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Abstract. Kernel methods provide a way to apply a wide range of learn-
ing techniques to complex and structured data by shifting the represen-
tational problem from one of finding an embedding of the data to that
of defining a positive semidefinite kernel. In this paper, we propose a
novel kernel on unattributed graphs where the structure is character-
ized through the evolution of a continuous-time quantum walk. More
precisely, given a pair of graphs, we create a derived structure whose
degree of symmetry is maximum when the original graphs are isomor-
phic. With this new graph to hand, we compute the density operators of
the quantum systems representing the evolutions of two suitably defined
quantum walks. Finally, we define the kernel between the two original
graphs as the quantum Jensen-Shannon divergence between these two
density operators. The experimental evaluation shows the effectiveness
of the proposed approach.

Keywords: Graph Kernels, Graph Classification, Continuous-Time
Quantum Walk, Quantum Jensen-Shannon Divergence.

1 Introduction

Graph-based representations have become increasingly popular due to their abil-
ity to characterize in a natural way a large number of systems which are best
described in terms of their structure. Concrete examples include the use of graphs
to represent shapes @], metabolic networks ﬂj], protein structure E], and road
maps @] Unfortunately, our ability to analyse this wealth of data is severely
limited by the restrictions posed by standard pattern recognition techniques,
which usually require the graphs to be first embedded into a vectorial space,
a procedure which is far from being trivial. The reason for this is that there
is no canonical ordering for the nodes in a graph and a correspondence order
must be established before analysis can commence. Moreover, even if a corre-
spondence order can be established, graphs do not necessarily map to vectors of
fixed length, as the number of nodes and edges can vary.

Kernel methods %, whose best known example is furnished by support vector
machines (SVMs) [6], provide a neat way to shift the problem from that of
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finding an embedding to that of defining a positive semidefinite kernel, via the
well-known kernel trick. In fact, once we define a positive semidefinite kernel
k:X xX — R on aset X, then we know that there exists a map ¢ : X —
H into a Hilbert space H, such that k(z,y) = ¢(z) ¢(y) for all z,y € X.
Thus, any algorithm that can be formulated in terms of scalar products of the
¢(x)s can be applied to a set of data on which we have defined our kernel.
As a consequence, we are now faced with the problem of defining a positive
semidefinite kernel on graphs rather than computing an embedding. However,
due to the rich expressiveness of graphs, also this task has proven to be difficult.

Many different graph kernels have been proposed in the literature [7+9]. Graph
kernels are generally instances of the family of R-convolution kernels introduced
by Haussler [10]. The fundamental idea is that of defining a kernel between two
discrete objects by decomposing them and comparing some simpler substruc-
tures. For example, Gértner et al. |7] propose to count the number of common
random walks between two graphs, while Borgwardt and Kriegel [8] measure the
similarity based on the shortest paths in the graphs. Shervashidze et al. |9], on
the other hand, count the number of graphlets, i.e. subgraphs with k£ nodes. Note
that these kernels can be defined both on unattributed and attributed graphs,
although we will restrict our analysis to the simpler case of unattributed graphs,
while the more general case will be the focus of future work. Another interest-
ing approach is that of Bai and Hancock [11], where the authors investigate the
possibility of defining a graph kernel based on the Jensen-Shannon kernel.

In this paper, we introduce a novel kernel on unattributed graphs where we
probe the graph structure through the evolution of a continuous-time quantum
walk |12, [13]. In particular, we are taking advantage of the fact that the in-
terference effects introduced by the quantum walk seem to be enhanced by the
presence of symmetrical motifs in the graph [14, [15]. To this end, we define a
walk onto a new structure that is maximally symmetric when the original graphs
are isomorphic. Finally, to define the kernel we make use of the quantum Jensen-
Shannon divergence, a measure which has recently been introduced as a means
to compute the distance between quantum states [16, [L7].

The remainder of this paper is organized as follows: Section [2] provides an
essential introduction to the basic terminology required to understand the pro-
posed quantum mechanical framework. With these notions to hand, we introduce
our graph kernel in Section Bl SectionMdlillustrates the experimental results, while
the conclusions are presented in Section [l

2  Quantum Mechanical Background

Quantum walks are the quantum analogue of classical random walks |13]. In
this paper we consider only continuous-time quantum walks, as first introduced
by Farhi and Gutmann in [12]. Given a graph G = (V| E), the state space
of the continuous-time quantum walk defined on G is the set of the vertices
V' of the graph. Unlike the classical case, where the evolution of the walk is
governed by a stochastic matrix (i.e. a matrix whose columns sum to unity), in



A Continuous-Time Quantum Walk Kernel for Unattributed Graphs 103

the quantum case the dynamics of the walker is governed by a complex unitary
matrix i.e., a matrix that multiplied by its conjugate transpose yields the identity
matrix. Hence, the evolution of the quantum walk is reversible, which implies
that quantum walks are non-ergodic and do not possess a limiting distribution.
Using Dirac notation, we denote the basis state corresponding to the walk being
at vertex u € V as |u). A general state of the walk is a complex linear combination
of the basis states, such that the state of the walk at time ¢ is defined as

) = 3 aul®) lu) (1)
ueV
where the amplitude a,(t) € C and |¢;) € C!VI are both complex.

At each point in time the probability of the walker being at a particular vertex
of the graph is given by the square of the norm of the amplitude of the relative
state. More formally, let X! be a random variable giving the location of the
walker at time ¢t. Then the probability of the walker being at the vertex u at
time t is given by

Pr(X' = u) = ()i, (1) 2)

where o, (t) is the complex conjugate of a,,(t). Moreover oy, (t)as (t) € [0, 1], for
allu e V, t € RT, and in a closed system Y- oy an(t)o(t) = 1.

u

Recall that the adjacency matrix of the graph G has elements

_ J1if (u,v) € E
Auw = {0 otherwise (3)

The evolution of the walk is governed by Schrédinger equation, where we take
the Hamiltonian of the system to be the graph adjacency matrix, which yields

d )
o 10 = —iAlg) )

Given an initial state |1)g), we can solve Equationlto determine the state vector
at time ¢

[the) = e |hg) = e MDT ) (5)

where A = @A®T is the spectral decomposition of the adjacency matrix.

2.1 Quantum Jensen-Shannon Divergence

A pure state is defined as a state that can be described by a ket vector |;).
Consider a quantum system that can be in a number of states |¢;) each with
probability p;. The system is said to be in the ensemble of pure states {|¢;) ,p;}.
The density operator (or density matrix) of such a system is defined as

p= sz‘ i) (il (6)
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The Von Neumann entropy [18] of a density operator p is

Hy(p) = —Tr(plogp) = Z)\ log A;, (7)

where the A;s are the eigenvalues of p. With the Von Neumann entropy to hand,
we can define the quantum Jensen-Shannon divergence between two density
operators p and o as

Dys(p.0) = Hx ("3 7) = S Hv(o) — Hn(o) 0

This quantity is always well defined, symmetric and negative definite [19]. It
can also be shown that Djs(p,0) is bounded, ie., 0 < Djs(p,0) < 1. Let
p =Y. pip; be a mixture of quantum states p;, with p; € R* such that _, p; =1,
then we can prove that

HN(ZPZ‘PZ‘) < Hs(pi) + ZPiHN(Pi) 9)

where the equality is attained if and only if the states p; have support on or-
thogonal subspaces. By setting p; = p2 = 0.5, we see that

Dys(po) = Hy (") = ) Hxp) — (o) <1 (10)

Hence D ;g is always less or equal than 1, and the equality is attained only if p
and o have support on orthogonal subspaces.

3 QJSD Kernel

Given two graphs G1(V1, E1) and Ga(Vz, Es) we build a new graph G = (V,€)
where V = V3 UVa, &€ = E1 U Ey U Eig, and (u,v) € E15 only if u € V5 and
v € V5.With this new structure to hand, we define two continuous-time quantum
walks [0, ) =3, o Yo, lu) and o) = oy ¥, [u) on G with starting states

_ “ lquG1 + “ 1fu€G1
_ = 11
You { Wifue Gy You { +% if u e Gy )

where d,, is the degree of the node u and C' is the normalisation constant such
that the probabilities sum to one.

We let the two quantum walks evolve until a time 7" and we define the average
density operators pr and or over this time as

N 1 (7
| eowila o= eyl a2

In other words, we defined two mixed systems with equal probability of being in
any of the pure states defined by the quantum walks evolutions.
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Then, given two unattributed graphs G; and G2, we define the quantum
Jensen-Shannon kernel kr(G1, G2) between them as

kr(G1,G2) = Dys(pr,or) (13)

where pr and op are the density operators defined as in Eq. Note that this
kernel is parametrised by the time 7. As it is not clear how we should set this
parameter, in this paper we propose to let T — oo. However, in Section [ we
will show that a proper choice of T can yield an increased average accuracy in
an SVM classification task.

We now proceed to show some interesting properties of our kernel. First,
however, we need to prove the following

Lemma 1. If G; and Gs are two isomorphic graphs, then pr and op have
support on orthogonal subspaces.

Proof. We need to prove that

1 T T
(pT)TO'T = T2 / Pty dtl / Oty dtz =0 (14)
0 0

where O is the matrix of all zeros, p; = |1/1;> <¢[| and o, = |1/1t+>< ,ﬂ Note
that if ,ot o, = 0 for every ¢; and to, then (,OT)TO'T = 0. We now prove that if
(G1 is isomorphic to G4 then 1/1t1 ’ wtz = 0 for every t; and ts.

Let U = e % be the unitary evolution operator of the quantum walk. If
t1 =ty = t, then (g | (U)TU" |¢§) = 0 since (U')TU" is the identity matrix
and the initial states are orthogonal by construction. On the other hand, if
t1 # to, we have <1/10_’ UAt ’¢6r> = 0 where A; = t5 — t1. To conclude the proof
we rewrite the previous equation as

(o | U2 wi) = Zwk*o Z%U”

*Z%ozﬂ% lk1 Zwkm Zwlo lkz
—Zwm (Zwm Z%o ) =0 (15)

where the indices [, k, k1 and ko run over the nodes of G, G; and G5 respectively.
To see that Eq. [[8l holds, note that U is a symmetric matrix and it is invariant
to graph symmetries, i.e., if u and v are symmetrlc then UA! = UA!, and that

if G; and G are 1somorphlc7 then k1 = ko and ¢1:k10 ¢k1+1:k20~

Corollary 1. Given a pair of graphs Gy and Gs, the kernel satisfies the follow-
ing properties: 1) 0 < kp(G1,G2) <1 and 2) if G1 and G2 are isomorphic, then
kr(Gy,Gs) = 1.
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Proof. The first property is trivially proved by noting that, according to Eq. I3]
the kernel between G; and G5 is defined as the quantum Jensen-Shannon di-
vergence between two density operators, and then recalling that the value of
quantum Jensen-Shannon divergence is bounded to lie between 0 and 1.

The second property follows again from Eq.[I3] and Theorem [l It is sufficient
to note that the quantum Jensen-Shannon divergence reaches its maximum value
if and only if the density operators have support on orthogonal spaces.

Unfortunately we cannot prove that our kernel is positive semidefinite, but both
empirical evidence and the fact that the Jensen-Shannon Divergence is negative
semidefinite on pure quantum states |[19] while our graph similarity is maximal
on orthogonal states suggest that it might be.

3.1 Kernel Computation

We conclude this section with a few remarks on the computational complexity
of our kernel. Recall that |;) = e~ |¢)), then we rewrite Eq. [2 as

T
pr=p [ e ) (il e a (16)

Since e~ = e~ P T we can rewrite the previous equation in terms of the

spectral decomposition of the adjacency matrix,

1 /T . ,
pr= / De DT |4hg) (ho| PN BT dt (17)
0

The (r,c) element of pr can be computed as

T
pr(r,c) = ; /O (Zqurkei“t@kwg,) (ZZwé,,qumne”"%m) dt
Let ¥r = 3, dutbor and ¥ = 32, Gmntl,, then

T
pT(T’, C) = 711 /O (Z ¢rk€7i)\kt'l/_)k Z ¢cnei)\nt'l/_)n> dt (19)
k n

which can be finally rewritten as

I
pr(r,c) = 32 bukbentintin /0 A= gy (20)
kK n
If we let T'— oo, Eq. B0l further simplifies to
PT(T, C) = Z Z Z QS()‘k)T,mqs()‘k)C,n'lZ}m'lZ)n (21)
)\ke/i m n

where A is the set of unique eigenvalues of A and @(A) is the matrix whose
columns are the eigenvectors associated with A\;. As a consequence, we see that
the complexity of computing the QJSD kernel is upper bounded by that of
computing the eigendecomposition of G, i.e. O(|V|?).
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Fig. 1. Two-dimensional MDS embeddings of the synthetic data (top row) on different
distance matrices (bottom row). From left to right, the distance is computed as the edit
distance between the graphs, the distance between the graph spectra and the distance
associated with the QJSD kernel.

4 Experimental Results

In this section, we evaluate the performance of our kernel and we compare it with
a number of well-known alternative graph kernels, namely the classic random
walk kernel [7], the shortest-path kernel |§] and a set of graphlet kernels [d]. We
test different variants of the graphlet kernel, where we vary the graphlet sizes
k € {3,4} and the type of graphlets (all possible size k graphlets vs only those
which are fully connected).

The experiments are performed on three different standard dataset, namely
MUTAG, Enzymes and PPI. Table[llreports some statistics about these datasets.
MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic compounds
labeled according to whether or not they have a mutagenic effect on the Gram-
negative bacterium Salmonella typhimurium. Enzymes is a dataset of graphs
representing protein tertiary structures that consists of 600 enzymes from the
BRENDA enzyme database. Finally, the PPI dataset consists of protein-protein
interaction (PPIs) networks related to histidine kinase from two different groups:
40 PPIs from Acidovorax avenae and 46 PPIs from Acidobacteria. To these three
datasets, we add a fourth set of 30 synthetically generated graphs, 10 for each
class. The graphs belonging to each class were sampled from a generative model
with size 12,14 and 16 respectively. Details about the generative model can be
found in [20].
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We first evaluate the Multidimensional Scaling embedding of the synthetic
graphs for three different distance matrices, namely the edit distance, the
distance between the graph spectra and the distance corresponding to our kernel
function. The distance between the graph spectra is computed as follows. For
each graph G with adjacency matrix A, we compute the column vector sg of
the ordered eigenvalues of A. As the graphs are of different sizes and thus their
spectra are of different lengths, the vectors are all made to be the same length
by padding zeros to the end of the shorter vector. The (4, j)th element of the
distance matrix is then d;; = ||s; — s;||. Figure [[] shows the MDS embeddings
and the graph distance matrices. It is clear that the distance matrix associated
with our kernel has a well-defined block structure which is reflected in the MDS
embedding, where the three classes seem to be easily separable.

A second experiment uses a binary C-SVM to test the efficacy of our kernel
for classification. We perform 10-fold cross validation, where for each sample we
independently tune the value of C, the SVM regularizer constant, by considering
the training data from that sample. The process is averaged over 100 random
partitions of the data. Given this setting, we first investigate the effect of the time
parameter in the classification accuracy. Fig. Bl shows the value of the average
accuracy (+ standard error) on the synthetic dataset as the time parameter T'
varies. Here the red horizontal line shows the mean accuracy for T — oco. The
plot shows that the choice of the time greatly influences the performance of
our kernel, as we can clearly see that the average accuracy reaches a maximum
before stabilizing around the asymptotic value. This should be compared with
the average accuracy that we achieve for T' — oo, which, although not optimal,
is not too far from the maximum. however, a more detailed study of the time
parameter is beyond the scope of this paper and will thus be the subject of
future work.

Finally, TablePlreports the average classification accuracies (+ standard error)
of the different kernels. As we can see, the proposed kernel achieves the best
result on three out of four datasets. The poor accuracy on the Enzymes dataset
is likely to be linked to the presence of disjoint graphs, as this will affect the
way in which the walk spreads through the graph. Note, however, that this is
a particularly hard dataset where the structures of the graphs provide limited
information about the underlying class structure. In fact, all kernels based only
on graph structure perform only marginally better than random guess, and node
and edge attributes need to be taken into account too.

Table 1. Statistics on the graph datasets

datasets # graphs # classes avg # nodes disjoint

Synth 30 3 (10 each) 13.77 N
MUTAG 188 2 (125 vs. 63) 17.93 N
Enzymes 600 6 (100 each) 32.63 Y
PPI 86 2 (40 vs. 46) 109.60 N
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Fig. 2. The mean accuracy (% standard error) of the QJSD kernel as the time param-
eter T varies. The red horizontal line shows the mean accuracy for T' — oo.

Table 2. Classification accuracy (+ standard error) on unattributed graph datasets.
QJSD is the proposed kernel, SP is the shortest-path kernel |8], RW is the random walk
kernel [7], while G (CGy) denotes the graphlet kernel computed using all graphlets
(all the connected graphlets, respectively) of size k [9].

Kernel Synth MUTAG Enzymes PPI

QJSD 85.20 £0.47 86.55 +£0.15 24.20+0.38 78.43 +0.30
Sp 74.90 £0.33 85.02+0.17 28.55+0.42 66.14 £+ 0.40
RwW 78.53 £0.43 77.87+0.21 22.154+0.37 69.70 £0.30
Gs 79.33+£0.39 82.04+0.14 24874+0.22 51.954+0.44
Ga 83.60 £0.48 81.89+0.13 28.60+0.21 73.14+£0.37
CGs  56.57£047 6643 £0.08 19.92+0.27 52.89+0.50
CGy 81.57+£0.54 69.08+0.15 23.056+0.06 61.56+0.41

5 Conclusions

In this paper, we have introduced a novel kernel on unattributed graphs where
we probe the graph structure using the time evolution of a continuous-time
quantum walk. More precisely, given a pair of graphs we computed the quan-
tum Jensen-Shannon divergence between the evolutions of two quantum walks
on a suitably defined union of the original graphs. With the quantum Jensen-
Shannon divergence to hand, we established our graph kernel. We performed
an extensive experimental evaluation and we demonstrated the effectiveness of
the proposed approach. Future work will focus on incorporating node and edge
labels information, as well as studying the role of the time parameter more
in depth.
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