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Abstract. In this paper, we use the quantum Jensen-Shannon diver-
gence as a means to establish the similarity between a pair of graphs
and to develop a novel graph kernel. In quantum theory, the quantum
Jensen-Shannon divergence is defined as a distance measure between
quantum states. In order to compute the quantum Jensen-Shannon di-
vergence between a pair of graphs, we first need to associate a density
operator with each of them. Hence, we decide to simulate the evolution
of a continuous-time quantum walk on each graph and we propose a
way to associate a suitable quantum state with it. With the density op-
erator of this quantum state to hand, the graph kernel is defined as a
function of the quantum Jensen-Shannon divergence between the graph
density operators. We evaluate the performance of our kernel on several
standard graph datasets from bioinformatics. We use the Principle Com-
ponent Analysis (PCA) on the kernel matrix to embed the graphs into
a feature space for classification. The experimental results demonstrate
the effectiveness of the proposed approach.

Keywords: Graph Kernels, Continuous-time QuantumWalk, Quantum
Jensen-Shannon Divergence.

1 Introduction

There has been an increasing interest in learning graph structures using graph
kernels. A graph kernel is usually defined in terms of a similarity measure be-
tween graphs [1]. To extend the large spectrum of kernel methods from the vec-
torial domain to the graph domain, Haussler [2] proposed a generic way, named
R-convolution, to define a kernel between two graphs by decomposing them
and measuring the pairwise similarities between the resulting substructures. For
example, Kashima et al. [3] proposed a graph kernel where they compute the
number of matchings random walks in a pair of graphs. Borgwardt et al. [4]
proposed a shortest path kernel where they enumerate the shortest paths which
possess the same length. Shervashidze et al. [5] developed a subtree kernel on
limited size subtrees where they iteratively update the vertex labels in a pair

� Edwin R. Hancock is supported by a Royal Society Wolfson Research Merit Award.

W.G. Kropatsch et al. (Eds.): GbRPR 2013, LNCS 7877, pp. 121–131, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



122 L. Bai et al.

of graphs, and then count the numbers of matching vertex labels between pairs
of subtrees in the two graphs. The main feature of these graph kernels is that
they usually share the exploit the topological information on the arrangement of
vertices and edges in a graph. An attractive alternative kernel measure between
a pair of graphs is based on measuring the mutual information using the classical
Jensen-Shannon divergence. In probability theory, the classical Jensen-Shannon
divergence is a similarity measure between probability distributions, and it is
symmetric, always well defined and bounded [6]. In [7], we have used the clas-
sical Jensen-Shannon divergence to define a Jensen-Shannon kernel for graphs.
Here, the Jensen-Shannon kernel between a pair of graphs is defined using the
classical Jensen-Shannon divergence between some suitably defined probability
distributions over the vertices of the graphs. Since the entropy associated with a
probability distribution of a graph can be directly computed without the need of
decomposing the graph, the Jensen-Shannon kernel, unlike the aforementioned
graph kernels, avoids the computational burdensome of comparing the similari-
ties between all the pairs of substructures of the graphs.

To develop the work in [7] further, we aim to extend the classical Jensen-
Shannon divergence measure of graphs into the context of quantum theory by
using the quantum Jensen-Shannon divergence [6,8], and then use this as a means
of defining a novel graph kernel. Unlike the classical divergence, which is defined
as a similarity measure between probability distributions, the quantum Jensen-
Shannon divergence is introduced in quantum theory as a distance measure
between quantum states, where a quantum state is described by its density op-
erator [8]. In order to compute the quantum Jensen-Shannon divergence between
a pair of graphs, we first need to associate a quantum state with each graph.
To this end, we propose to define a mixed quantum state which is based on the
evolution of a continuous-time quantum walk on each graph.

Recently, the continuous-time quantum walk has been introduced as the nat-
ural quantum analogue of the classical random walk by Farhi and Gutmann in
[9]. Similarly to the classical random walk on a graph, its state space is the set
of vertices of the graph. However, unlike the classical random walk, whose state
vector is real-valued and whose evolution is governed by a double stochastic ma-
trix, the state vector of the continuous-time quantum walk is complex-valued and
its evolution is governed by a time-varying unitary matrix. The continuous-time
quantum walk possesses a number of interesting properties which are not exhib-
ited by the classical random walk. For instance, the continuous-time quantum
walk is reversible and non-ergodic, and does not have a limiting distribution.
Hence, the continuous-time quantum walk can offer us an elegant way to de-
sign quantum algorithms on graphs which have some interesting properties. For
further information on quantum walks, we refer the readers to the textbook [10].

In this paper we are interested in developing a quantum kernel for graphs
using the quantum Jensen-Shannon divergence and the continuous-time quan-
tum walk. Given a graph G, we start by evolving a continuous-time quantum
walk on G. The quantum walk evolution can then be described by an ensem-
ble of pure states each describing the state of the quantum walker at time t.
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As a consequence, we can associate with G the resulting mixed state and its
density operator. With the density operators of a pair of graphs to hand, the
proposed graph kernel is finally defined as the quantum Jensen-Shannon diver-
gence between their density operators. We evaluate the performance of our kernel
on several standard graph datasets from bioinformatics. We use the kernel Prin-
ciple Component Analysis (kPCA) on the kernel matrix to embed graphs into
a feature space where we perform the classification. The experimental results
demonstrate the effectiveness of the proposed framework.

2 Quantum Mechanical Background

In this section, we describe the quantum mechanical formalisms that will be used
in this work. We commence by reviewing the fundamental concept of continuous-
time quantum walk on a graph. We then describe how to associate a density
operator with a given graph through a continuous-time quantum walk. With the
density operator to hand, we finally show how to compute the von Neumann
entropy of the graph.

2.1 The Continuous-Time Quantum Walk

The continuous-time quantum walk is the natural quantum analogue of the
classical random walk [11,9]. Similarly to the classical random walk, the state
space of the continuous-time quantum walk defined on a graph G(V,E) is the
set of the vertices V of G(V,E). However, the evolution of the quantum walk is
governed by an unitary matrix rather than a stochastic matrix.

In [9], the basis state corresponding to the walk being at vertex u ∈ V in
G(V,E) is denoted, by Dirac notation, as |u〉. Here |u〉 are orthonormal vectors
in a n-dimensional complex-valued Hilbert space H. A general state of the walk
is then a complex linear combination of the basis states, and the state of the
walk at time t is defined as

|ψt〉 =
∑

u∈V

αu(t) |u〉 (1)

where the amplitude αu(t) ∈ C and |ψt〉 ∈ C|V | are both complex. The proba-
bility of the walk being at a particular vertex of the graph G(V,E) is given by
the square of the norm of the amplitude of the relative state. More formally, let
Xt be a random variable giving the location of the walk at time t. Then the
probability of the walk being at vertex u ∈ V at time t is given by

Pr(Xt = u) = αu(t)α
∗
u(t) (2)

where α∗
u(t) is the complex conjugate of αu(t). Moreover

∑
u∈V αu(t)α

∗
u(t) = 1

and αu(t)α
∗
u(t) ∈ [0, 1], for all u ∈ V , t ∈ R+.

Let A is the adjacency matrix of G(V,E), then the vertex degree matrix of
G(V,E) is a diagonal matrix D whose elements are given by D(u, u) = du =
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∑
v∈V A(u, v). From the degree matrix D and the adjacency matrix A we can

construct the Laplacian matrix L = D − A. Then the evolution of the walk at
time t is given by Schrödinger equation, where we take the Hamiltonian of the
system to be the graph Laplacian matrix L, as

∂

∂t
|ψt〉 = −iL |ψt〉 (3)

Given a initial state |ψ0〉, Eq.(3) can be solved to calculate the state of the walk
at a time, t, as

|ψt〉 = e−iLt |ψ0〉 (4)

where Ut = e−iLt is the unitary matrix. To implement the simulation of the quan-
tum walk evolution, we re-write Eq.(4) in terms of the spectral decomposition
L = Φ�ΛΦ of the Laplacian matrix L, where Λ = diag(λ1, λ2, ..., λ|V |) is a diag-
onal matrix with the ordered eigenvalues as elements (0 = λ1 < λ2 < ... < λ|V |)
and Φ = (φ1|φ2|...|φ|V |) is a matrix with the corresponding ordered orthonormal
eigenvectors as columns. Hence, Eq.(4) can also be re-written as

|ψt〉 = Φ�e−iΛtΦ |ψ0〉 (5)

In this work, we define the initial state |ψ0〉 of G(V,E) as

|ψ0〉 =
∑

u∈V

du√∑
u∈V dud

∗
u

|u〉 (6)

where du√∑
u∈V dud∗

u

is the initial amplitude on vertex u. In other words, the initial

probability distribution induced by |ψ0〉 is equal to the steady state of random
walk on G(V,E).

2.2 A Density Operator for Graphs

In quantum mechanics, the density operator ρ is a matrix that describes an
ensemble of pure states, i.e. a mixed state. A pure state is a quantum state
that can be described by a single state vector |ψ〉 and its density operator ρ
can be written as |ψ〉 〈ψ|. On the other hand, we can think of a mixed quantum
state as an ensemble of pure states described by a density operator ρ. More
formally, consider a quantum system that can be found in a number of pure
states {(|ψn〉 , n)|(n = 1, 2, . . . , N)} each with a probability pn. The density
operator (i.e. density matrix) of the system is then defined as

ρ =
∑

n

pn |ψn〉 〈ψn| (7)

Now we proceeed to show how to associate a density operator with a graph
through a continuous-time quantum walk. Consider a graph G(V,E) and
continuous-time quantum walk |ψt〉 onG. We can see |ψt〉 as a pure state describ-
ing the state of the walk at time t. If we associate with each of these pure states
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a probability pt = 1/T , we obtain a mixed state {(|ψt〉 , t)|(t = 1, 2, . . . , T )}
describing the quantum walk evolution on G(V,E). Hence, the density operator
ρG of G(V,E) of this mixed state is defined as

ρG =
T∑

t=1

pt |ψt〉 〈ψt| (8)

2.3 The von Neumann Entropy of A Graph

In quantum mechanics, the von Neumann entropy is an extension of the classical
Shannon entropy, and it is defined on a density matrix (i.e. density operator) ρ as
HN (ρ) = −Tr(ρ log ρ) [12]. Note that if ρ is the density matrix associated with
a pure state, then the von Neumann entropy of ρ vanishes. Consider a graph
G(V,E) and its density operator ρG defined as in Eq.(8), its von Neumann
entropy is

HN (ρG) = −Tr(ρG log ρG) (9)

Note that computingHN (ρG) is a rather complex operation, since it involves tak-
ing the logarithm of the density operator matrix ρG. In practice, it is more con-
venient to firstly determine the spectral decomposition of ρG = Φ�

ρ;GΛρ;GΦρ;G,
and then Eq.(9) can be re-written as

HN (ρG) = −
|V |∑

j

λj;ρ;G logλj;ρ;G (10)

where λ1;ρ:G, . . . , λj;ρ;G, . . . , λ|V |;ρ;G is the ordered eigenvalues of ρG.

3 A Quantum Jensen-Shannon Graph Kernel

In this section, we use the quantum Jensen-Shannon divergence to develop a
novel kernel for graphs. We commence by reviewing the concept of quantum
Jensen-Shannon divergence, which can be seen as an extension of the classi-
cal Jensen-Shannon divergence to the quantum realm. The quantum Jensen-
Shannon divergence between a pair of density operators is defined as a function
of the von Neumann entropy associated with the operators. With the density op-
erators to hand, we show that the quantum kernel between the pair of graphs can
be computed as a function of the quantum Jensen-Shannon divergence between
their density operators.

3.1 Classical and Quantum Jensen-Shannon Divergence

The classical Jensen-Shannon divergence is a non-extensive mutual information
measure defined between probability distributions over structured data, and it is
related to the Shannon entropy [13]. Assume there are two (discrete) probability
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distributions P = (p1, p2, . . . , pX) and Q = (q1, q2, . . . , qY ), the classical Jensen-
Shannon divergence between P and Q is defined as

DJS(P,Q) = HS

(P +Q

2

)
− 1

2
HS(P )− 1

2
HS(Q) (11)

where HS(P ) =
∑

x px log px is the Shannon entropy. The classical Jensen-
Shannon divergence is always well defined, symmetric, negative definite and
bounded, i.e., 0 ≤ DJS ≤ 1. By replacing the Shannon entropy HS of a proba-
bility distribution with the von Neumann entropy of a density operator as defined
in Eq.(10), in [6] the classical Jensen-Shannon divergence has been extended to
the quantum realm to define the quantum Jensen-Shannon divergence between
quantum states

DQJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2
HN (ρ)− 1

2
HN (σ) (12)

where ρ and σ are two density operators describing the corresponding quan-
tum states, and HN (.) is the von Neumann entropy of a density operator. The
quantum Jensen-Shannon divergence is always well defined, symmetric, positive
definite and bounded, i.e., 0 ≤ DQJS ≤ 1 [6].

3.2 A Quantum Jensen-Shannon Kernel for Graphs

We propose a novel quantum kernel for graphs by using the quantum Jensen-
Shannon divergence between the density operators associated with the graphs.
To this end, we let a continuous-time quantum walk evolve on a pair of graphs
Ga(Va, Ea) and Gb(Vb, Eb) with time t (t = 1, . . . , T ). Then the density operators
ρG;a and σG;b of Ga(Va, Ea) and Gb(Vb, Eb) can be computed from their mixed
states using Eq.(8). With the density operators ρG;a and σG;b, and the quantum
Jensen-Shannon divergence DQJS(ρG;a, σG;b) between ρG;a and σG;b computed
using Eq.(12) to hand, the quantum Jensen-Shannon divergence DQJS(Ga, Gb)
between the pair of graphs Ga(Va, Ea) and Gb(Vb, Eb) is

DQJS(Ga, Gb) = HN

(ρG;a + σG;b

2

)
− 1

2
HN (ρG;a)− 1

2
HN (σG;a) (13)

Then, we define the quantum Jensen-Shannon kernel kQJS(Ga, Gb) between
Ga(Va, Ea) and Gb(Vb, Eb) as

kQJS(Ga, Gb) = exp(λDQJS(Ga, Gb))

= exp(λHN

(ρG;a + σG;b

2

)
− 1

2
λHN (ρG;a)− 1

2
λHN (σG;a)) (14)

where λ is a decay factor which satisfies 0 < λ < 1, and HN (.) is the von
Neumann entropy of the density operator associated to the graph. Here λ is
used to ensure that the large values do not tend to dominant the kernel value.
In particular, in this work we use λ = 0.1.
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Lemma. The quantum Jensen-Shannon graph kernel is positive definite pd.
Proof. This follows the definitions in [6,8,14]. In [14], a diffusion kernel ks =
exp(λs(Gp, Gq)) associated with any symmetric similarity measure s(Gp, Gq) has
been proven to be pd. Since the quantum Jensen-Shannon divergence between a
pair of density operators is symmetric [6,8], then the proposed quantum Jensen-
Shannon graph kernel is pd.

Note that, a positive definite graph kernel is often called a valid kernel. Clearly,
the positive definiteness constraint restricts the class of valid graph kernels which
can be defined by different similarity measures on graphs. However, the property
of positive definiteness is crucial for the definition of kernel machines and turns
out to be sufficiently strong to implicate a considerable number of theoretical
properties associated with graph kernels [15].

3.3 Algorithmic Complexity

The computational complexity of the proposed quantum Jensen-Shannon kernel
of graphs depends on several factors. These factors include 1) the computation
of the initial state of the continuous-time quantum walk, 2) the simulation of
the continuous-time quantum walk evolution at each time step t = 1, 2, . . . , T ,
3) the construction of the density operator associated with the graph, and 4)
the computation of the von Neumann entropy of the density operator. It is clear
that these operations are all dependent on the graph size, and that the com-
plexity is highly influenced by the termination time T of the continuous-time
quantum walk evolution. For example, we can easily show that the cost of com-
puting the von Neumann entropy of the density operator is O(|V |2), where |V |
is the number of vertices of the graph. However, it’s easy to see that the over-
all complexity is dominated by that of computing the eigendecomposition of
the graph Laplacian, which is cubic in the number of vertices of the graph,
i.e. O(|V |3). This algorithmic complexity analysis reveals that our quantum
Jensen-Shannon kernel between graphs can be computed in polynomial time.

4 Experimental Evaluations

In this section, we demonstrate the performance of our quantum Jensen-Shannon
kernel, and then compare it to several state of the art graph based learning meth-
ods on three standard graph datasets abstracted from bioinformatics. These
datasets include: MUTAG, ENZYMES and PPIs. The MUTAG dataset con-
tains graphs representing 188 chemical compounds to predict mutagenicity. The
ENZYMES dataset contains graphs representing protein tertiary structures con-
sisting of 600 enzymes from the BRENDA enzyme database. The PPIs dataset
consists of protein-protein interaction networks (PPIs). Here we select Pro-
teobacteria40 PPIs and Acidobacteria46 PPIs as the testing graphs. Details
about the datasets are shown in Table.1 and [5,16].
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Table 1. Information of the Graph based Datasets

Datasets MUTAG ENZYMES PPIs

Maximum # vertices 28 126 232
Minimum # vertices 10 2 3
Average # vertices 17.93 32.63 109.60

# testing graphs 188 600 86

4.1 Von Neumann Entropy Evaluation

We commence by exploring the relationship between the von Neumann entropy
of a graph and its corresponding increasing time t. In our experiments, we utilize
the testing graphs in the MUTAG, ENZYMES and PPIs datasets. For each
graph, we let the continuous-time quantum walk evolve until a maximum time t,
where we vary t from 1 to 50. For each time t we compute the density operator
associated with the graph using Eq.(8). Then the von Neumann entropy of the
graph at each time t can be computed from its corresponding density operator.
The experimental results are shown in Fig.1. The left, middle and right subfigures
of Fig.1 show the results of the evaluation on the MUTAG, Enzymes and PPIs
datasets separately. The x-axis shows the time t which is from 1 to 50, and the
y-axis shows the mean value of the von Neumann entropies of graphs belonging
to the same class at each time t. Here the different lines represent the entropies
of different classes of graphs separately. This evaluation suggests that the von
Neumann entropies of different classes of graphs can be divided well, and tend
to be stable with increasing time t.
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Fig. 1. Evaluations on the von Neumann Entropy for increasing time t

4.2 Experiments on Standard Graph Datasets from Bioinformatics

Experimental Setup. We evaluate the performance of our quantum Jensen-
Shannon kernel on the graph datasets abstracted from bioinformatics databases,
and then compare it with several alternative state of the art graph learning
methods. These methods include 1) the Weisfeiler-Lehman subtree kernel [5],
2) the shortest path graph kernel [4], 3) the Shannon entropy associated with
the information functionals FV and FP [17], and 4) the Ihara zeta function on



A Quantum Jensen-Shannon Graph Kernel Using the Continuous-Time 129

graphs [18]. Based on the evaluation in Section 4.2, here we set time t from 1 to
50. For the kernel methods, we compute the kernel matrix of each graph kernel
on each dataset, we then apply the PCA [19] on the kernel matrix to embed the
graphs into principle component space as feature vectors. For other methods,
we compute the characteristics values of graphs on each dataset. We perform
10-fold cross-validation using the Support Vector Machine (SVM) Classification
associated with the Sequential Minimal Optimization (SMO) [20] on the graph
feature vectors or characteristics values to evaluate the performance of our kernel
and that of the alternative methods. We use nine samples for training and one for
testing. All the SMO-SVMs and their parameters were performed and optimized
on a Weka workbench [21]. We report the average classification accuracies of each
method in Table 2.

Results. a) On the MUTAG dataset, the accuracies of all the methods are
similar, our kernel overcomes or is competitive to the alternatives. b) On the
ENZYMES dataset, the accuracy of our kernel is obviously lower than that of
the Weisfeiler-Lehman subtree kernel, but is competitive to that of the shortest
path graph kernel and outperforms that of others. c) On the PPIs dataset,
the accuracy of our kernel is obviously higher than that of the alternatives.
As a whole, our kernel outperforms or is competitive to the alternatives, only
the Weisfeiler-Lehman subtree kernel and the shortest path graph kernel are
competitive to our kernel on the ENZYMES dataset.

Table 2. Accuracies Comparisons on Graph Datasets abstracted from Bioninformatics

Datasets MUTAG ENZYMES PPIs

quantum Jensen-Shannon kernel 84.04% 32.16% 76.20%

Weisfeiler-Lehman subtree kernel 84.57% 38.50% 76.16%

shortest path graph kernel 85.29% 31.16% 78.45%

Shannon entropy with FV 84.57% 24.17% 70.93%

Shannon entropy with FP 84.57% 24.17% 70.93%

Ihara zeta function on graphs 80.85% 32.00% 70.93%

5 Conclusion

In this paper, we developed a novel graph kernel by using the quantum Jensen-
Shannon divergence and the continuous-time quantum walk on graphs. Given
a graph, we evolved a continuous-time quantum walk on its structure and we
showed how to associate a mixed quantum state to the graph and how to com-
pute the von Neumann entropy of the corresponding density operator. With the
von Neumann entropies to hand, the quantum Jensen-Shannon kernel between a
pair of graphs was defined as a function of the quantum Jensen-Shannon diver-
gence between the corresponding density operators. Finally, we used the Prin-
ciple Component Analysis (PCA) on the kernel matrix to embed the graphs
into a feature space where we performed the classification task. Experiments on
several standard datasets demonstrate the effectiveness of the proposed graph
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kernel. Our future work is to extend the quantum graph kernel to a quantum
hypergraph kernel. In [22], we have developed a hypergraph kernel by using
the classical Jensen-Shannon divergence. In [23], we have explored the use of
discrete-time quantum walks on a directed line graph which can be generated by
transforming a hypergraph. It would thus be interesting to extend these works by
using the quantum Jensen-Shannon divergence to compare the quantum walks
of hypergraphs based on their directed line graphs.
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