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Particle Swarm Optimization (PSO) is having a growing space in the optimization com-
munity, mainly due to its appreciable qualities of fast initial progress, reduced compu-
tational cost and parallel structure, suitable for High Performance Computation (HPC)
platforms. Original formulation includes some random coefficients, so that a statistical
analysis of the solution is often needed. To avoid the latter situation, Deterministic Parti-
cle Swarm Optimization (DPSO) has been introduced: removing all the random coefficients
the DPSO is a deterministic algorithm, so that a single run is considered to evaluate the
success of the algorithm. In this paper, a comparative study between PSO and DPSO is
reported, in order to investigate the performance of DPSO versus PSO.

Nomenclature

PSO Particle Swarm Optimization
DPSO Deterministic Particle Swarm Optimization

T Particle position vector
v Particle speed vector
Superscript

k Iteration index

I. Introduction

Among the different formulations available for the solution of MDO problems, a really interesting one
is the so-called DAO (Direct Analysis and Optimization). This formulation exploits the similitude between
two successive configurations analyzed by the optimizer, so that the state (interdisciplinary) variables are
supposed to converge while the actual solution is evolving towards an optimal one: smaller and smaller
changes in the system configuration are usually observed when approaching the optimal solution, so that
the convergence of the state variables is obtained implicitly. The new Multi Disciplinary Analysis (MDA)
re-uses the state variables from the previous MDA: an imperfect coupling of the disciplines is allowed, so that
a large saving in the number of simulations inside a single MDA is obtained in this way. This formulation
is typically adopted in conjunction with local optimization methods, where the actual configuration of the
system is gradually changing while the optimum is approached, so that it is reasonable to assume gradual
modification of the state variables. In case a global optimization algorithm is adopted, the (possibly) large
differences between two successive configurations of the system may negatively affect the accuracy of solving
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the MDA, and yield poor convergence and/or wrong search directions. In® the use of a global optimization
algorithm with a DAO formulation has been illustrated. Particle Swarm Optimization (PSO) was adopted
in the latter case; pursuing the convergence by the evolution of different individuals (particles) of a swarm,
where the evolution of each individual can be regarded to a large extent as independent of the others. The
idea was to let the particles evolve individually, re-using previous information for each single particle, so
that a number of DAQOs, virtually one for each particle, is obtained. In® a Deterministic PSO (DPSO) has
been adopted, that is, a deterministic variant of the original (random) algorithm, widely adopted in the
optimization community. In the current paper, a comparison between DPSO and PSO is carried on, in order
to test the effectiveness of DPSO with respect to the original PSO.

II. PSO Algorithm: random and deterministic formulations

The Particle Swarm Optimization (PSO) was initially developed by Kennedy and Eberhart in 19956 .
It is a heuristics for global optimization problems, applicable to a wide range of optimization problems.
PSO is a derivative-free optimization method, so that no expensive computation of gradient and/or Hessian
of the objective function are required. Small memory occupation, easy parallelization and simplicity of
implementation are other key points for the success of this algorithm.

In PSO, each particle, a collection of which makes up a swarm, has information about its actual position
and speed in the search space. Each particle remembers the best position (z,) and the corresponding
objective function value that it has individually found in the search process. As a swarm, all the particles
also share the best position (z,) and the corresponding objective function value among all the locations ever
visited by the swarm. Each particle aims to find a global optimal solution making use of the current velocity

v, zp and z4. PSO’s iteration is expressed as (j =1,...,N):
k
Uj+1 = X[wv;€ + clrl(a:’;j - xf) + 021"2(3:’; - xf)] (1)
k ko k
7t o= et (2)

where v and z are velocity and position, respectively; the subscript j represents the particle number, the
superscript k indicates the iteration number, r; and ro are different random values in the range [0,1]. The
coefficients in Eq. (1)-Eq. (2) have the following meanings: x is the constriction factor, w is called inertia
weight, c1, cz are called cognitive and social parameter (positive constants), respectively. According with?
and DPSO formulation we decide to set in (1) the parameters r; and ro equal to 1, thus we eliminate the
random choice introduced by these two coefficients. In this way, we transform a pure stochastic method into
a deterministic one (see also® |7 ).
As regards the history of PSO formulae Eq. (1)-Eq. (2), observe that the original PSO algorithm® was
formulated as (j =1,...,N)
vf“ = wv;-C + wlrl(x’;j - xf) + ’(1)27’2(1']; - xf) (3)
(4)
x?"’l = a:f + v;-”'l
where w is an inertial coefficient (which tends to preserve the search direction indicated by the velocity
U;? at the previous iteration), w; is a coefficient for individual confidence and ws is a coefficient for swarm
confidence; moreover, typical values of the parameters above were w = 1, w; = wy = 2.0. Subsequently
a work done by Clerc? indicated that the introduction of a constriction factor may be necessary to force
convergence of the PSO algorithm, so that in® PSO was defined as (j = 1,..., N)

k
Uj+1 = X[U;C + clr1(x’;j — xf) + (327‘2(90;c - xf)] (5)
(6)
E+1 k k+1

where x is the constriction coefficient, ¢; is a coefficient for individual credibility and cy is a coefficient
for collective credibility, providing a weight for the attraction towards the personal best or the global best
position respectively.
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The initial points configuration required by the method, i.e. v? and :L‘]Q for j =1,..., N, may be a crucial
issue for the efficiency of PSO iteration, as investigated in* ,% ,'© . Regarding the value of the coefficients,
they are typically assumed as in? , that is, ¥ = 0.729, w = 1.0, ¢; = ¢ = 2.05. Those values for the
coeflicients are obtained considering the following relationship among coefficients

Xc1 = wi, XC2 = Wa. (7)

The equations (7) indicates that the constriction coefficient x has a direct control over the velocity of
particles, which is considered in® to be crucial for the progress of the algorithm. By relations Eq. (1) and
Eq. (3) observe that using the values of the parameters x = 0.729, w = 1, ¢; = ¢ = 2.05 in Eq. (1), is
equivalent to set in Eq. (3) x = 1.0; w = 0.729 ¢; = co = 1.494 (i.e. 0.792 % 2.05 = 1.49445).

The above values of parameters in PSO are frequently adopted in solving various optimization problems.
However, these values of the parameters are not necessarily optimal, since they are obtained by using heuristic
assumptions. In® , a systematic study of the effect of parameters of PSO has been reported, on a suite of
39 algebraic functions, with dimensionality from 2 to 20. A huge sensitivity of the final solution with
respect to the parameters has been observed, so that modifications on the eighth significant digit for the
coeflicients still showed a large effect on the results. Anyway, the coefficients proposed in the latter paper
are c1 = 2.04236627, co = 1.14957333, x = 1.04718542, w = 0.72004962.

Apart from® | some attempts have been considered in order to improve the results provided by the
classical selection of parameters of PSO in? . Observe that as a general rule, reducing the parameters may
force the monotonic convergence beforehand, limiting the exploration. Indeed, if we observe a particle for
which global and personal best position coincide, assuming ¢y + c3 < 1 and its velocity at previous iteration
being equal to zero, then the new position of the particle will be located in the same subspace spanned by the
global best position, and convergence will occur with a progress related to a geometric series. On the other
hand, if the sum of ¢; and ¢y is smaller than 2, the new position will overcome the global best location, by
a quantity smaller than the previous distance from the global best position. To this purpose, two different
selections for the parameters have been tested in the past: the first was ¢; = 0.4, co = 0.8, x = 1.0, w = 0.9,
while the second was ¢; = 0.25, co = 0.25, x = 0.8, w = 0.9.

All these tests were performed by using the modified version of PSO, addressed as DPSO (Deterministic
Particle Swarm Optimization), obtained by setting all the random coefficients as deterministic constants,
that is eliminating all the stochastic behavior of the algorithm, so that a statistical analysis of the solution is
no more needed. On the other hand, there may be possible side effects due to a reduced exploration caused
by the elimination of the random terms.

In the following, a systematic analysis and comparison of the performances of PSO and DPSO is reported.
1000 runs of PSO are compared with the equivalent DPSO runs, using all the previously described selections
for the swarm’s parameters.

ITI. Numerical results

1000 different runs have been performed for the PSO algorithm in order to provide some statistics of the
results. The following stop criterion for PSO iterations was adopted: if the quantity

> llaf —af]

i#]

is smaller than a prescribed quantity, as well as the sum of the norms of the velocities of all the particles, it
means that the swarm exploration is reduced and the velocities are low, so that the swarm is likely converging
to a single point.

The test has been performed using 27 algebraic test functions, already reported in' : these are a suite
of functions commonly adopted for testing optimization algorithms, dimensions ranging from 2 to 20. The
majority of these functions is multimodal, some of them have a really large number of local minima. In this
situation, classic gradient-based local optimizers may struggle to find a global minimum.

An outlook of the results is presented in Figure 1. A single bar reports the result provided by DPSO,
due to the deterministic nature of the algorithm. On the contrary, a distribution of results is the outcome
of PSO, due to the randomness of the coefficients (so we have not the same result each time we run the
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Figure 1. Three different examples of distribution of the optimal solution obtained by using DPSO or PSO.
On left: PSO prevails (algebraic function n. 9). On center: PSO and DPSO are equivalent (algebraic function
n. 18). On right: DPSO prevails (algebraic function n. 27).

algorithm). On the horizontal axis, the value of the objective function is reported: since we are solving a
minimization problem, the bar closer to the left border represents the best result. The height of the bar
indicates the number of times (1000 is the maximum, since we ran the optimizer 1000 times) for which PSO
provides a result in within the width of the bar. This value has no further meaning for the DPSO. On left, a
situation for which DPSO performs better than PSO is reported, while the opposite is illustrated in the right
part of Figure 1. Observing the results where PSO is prevailing, we can desume the global optimum (or a
good approximation of it): this is not a trivial situation. On center of Figure 1 a deuce situation is depicted.
Both PSO and DPSO detect, at least one time, the global minimum of the function, but in this case to find
the global minimum is not the most probable event for DPSO. In 20% of the cases DPSO detects the global
minimum, but in about 80% of the cases it does not detect the best point. A completely different situation
is depicted on the left end side of Figure 1: in this case the probability to get the global minimum are close
to 90%, while in the remaining 10% of the cases the detected value is pretty close to the global minimum
(closer than the value obtained by DPSO).

Numerical results are reported in Tables 1 - 5 (OF stands for Objective Function). The strong prevalence
of PSO over DPSO reported in Table 1 is definitely expected: in fact, the adopted coefficients are outside the
range of convergence for DPSO as reported in? , so we know a priori that these coefficients are not suitable
for DPSO, and they cannot be used.

DPSO appears to prevail when the coefficients are smaller, and in general we can assume that DPSO gets
convergence in a smaller number of iterations. If we consider the precision of the algorithm on the basis of
the final value of the objective function, DPSO and PSO are substantially equivalent. Percentage of success
of PSO slightly increases if the number of runs is increased: a couple of percentage points are gained if we
pass from a statistics on 100 runs to a statistics on 1000 runs.
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Figure 2. Three different examples of distribution of the optimal solution detected by the DPSO and PSO
with all the different investigated sets for the swarm coefficients. On the horizontal axis, the values of the
objective function. Each (red) dot represents the outcome of one single PSO run. DPSO gives a single (blue)
dot for each selection of the parameters. Different selection of parameters are aligned on a different horizontal
line. On left: algebraic function n. 9). On center: algebraic function n. 18). On right: algebraic function n.
27). Results refer to the same cases reported in Figure 1.
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A different representation of the same data is reported in Figure 2. Here five different selections for the
coefficients are reported. On the horizontal line, the best value of the objective function detected at the
end of a single run of PSO is reported, together with the outcome of DPSO (single output). Each line in
the figure represents a different set of parameters. In all the examples, DPSO is able to detect the optimal
value, or a good approximation of it, for all the different selection of parameters except the first one, that
is outside the convergent regime identified in* . In the case of the algebraic function number 27, for the
first choice of parameters also PSO is not able to find the optimum, after 1000 attempts. Dispersion of data
gives an idea about the number of unsuccessful runs of PSO. The probability of success reported in Tables
1-5 is computed on the base of a relative comparison, without any tolerance: this means that PSO prevails
on DPSO also if the improvement of PSO is relatively small (and wvice versa). The data reported in Figure
2 indicate how DPSO is in general able to find a reasonable approximation of the global optimum, without
the need of a large number of runs in order to assess the result.

IV. Conclusions

A comparative study of a purely deterministic and a stochastic formulation of PSO has been reported.
The DPSO has demonstrated to be competitive when compared with classical PSO, providing also faster
progress towards a solution, in many cases. Furthermore, DPSO does not need a statistical analysis of the
results. Different selection of parameters can be attempted in order to check for a deeper analysis: anyway,
four different selections were considered here, while about 1000 runs were needed by DPSO.
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Table 1. Comparison of performances for PSO and DPSO. Coefficients are: c¢; = 2.05, co = 2.05, x = 0.729,
w = 1.00. Percentage of success for DPSO: 0.0%. Percentage of success for PSO: 100.0%. DPSO prevails on
PSO (on average) for the final value of the objective function (OF) in 0 cases over 29. DPSO prevails on PSO
(on average) for the number of OF evaluations in 0 cases over 29.

Function OF value # of OF evaluations
DPSO PSO DPSO PSO
1 0 100 0 100
2 0 100 0 100
3 0 100 0 100
4 0 100 0 100
5 0 100 0 100
6 0 100 0 100
7 0 100 0 100
8 0 100 0 100
9 0 100 0 100
10 0 100 0 100
11 0 100 0 100
12 0 100 0 100
13 0 100 0 100
14 0 100 0 100
15 0 100 0 100
16 0 100 0 100
17 0 100 0 100
18 0 100 0 100
19 0 100 0 100
20 0 100 0 100
21 0 100 0 100
22 0 100 0 100
23 0 100 0 100
24 0 100 0 100
25 0 100 0 100
26 0 100 0 100
27 0 100 0 100
28 0 100 0 100
29 0 100 0 100
6 of 10

American Institute of Aeronautics and Astronautics



Table 2. Comparison of performances for PSO and DPSO. Coefficients are: c¢; = 1.492, cp = 1.492, x = 0.729,
w = 1.0. Percentage of success for DPSO: 41.58%. Percentage of success for PSO: 57.62%. DPSO prevails on
PSO (on average) for the final value of the OF in 12 cases over 29. DPSO prevails on PSO (on average) for
the number of OF evaluations in 10 cases over 29.

Function OF value # of OF evaluations
DPSO PSO DPSO PSO
1 85 15 0 100
2 18 82 100 0
3 60 40 100 0
4 6 94 95 5
5 28 72 100 0
6 92 8 100 0
7 100 0 100 0
8 96 100 0
9 1 99 0 100
10 100 0 100
11 50 50 0 100
12 21 79 100 0
13 76 24 0 100
14 3 97 94 6
15 13 87 93 7
16 0 100 96 4
17 74 26 100
18 96 4 0 100
19 2 98 92 8
20 99 1 100 0
21 100 0 100 0
22 0 100 100 0
23 20 80 100 0
24 10 90 100 0
25 100 0 100 0
26 100 0 100 0
27 100 0 100 0
28 68 32 100 0
29 56 44 0 100
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Table 3. Comparison of performances for PSO and DPSO. Coefficients are: c¢; = 2.0424, co = 1.1496, x = 0.7200,
w = 1.0472. Percentage of success for DPSO: 49.86%. Percentage of success for PSO: 49.48%. DPSO prevails
on PSO (on average) for the final value of the OF in 16 cases over 29. DPSO prevails on PSO (on average) for
the number of OF evaluations in 13 cases over 29.

Function OF value # of OF evaluations
DPSO PSO DPSO PSO
1 52 48 100 0
2 66 34 0 100
3 23 7 100 0
4 2 98 90 10
5 15 85 100 0
6 89 11 100 0
7 95 5 100 0
8 0 100 99 1
9 0 100 0 100
10 7 23 0 100
11 59 41 0 100
12 26 74 100 0
13 3 97 100 0
14 3 97 90 10
15 33 67 0 100
16 0 100 0 100
17 87 13 0 100
18 89 11 0 100
19 0 100 80 20
20 98 2 100 0
21 100 0 100 0
22 88 12 0 100
23 80 20 0 100
24 88 12 0 100
25 100 0 0 100
26 100 0 0 100
27 100 0 0 100
28 87 13 0 100
29 53 47 0 100
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Table 4. Comparison of performances for PSO and DPSO. Coefficients are: c¢; = 0.40, ¢ = 0.80, x = 0.90,
w = 1.00. Percentage of success for DPSO: 46.00%. Percentage of success for PSO: 53.24%. DPSO prevalils on
PSO (on average) for the final value of the OF in 12 cases over 29. DPSO prevails on PSO (on average) for
the number of OF evaluations in 23 cases over 29.

Function OF value # of OF evaluations
DPSO PSO DPSO PSO
1 0 100 100 0
2 59 41 100 0
3 4 96 100 0
4 3 97 100 0
5 47 53 100 0
6 97 3 100 0
7 99 1 100 0
8 20 80 100 0
9 17 83 100 0
10 55 45 0 100
11 36 64 100 0
12 50 50 100 0
13 0 100 100 0
14 59 41 100 0
15 0 100 100 0
16 0 100 100 0
17 0 100 100 0
18 95 5 100 0
19 0 100 100 0
20 100 0 100 0
21 100 0 100 0
22 20 80 100 0
23 31 69 100 0
24 22 78 100 0
25 100 0 0 100
26 100 0 0 100
27 100 0 0 100
28 100 0 0 100
29 100 0 0 100
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Table 5. Comparison of performances for PSO and DPSO. Coefficients are: c¢; = 0.25, ca = 0.25, x = 0.90,
w = 0.80. Percentage of success for DPSO: 78.24%. Percentage of success for PSO: 21.00%. DPSO prevails on
PSO (on average) for the final value of the OF in 25 cases over 29. DPSO prevails on PSO (on average) for
the number of OF evaluations in 19 cases over 29.

Function OF value # of OF evaluations
DPSO PSO DPSO PSO
1 94 6 100 0
2 85 15 0 100
3 88 12 0 100
4 18 82 99 1
5 88 12 100 0
6 100 0 100 0
7 100 0 100 0
8 86 14 100 0
9 81 19 0 100
10 28 72 100 0
11 88 12 0 100
12 91 9 100 0
13 82 18 100 0
14 58 42 100
15 83 17 0 100
16 36 64 0 100
17 55 45 100 0
18 100 0 100 0
19 76 24 100 0
20 100 0 100 0
21 100 0 100 0
22 94 6 0 100
23 94 6 0 100
24 85 15 0 100
25 100 0 100 0
26 7 23 100 0
27 100 0 0 100
28 95 5 100 0
29 61 39 100 0
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