Par), (Struct Par Assoc), (Struct Res Par) and (Struct Trans), if we consider d̃ = d̃1 ∪ d̃2 we get:

M ≡ (νd̃)

�

n[c̄L,r�ṽ�.P]l|m[c(x̃).Q ]l� |
�

j∈J

nj[c(x̃j)Pj]lj | (M1 | N1)

�

and

M � ≡ (νd̃)

�

n[P]l|m[Q {ṽ/x̃}]l� |
�

j∈J

nj[Pj{ṽ/x̃}]lj | (M1 | N1)

�

.

The proof of the other cases is analogous to the first part of the lemma. �

Proof of Theorem 3.3. 1. By induction on the reductionM −→ [[M � ]]θ . Suppose thatM −→ [[M � ]]θ is due to the application
of the rule (R-Move). We deduceM ≡ M � ≡ n[P]l and θ = µn

l , for some name n, some location l and some process P . We
simply apply (Move) to obtain:

Active(P) = false

n[P]l τ−→ [[n[P]l ]]µn
l

.

Suppose that M −→ [[M � ]]θ is due to the application of the rule (R-Par). If we consider M ≡ M1 | M2 and M � ≡ M �
1 | M2

we have:
M1 −→ [[M �

1 ]]θ
M1 | M2 −→ [[M �

1 | M2 ]]θ
.

By induction hypothesisM τ−→ [[M � ]]θ , then by rule (Par) we get:

M1
τ−→ [[M �

1 ]]θ
M1 | M2

τ−→ [[M �
1 | M2 ]]θ

.

Suppose thatM −→ [[M � ]]θ is due to the application of the rule (R-Res). If we considerM ≡ (νc)M1 andM � ≡ (νc)M �
1 we

have
M1 −→ [[M �

1 ]]θ
(νc)M1 −→ [[(νc)M �

1 ]]θ
,

by induction hypothesisM τ−→ [[M � ]]θ , then by applying rule (Res), since Chan(τ ) �= c we get:

M1
τ−→ [[M �

1 ]]θ
(νc)M1

τ−→ [[(νc)M �
1 ]]θ

.

Suppose thatM −→ [[M � ]]θ is due to the application of the rule (R-Bgn-Bcast). It means:

M ≡ (νd̃)

�

n[out�cL,r , ṽ�.P]l |
�

i∈I

n[c̄Li,ri�ṽi�.Pi]li |
�

j∈J

n[c(xj).Pj]lj |
�

k∈K

n[in(c, xk).Pk]lk
�

and

M � ≡ (νd̃)

�

n[c̄L,r�ṽ�.P]l |
�

i∈I

n[c̄Li,ri�ṽi�.Pi]li |
�

j∈J

n[Pj{⊥/x̃j}]lj |
�

k∈K

n[c(xk).Pk]lk
�

,

for some n, some process P , some channel c , some set L of locations, some radius r , some tuple ṽ of messages, some
tuple d̃ of channels, and some (possibly empty) sets I , J and K of networks. Then, by applying rule (Beg-Snd), (Beg-Rcv),
and then |K | times rule (Beg-Bcast), |J| times rule (Coll-Bcast), and, finally rules (Res), (Lose1) and (Par), we obtain:
M τ−→≡ [[(νd̃)(n[c̄L,r�ṽ�.P]l | �

i∈I n[c̄Li,ri�ṽi�.Pi]li | �
j∈J n[Pj{⊥/x̃j}]lj | �

k∈K n[c(xk).Pk]lk) ]]θ as required.
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Suppose thatM −→ [[M � ]]θ is due to the application of the rule (R-End-Bcast). It means:

M ≡ (νd̃)n[c̄L,r�ṽ�.P]l |
�

j∈J

nj[c(x̃j).Pj]lj

and
M � ≡ (νd̃)n[P]l |

�

j∈J

nj[Pj{ṽ/x̃j}]lj

for some channel c , some tuple d̃ of channels such that c �∈ d̃, some node n, some process P , some tuple ṽ of messages,
some location l, some set L of locations, some radius r , some process P , and some (possibly empty set) J such that
d(l, li) ≤ r ∀i ∈ J .
Then, by applying rule (End-Snd), (End-Rcv), |I| times rule (End-Bcast), |d̃| times (Res) and finally rule (Lose2), we get:

(νd̃)n[c̄L,r�ṽ�.P]l |
�

j∈J

nj[c(x̃j).Pj]lj
τ−→

��

(νd̃)n[P]l |
�

j∈J

nj[Pj{ṽ/x̃j}]lj
��

∆

as required.
Finally let suppose that the reductionM −→ [[M � ]]θ is due to an application of rule (R-Struct):

M ≡ N N −→ [[N � ]]θ N � ≡ M �

M −→ [[M � ]]θ
.

By induction hypothesis there existsN1 ≡ N andN2 ≡ N � such thatN1
τ−→ [[N2 ]]θ . Then, by applying the rule for structural

congruence (Struct Trans) we getM ≡ N ≡ N1 and M � ≡ N � ≡ N2, as required.
2. The second point of the theorem follows from Lemma 3.1 and the definition of barb. IfM↓c@K , by definition of barb there

exists ṽ, L, r , a (possibly empty) sequence d̃ such that c �∈ d̃, a process P , a (possibly empty) network M1 such that:
M ≡ (νd̃)(n[c̄L,r�ṽ�.P]l | M1), with K ⊆ {k ∈ L s.t. d(l, k) ≤ r} and K �= ∅.

By applying the rules (End-Snd) and (Par) we obtain:

n[c̄L,r�ṽ�.P]l
cL!ṽ[l,r]−−−−→ [[n[P]l ]]∆

n[c̄L,r�ṽ�.P]l | M1
cL!ṽ[l,r]−−−−→ [[n[P]l | M1 ]]∆

;

then, since K ⊆ R ∩ L and K �= ∅, we can apply rule (Obs):

n[c̄L,r�ṽ�.P]l | M1
c!ṽ@K�R−−−−→ [[n[P]l | M1 ]]∆,

where R = {l� ∈ Loc : d(l, l�) ≤ r}, as required.
If M c!ṽ@K�R−−−−→ [[M � ]]∆, because M

cL!ṽ[l,r]−−−−→ [[M � ]]∆, by applying Lemma 3.1 then there exist n, a (possibly empty)
sequence d̃ such that c �∈ d̃, P , a (possibly empty) network M1 and a (possibly empty) set J , such that ∀j ∈ J d(l, lj) ≤ r
and:

M ≡ (νd̃)

�

n[c̄L,r�ṽ�.P]l|
�

j∈J

nj[c(x̃j).Pj]lj | M1

�

and

M ≡ (νd̃)

�

n[P]l|
�

j∈J

nj[Pj{ṽ/x̃j}]lj | M1

�

.

By applying the definition of barb we concludeM↓c@K .
3. The third point of the theorem is proved by induction on the derivation M τ−→ [[M � ]]θ . Suppose that M τ−→ [[M � ]]θ is due

to an application of the rule (Move), that means:
Active(P) = false

n[P]l τ−→ [[n[P]l ]]µn
l

,

hence, by applying (R-Move) we get:
Active(P) = false
n[P]l −→ [[n[P]l ]]µn

l

.

If M τ−→ [[M � ]]θ is due to an application of (Lose1):

M
cL![l,r]−−−→ [[M � ]]∆

M τ−→ [[M � ]]∆
,
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then, by applying Lemma 3.1, there exists n, ṽ, P d̃ such that c �∈ d̃ and P , a (possibly empty) networkM1 and two (possibly
empty) sets J and K such that ∀i ∈ J ∪ K d(l, li) ≤ r , such that:

M ≡ (νd̃)

�

n[out�cL,r , ṽ�.P]l|
�

j∈J

nj[in(c, x̃j).Pj]lj |
�

k∈K

nk[c(x̃k).Pj]lj | M1

�

M � ≡ (νd̃)

�

n[c̄L,r�ṽ�.P]l|
�

j∈J

nj[c(x̃j).Pj]lj |
�

k∈K

nk[Pk{⊥/x̃k}]lk |M1

�

.

Finally, by applying rule (R-Bgn-Bcast), (R-Res) and (R-Struct) we getM −→ [[M � ]]θ .
For the application of the rule (Lose2) the proof is analogous to the previous one.

Suppose thatM τ−→ [[M � ]]θ is due to the application of (Res), we haveM ≡ (νc)M1, M � ≡ (νc)M �
1 and

M1
τ−→ [[M �

1 ]]θ
(νc)M1

τ−→ [[(νc)M �
1 ]]θ

.

By induction hypothesisM1 −→ [[M �
1 ]]θ , hence, by applying rule (R-Res) we get (νc)M1 −→ [[(νc)M �

1 ]]θ .
Finally, suppose thatM τ−→ [[M � ]]θ is due to the application of (Par), we haveM ≡ M1 | N ,M � ≡ M �

1 | N and:

M1
τ−→ [[M �

1 ]]θ
M1|N τ−→ [[M �

1|N ]]θ
,

by induction hypothesisM1 −→ [[M �
1 ]]θ , hence, by applying rule (R-Par) we getM1|N −→ [[M �

1|N ]]θ .
4. The last point of the theorem follows from definition of barb and Lemma 3.1. Formally, sinceM c!ṽ@K�R−−−−→ [[M � ]]∆ because

M
cL!ṽ[l,r]−−−−→ [[M � ]]∆ for some location l, radius r and set L of intended recipients, by applying Lemma 3.1:

M ≡ (νd̃)

�

n[c̄L,r�ṽ�.P]l |
�

j∈J

nj[c(x̃j).Pj]lj | M1

�

and

M � ≡ (νd̃)

�

n[P]l |
�

j∈J

nj[Pj{ṽ/x̃j}]lj | M1

�

for some n, P , for some (possibly empty) sequence d̃ such that c �∈ d̃, some (possibly empty) set J , and some (possibly
empty) networkM1. Then, by applying the rule (R-End-Bcast), (R-Par) and (R-Res) we get

(νd̃)

�

n[c̄L,r�ṽ�.P]l |
�

j∈J

nj[c(x̃j).Pj]lj | M1

�

−→
��

(νd̃)

�

n[P]l |
�

j∈J

nj[Pj{ṽ/x̃j}]lj | M1

���

∆

,

and, by applying (R-Struct), we obtainM −→ [[M � ]]∆, as required. �

Proof of Theorem 3.10. In order to prove that bisimulation is a sound characterization of Probabilistic Barbed Congruence
we have to prove that ≈F̂

p is:

1. reduction closed w.r.t. F
2. probabilistic barb preserving w.r.t. F
3. contextual.

Probabilistic Labelled Bisimulation is reduction closed.
We have to prove that if M ≈F

p N , then for all F ∈ F
M

C
, there exists F � ∈ F

N
C

such that for all classes C ∈ N /R,
ProbFM(C) = ProbF �

N (C).

By Theorem 3.3 there exists an admissible scheduler F̂ ∈ LSched such that ProbFM(C) = ProbF̂M(=⇒, C
�), where

C
� = C ∪ {M � : M � ≡ M �� ∈ C}, but since ∀M � such that M � ≡ M �� ∈ C, by applying rule (R-Struct) it holds M � ∼=F

p M ��,
we get {M � : M � ≡ M �� ∈ C} ⊆ C, that means C

� = C. By Definition 3.5 we deduce F̂ ∈ F̂
M

C
, since for all the executions

in ExecF̂M(=⇒, C), the correspondent reduction executions are allowed by F , which is an element of F M
C
. By Proposition 3.9

we have that ∃F̂ � ∈ F̂
N

C
such that ProbF̂M(=⇒, C) = ProbF̂ �

N (=⇒, C). Finally, by Theorem 3.3, ∃F � ∈ Sched such that
ProbF̂ �

N (=⇒, C) = ProbF �
N (C). Finally, we can deduce F � ∈ F

N
C

by applying Definitions 3.5 and 2.7.
Probabilistic Labelled Bisimulation is Probabilistic barb preserving.
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To prove that bisimulation is probabilistic barb preserving we have to show that, if M ≈F

p N , then, for each scheduler
F ∈ F

M
C
, for each channel c , and for each set K of locations such thatM⇓F

pc@K , then ∃F � ∈ F
N

C
such that N⇓F �

p c@K .
Let M⇓F

pc@K for some channel c , some set K of locations, and scheduler F ∈ F
M

C
. It means that ProbFM(H) = p, where

M � ∈ H iff M �↓c@K . We can partition H in a set of equivalence classes for ≈F

p . Hence ∃I such that ∀i ∈ I Ci ∈ N / ≈F

p ,
Ci ∩ H �= ∅, and H ⊆ �

i∈I Ci. We get:

ProbFM(H) =
�

e∈ExecFM (H)
PF
M(e) =

�

i∈I

ProbFM(Ci) = p.

By Theorem 3.3, ∃F̂ ∈ LSched such that ∀i ∈ I:

ProbFM(Ci) = ProbF̂M(=⇒, C
�
i ),

where C
�
i = Ci ∪ {M � | ∃M �� ∈ Ci and M � ≡ M ��}, but, since ∼=F

p is closed under structural congruence, ∀M � ≡ M �� ∈ Ci,
M � ∼=F

p M ��, hence {M � : M � ≡ M �� ∈ Ci} ⊆ Ci, that means C
�
i = Ci. Now we have to prove that F̂ ∈ F̂

M
C
, but this follows

straightforwardly by Definition 3.5. Hence:

ProbFM(Ci) = ProbF̂M(=⇒, Ci)∀i ∈ I and
�

i∈I

ProbFM(Ci) =
�

i∈I

ProbF̂M(=⇒, Ci).

SinceM ≈F

p N , ∃F̂ � ∈ F̂
N

C
such that, ∀i ∈ I:

ProbF̂M(=⇒, Ci) = ProbF̂ �
N (=⇒, Ci).

Again by Theorem 3.3 ∃F � ∈ LSched such that:

p =
�

i∈I

ProbF̂ �
N (=⇒, Ci) =

�

i∈I

ProbF
�

N (Ci) = ProbF
�

N (H),

that means N⇓F �
p c@K .

By Definition 3.5 we finally deduce that F � ∈ F
N

C
, as required.

Probabilistic Labelled Bisimulation is contextual
We start with the parallel composition. Let R be the following relation:

R = {(M | O,N | O) : M,N,M | O,N | O are well-formed, and, M ≈F

p N}.

We will prove that it is a probabilistic labelled bisimulation w.r.t. F . For this purpose, we need to prove that, ∀F ∈ F̂
M|O

C

∃F � ∈ F̂
N|O

C
such that, ∀C ∈ N /R, ∀α:

1. α = τ then ProbFM|O(
τ−→, C) = ProbF �

N|O(=⇒, C).
If P,Q ∈ C, then, by definition of R, P ≡ P̄ | Ō, Q ≡ Q̄ | Ō and P̄ ≈F

p Q̄ . But then there exists D ∈ N / ≈F

p such that
D = {P̄ : P̄ | Ō ∈ C}. Now we have three cases to consider:
(i) if M | O τ−→ [[M | O� ]]θ the proof is simple, because we have, ∀M̄ in the support of [[M | O� ]]θ , such that M̄ ∈ C,

M̄ ≡ M | O�� and, since M ≈F

p N , N | O�� ∈ C too, by definition of R. Hence (by applying rule (Par) to the action
O τ−→ [[O� ]]θ ), since N | O is well-formed, ∃F � ∈ LSched such that

ProbFM|O(
τ−→, C) = ProbF

�
N|O(=⇒, C).

We have only to prove that F � ∈ F̂
N|O

C
, but the proof follows straightforwardly by the Definitions 2.7 and 3.5.

(ii) If M | O τ−→ [[M � | O ]]θ , since M is well-formed, by Definition 3.5 ∃F1 ∈ F̂
M

C
such that ProbFM|O(

τ−→, C) = ProbF1M
(

τ−→, D). But sinceM ≈F

p N , andN iswell-formed,∃F2 ∈ F̂
N

C
such that ProbF1M (

τ−→, D) = ProbF2N (=⇒, D). Again, since
the networkN | O is well-formed, ∃F � ∈ LSched such that, by applying rule (Par) to the executions in ExecF2N (=⇒, D),
we get

ProbF2N (=⇒, D) = ProbF
�

N|O(=⇒, C).

Since by Definition 3.5 each execution in the set ExecF2N (=⇒, D) has a correspondent reduction execution allowed
by F

N|O
C

, and by Definition 2.7 we know that the same executions can be performed by N when interacting with any
context, we can finally deduce, by applying again Definition 3.5, that F � ∈ F̂

N|O
C

, as required.
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(iii) IfM | O τ−→ M � | O� due to a synchronization betweenM and O, then there are two cases to consider.
If M

c!ṽ[l,r]−−−→ [[M � ]]∆ and O c?ṽ@k−−−→ [[O� ]]∆, for some message ṽ, channel c , locations l, k and radius r , such that
d(l, k) ≤ r , we can apply rule (Obs) obtaining M c!ṽ@K�R−−−−→ M � for some K ⊆ L and for some R, with k ∈ R. Therefore,
∃F1 ∈ LSched such that:

ProbFM|O
�

τ−→, C

�
= ProbF1M

�
c!ṽ@K�R−−−−→, D

�
.

By Definition 3.5 we deduce F1 ∈ F̂
M

C
and, since N ≈F

p M , ∃F2 ∈ F̂
N

C
such that

ProbF1M
�

c!ṽ@K�R−−−−→, D

�
= ProbF2N

�
c!ṽ@K�R=⇒ , D

�
,

where each execution e in ExecF2N (
c!ṽ@K�R=⇒ , D) is of the form

e = N τ−→θ1N1 −→ · · ·Ni−1
c!ṽ@K�R−−−−→∆Ni −→ · · ·N �,

and, by applying rule (Obs) backwardly, Ni−1
c!ṽ[l�,r �]−−−−→∆Ni for some l� and r � such that d(l�, k) ≤ r �. We can apply rule

(Bcast) obtaining Ni−1 | O c!ṽ[l�,r �]−−−−→∆Ni | O� without changing probability. Finally if we take F � ∈ LSchedwhich applies
rule (Lose2) to the output action, we obtain the required result:

ProbF2N
�
c!ṽ@K�R=⇒ , D

�
= ProbF

�
N|O(=⇒, C).

We have finally to prove that F � ∈ F̂
N|O

C
. We start by the consideration that, by Theorem 3.3, for any execution

of the form α=⇒ in F̂
N

C
, where α is a silent or an output action there exists a correspondent reduction in F

N|O
C

.
Since by Definition 2.7, for any context, there exists a scheduler in F

N|O
C

mimicking the behaviour exhibited by N
when interacting with the given context, we can affirm that ∃F̄ ∈ F

N|O
C

such that ExecF̄N|O contains all the reductions
corresponding to the executions of ExecF �

N|O. Hence, by Definition 3.5, F � ∈ F̂
N|O

C
, as required.

If M c?ṽ@k−−−→ [[M � ]]∆ and O
cL!ṽ[l,r]−−−−→ [[O� ]]∆, for some message ṽ, some set L of locations, some channel c , some

locations l, k and radius r , such that d(l, k) ≤ r , then ∃F1 ∈ F̂
M

C
such that:

ProbFM|O(
τ−→, C) = ProbF1M (

c?ṽ@k−−−→, D).

Since N ≈F

p M , ∃F2 ∈ F̂
N

C
such that:

ProbF1M (
c?ṽ@k−−−→, D) = ProbF2N (

c?ṽ@k=⇒, D) or

ProbF1M (
c?ṽ@k−−−→, D) = ProbF2N (=⇒, D).

In the first case, since by hypothesis k ∈ R and N | O is well-formed, also N is able to synchronize with O. Hence
∃F � ∈ LSched such that for all

e = N τ−→θ1N1 −→ · · ·Ni−1
c?ṽ@k−−−→ Ni −→ · · ·N � ∈ ExecF2N (

c?ṽ@k=⇒, D)

there exists a matching execution such that, by applying rule (Bcast) Ni−1 | O
c!ṽ[l,r]−−−→ Ni | O, and by applying rule

(Lose2), we get:
e� = N | O τ−→θ1N1 | O −→ · · ·Ni−1 | O τ−→ Ni | O� −→ · · ·N � | O�

in ExecF �
N|O(=⇒, C). Hence,

ProbF2N
�
c?ṽ@k=⇒, D

�
= ProbF

�
N|O(=⇒, C).

In order to prove F � ∈ F̂
N|O

C
, we start by the consideration that, since O

cL!ṽ[l,r]−−−−→ [[O� ]]∆, by Definition 2.7, for
any context, there exists a scheduler in F

N|O
C

mimicking the behaviour of O in its interaction with the given context.
Then we can affirm that ∃F̄ ∈ F

N|O
C

such that ExecF̄N|O contains all the reductions corresponding to the executions of
ExecF �

N|O. Hence, by Definition 3.5, F � ∈ F̂
N|O

C
, as required.

If N is not able to receive the message the proof is analogous: it is sufficient to apply the rule (Par) to O c!ṽ@K�R−−−−→
[[O� ]]∆, obtaining:

ProbF2N (=⇒, D) = ProbF
�

N|O(=⇒, C).
2. α = c!ṽ@K � R

The proof is analogous to the point (iii) of the previous item.
3. α = c?@k then ProbFM|O(

α−→, C) = ProbF �
N|O(

α=⇒, C) or ProbFM|O(
α−→, C) = ProbF �

N|O(=⇒, C).
If P,Q ∈ C, then P ≡ M̄ | Ō, Q ≡ N̄ | Ō and M̄ ≈F

p N̄ . But then ∃D ∈ N / ≈F

p such that D = {M̄ : M̄ | Ō ∈ C}. Now
we have two cases to consider:
(i) The transition is due to an action performed by O, hence O α−→∆O� andM | O� ∈ C. But since M ≈F

p N , N | O� ∈ C too,
∃F � ∈ LSched such that by applying parallel composition to the input of O, we obtain the desired result:

ProbFM|O(
α−→, C) = ProbF

�
N|O(

α=⇒, C).
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Finally, by Definition 3.5 we deduce F � ∈ F̂
N|O

C
, as required.

(ii) The transition is due to an action performed byM , in this case, by Definition 3.5 ∃F1 ∈ F̂
M

C
such that:

ProbFM|O(
α−→, C) = ProbF1M (

α−→, D).

SinceM ≈F

p N ∃F2 ∈ F̂
N

C
such that:

ProbF1M (
α−→, D) = ProbF2N (

α=⇒, D), or

ProbF1M (
α−→, D) = ProbF2N (=⇒, D).

In both cases, since N | O is well-formed, ∃F � ∈ LSched such that by applying parallel composition, we have:

ProbF2N (
α=⇒, D) = ProbF

�
N|O(

α=⇒, C), or

ProbF2N (=⇒, D) = ProbF
�

N|O(=⇒, C).

In order to prove that F � ∈ F̂
N|O

C
, we start by the consideration that, by Definition 3.5 there exists at least a context

C[·] and ∃F̄ ∈ F
C[N]

C
such that C[N] −→ C �[N �], and, by the reduction rules we get:

C[·] ≡ (νd̃)m[out�cL,r , ṽ�.P]l | M1

for some d̃ such that c �∈ d̃, some m, some set L of locations, some process P , some (possibly empty) network M1,
some location l and some radius r such that d(l, k) ≤ r . Then, by Definition 2.7 we have that there exists a scheduler
allowingm[out�cL,r , ṽ�.P]l −→ [[m[P]l ]]∆, and again by Definition 2.7 there exists a scheduler allowing the reduction
m[out�cL,r , ṽ�.P]l | N | O−→∗[[m[P]l | N � | O� ]]∆, meaning, by Definition 3.5, F � ∈ F̂

N|O
C

as required.

4. α = c?ϑ@k the proof is analogous as for α = c?@k.

Now we proceed with the restriction.

Let R = {((νd)M, (νd)N) : M ≈F

p N} be a relation. We need to prove that it is a probabilistic labelled bisimulation
w.r.t. F .

Let us consider C: if P,Q ∈ C, by definition of R, P ≡ (νd̄)P̄ , Q ≡ (νd̄)Q̄ and P̄ ≈F

p Q̄ . But then ∃D ∈ N / ≈F

p such that
D = {P̃ : (νd̄)P̄ ∈ C}.

We have to prove that, ∀F ∈ F̂
(νd)M

C
∃F � ∈ F̂

(νd)N
C

such that, ∀C ∈ N /R, ∀α:

1. α = τ implies that ProbF(νd)M(
τ−→, C) = ProbF �

(νd)N(=⇒, C).

Since Chan(τ ) = ⊥, by Definition 3.5 ∃F1 ∈ F̂
M

C
such that ProbF(νd)M(

τ−→, C) = ProbF1M (
τ−→, D) and, since M ≈F

p N
∃F2 ∈ F̂

N
C

such that: ProbF1M (
τ−→, D) = ProbF2N (=⇒, D).

Finally we can take F � ∈ LSched mimicking the executions in the set ExecF2N (=⇒, D), when applying the restriction
on N . Hence: ProbF2N (=⇒, D) = ProbF �

(νd)N(=⇒, C).

In order to prove that F � ∈ F̂
(νd)N

C
, we start by the consideration that, by Definition 2.7, for any context there exists a

scheduler inF
(νd)N

C
mimicking the behaviour of N when interacting with the given context. Hence ∃F̄ ∈ F

(νd)N
C

such that
ExecF̄(νd)N contains all the reductions corresponding to the executions in ExecF �

(νd)N , meaning, by Definition 3.5, F � ∈ F̂
(νd)N

C

as required.

2. α = c!ṽ@K � R. Since d �= c , by Definition 3.5 ∃F1 ∈ F̂
M

C
such that ProbF(νd)M(

α−→, C) = ProbF1M (
α−→, D), then since

M ≈F

p N , ∃F2 ∈ F̂
N

C
such that ProbF1M (

α−→, D) = ProbF2N (
α=⇒, D).

Therefore, since Chan(α) �= d, ∃F � ∈ LSched such that:

ProbF2N (
α=⇒, D) = ProbF

�
(νd)N(

α=⇒, C).

Again, we prove that F � ∈ F̂
(νd)N

C
as for the previous case.
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3. α = c?@k. Again, since d �= c , by Definition 3.5 ∃F1 ∈ F̂
M

C
such that ProbF(νd)M(

α−→, C) = ProbF1M (
α−→, D). Since M ≈F

p N ,

there exists F2 ∈ F̂
N

C
such that ProbF1M (

α−→, D) = ProbF2N (
α=⇒, D) or ProbF1M (

α−→, D) = ProbF2N (=⇒, D). In both cases we
can apply rule (Res) to N, since Chan(τ ) �= Chan(α) �= d. Therefore, there exists F � ∈ LSched such that the required
result holds, that is

ProbF2N (
α=⇒, D) = ProbF

�
(νd)N(

α=⇒, C) or

ProbF2N (=⇒, D) = ProbF
�

(νd)N(=⇒, C).

In order to prove that F � ∈ F̂
(νd)N

C
we proceed as for the previous cases.

4. α = c?ϑ@k. The proof is analogous to the one for α = c?@k. �

Proof of Theorem 3.11. In order to prove the completeness we show that the relation R = {(M,N) : M ∼=F

p N} is a
probabilistic labelled bisimulation. We have to prove that, ∀F ∈ F̂

M
C

∃F � ∈ F̂
N

C
such that, ∀C ∈ N /R, ∀α:

if α = τ then ProbFM(
τ−→, C) = ProbF �

N (=⇒, C).

By Theorem 3.3 we know that there exists a scheduler F̄ ∈ Sched such that ProbFM(
τ−→, C) = ProbF̄M(C), and, by

Definition 3.5 we deduce F̄ ∈ F
M

C
. SinceM ∼=F

p N , ∃F̄ � ∈ F
N

C
such that ProbF̄M(C) = ProbF̄ �

N (C). Again by Theorem 3.3 and
Definition 3.5, there exists F � ∈ F̂

N
C

such that ProbF̄ �
N (C) = ProbF �

N (=⇒, C ∪ {N̄ ≡ N � ∈ C}), but since ∼=F

p is closed under
structural equivalence, ∀N̄ ≡ N � ∈ C, N̄ ∈ C, hence:

ProbFM(
τ−→, C) = ProbF

�
N (=⇒, C).

if α = c!ṽ@K � R then ProbFM(
α−→, C) = ProbF �

N (
α=⇒, C).

First we notice that ProbFM(
c!ṽ@K�R−−−−→, C) is either 0 or 1.

If ProbFM(
c!ṽ@K�R−−−−→, C) = 0 we are done, because it will be enough to take any scheduler F � ∈ F̂

N
C

not allowing

observable output actions on the channel c, and we get ProbFM(
c!ṽ@K�R−−−−→, C) = ProbF �

N (
c!ṽ@K�R=⇒ , C).

If ProbFM(
c!ṽ@K�R−−−−→, C) = 1, then, by Definition 3.5 there exists a scheduler F̄ ∈ F

M
C

such that M⇓F̄
1c@K , and it means

that ∃F̄ � ∈ F
N

C
such that N⇓F̄ �

1 c@K , hence ∃R� such that K ⊆ R� and N c!ṽ@K�R�
=⇒ . Now in order to mimic the effect of the

action c!ṽ@K � R, we build the context

C[·] =
n�

i=1

(ni[in(c, x̃i).[x̃i = ṽ]out�fiki,r , x̃i�]ki |

mi[in(fi, ỹi).out�okiki,r , ỹi�]ki),
where R = {k1, . . . , kn} and fi and oki fresh ∀i ∈ [1 − n].

SinceM c!ṽ@K�R−−−−→, then themessage is reachable by all nodes ni, hence, by Definition 2.7, which captures the behaviour
of a network when interacting in any context, since C[M] is well-formed, ∃F̄1 ∈ F

C[M]
C

such that C[M]−→∗M̄ , where

M̄ ≡ M � |
n�

i=1

(ni[0]ki | mi[out�okiki,r , ṽi�]ki),

with M̄ fi@R and M̄⇓F̄1
1 oki@R, ∀i ∈ [1 − n].

The absence of the barb on the channels fi together with the presence of the barb on the channels oki ensures that
all the locations in R have been able to receive the message. Since C[M] ∼=F

p C[N], ∃F̄2 ∈ F
C[N]

C
such that ProbF̄1C[M](C

�) =
ProbF̄2C[N](C

�) where M̄ ∈ C
�.

Therefore, C[N]−→∗N̄ with N̄ f@R and N̄⇓F̄2
1 ok@R. The constrains on the barbs allow us to deduce that

N̄ ≡ N � |
n�

i=1

(ni[0]ki | mi[out�okiki,r , ṽi�]ki)

which implies N c!ṽ@K�R=⇒ N �, or N =⇒ N � in case (Lose2) has been applied to the output action on the channel c. Since
M̄, N̄ ∈ C, then M̄ ∼=F

p N̄ . Since∼=F

p is contextual, it results (νok)M̄ ∼=F

p (νok)N̄ , fromwhich we can derive thatM � ∼=F

p N �.
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But since N � ∈ C and N c!ṽ@K�R=⇒ N �, then, by Definition 3.5 ∃F � ∈ F̂
N

C
such that:

ProbF
�

N

�
c!ṽ@K�R=⇒ , C

�
= 1 = ProbFM

�
c!ṽ@K�R=⇒ , C

�
.

if α = c?@k then we notice that ProbFM(
c?ṽ@k−−−→, C) is either 0 or 1.

If ProbFM(
c?@k−−→, C) = 0 we are done, because it will be enough to take any scheduler F � ∈ F̂

N
C

not allowing input

actions on the channel c, and we get ProbFM(
c?@k−−→, C) = ProbF �

N (
c?@k=⇒, C).

If ProbFM(
c?@k−−→, C) = 1, because M c?@k−−→ [[M � ]]∆, by Definition 2.7 there exists at least a context C[·] and ∃F̄ ∈ F

C[M]
C

such that C[M] −→ C �[M �], and by Theorem 3.3 we deduce that:

C[·] ≡ (νd̃)m[out�cL,r , ṽ�.P]l | M1,

and

C �[·] ≡ (νd̃)m[c̄L,r�ṽ�.P]l | M �
1,

for some m, some tuple d̃ of channel such that c �∈ d̃, dome set L of messages, some radius r , some process P , some
location l such that d(l, k) ≤ r and some (possibly empty) networkM1 and M �

1.
By Definition 2.7, for any context there exists a scheduler inF

C[M]
C

allowingm to perform the output when interacting
with any context. Hence we can build the following context:

C1[·] = · | m[out�cL,r , ṽ�.P]l | m1[in(c, x̃).out�fk,r � , x̃�.out�okk,r � , x̃�]k,
in order to mimic the behaviour of the networks, withm static, f and ok fresh, r � > 0 and d(l, k) > r � ∀l ∈ Loc s.t. l �= k.
There exists a scheduler F̄1 ∈ F

C1[M]
C

such that:

C1[M]−→∗M � | m[P]l | m1[out�okk,r � , ṽ�]k ∈ ExecF̄1C1[M],

with M � | m[P]l | m[out�okk,r � , ṽ�]k f@k and

M � | m[P]l | m[out�okk,r � , ṽ�]k⇓F̄1
1 ok@k.

The reduction sequence above must be matched by a corresponding reduction sequence C1[N]−→∗N � | m[P]l |
m[out�okk,r � , ṽ�]k, with

M � | m[P]l | m[out�okk,r � , ṽ�]k ∼=p N � | m[P]l | m[out�okk,r � , ṽ�]k,
N � | m[P]l | m[out�okk,r � , ṽ�]k f@k and
N � | m[P]l | m[out�okk,r � , ṽ�]k⇓F̂2

1 ok@k for some F̄2 ∈ F
C1[N]

C
.

This does not ensure that N actually performed the input action, but we can conclude that there exists F � ∈ LSched and
N � such that either N c?@k=⇒N � or N =⇒ N �. Since M � | m[P]l | m[out�okk,r � , ṽ�]k ∼=p N � | m[P]l | m[out�okk,r � , ṽ�]k and
∼=F

p is preserved by the parallel composition, we can easily derive M � ∼=F

p N � (applying rules for structural equivalence),
that meansM �,N � ∈ C and ∃F � ∈ LSched such that:

ProbFM(
c?@k−−→, C) = 1 = ProbF

�
N (

c?@k=⇒, C) or
ProbFM(

c?@k−−→, C) = 1 = ProbF
�

N (=⇒, C).

Now we have only to prove that F � ∈ F̂
N

C
, but this follows straightforwardly by Definition 3.5, since F̄2 ∈ F

C1[N]
C

.
if α = c?ϑ@k the proof is analogous as for α = α = c?@k. �
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