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Abstract This paper revisits a recent study by Posen and Levinthal (Manag Sci 4

58:587–601, 2012) on the exploration/exploitation tradeoff for a multi-armed bandit 5

problem, where the reward probabilities undergo random shocks. We show that 6

their analysis suffers two shortcomings: it assumes that learning is based on stale 7

evidence, and it overlooks the steady state. We let the learning rule endogenously 8

discard stale evidence, and we perform the long run analyses. The comparative study 9

demonstrates that some of their conclusions must be qualified. 10

1 Introduction 11

In many situations, an agent must simultaneously make decisions to maximize 12

its rewards while learning the process that generates these rewards. This leads 13

to a tradeoff between exploration versus exploitation. Exploratory actions gather 14

information and attempt to discover profitable actions. Exploitative actions aim to 15

maximize the current reward based on the present state of knowledge. When the 16

agent diverts resources towards exploration, he sacrifices the current reward in 17

exchange for the hope of higher future rewards. 18

The dilemma between exploration and exploitation is well-known in machine 19

learning, where the agent is an algorithm; see f.i. Cesa-Bianchi and Lugosi [2]. 20

Within this field, the simplest and most frequent example is the multi-armed 21

bandit problem, extensively studied in statistics as well (Barry and Fristedt 1985).AQ1 22

However, in the literature on organizational studies, the exploration/exploitation 23

trade-off has come to be associated mostly with a seminal contribution by March [5], 24

that introduced a peculiar model of his own. 25
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The popularity of March [5], as witnessed by more than 10,000 citations on 26

Google Scholar, has firmly placed the exploration/exploitation trade-off among the 27

methodological toolbox of organizational studies, but the peculiarity of his modeling 28

choice has shifted attention away from the multi-armed bandit problem as a 29

modeling tool. This shortcoming was recently addressed by Posen and Levinthal [6], 30

that explicitly discuss some similarities between the bandit problem and the March 31

model. 32

Their paper inquires about the implications of the exploration/exploitation 33

trade-off for organizational learning when the environment changes dynamically 34

or, more precisely, when the process generating the rewards is not stationary. 35

Using the bandit problem as a workhorse, they challenge the conventional view 36

that an increasingly turbulent (i.e., non-stationary) environment should necessarily 37

elicit more exploration. 38

We believe that Posen and Levinthal [6] make two very important contributions. 39

First, they raise fundamental questions (as well as providing convincing answers) 40

about the impact of turbulence in an environment for organizational learning. 41

Second, they implicitly make a strong methodological case for a revival of the bandit 42

problem as a modeling tool. 43

On the other hand, we argue that two (apparently minor) of their modeling 44

choices are potentially misleading. The first one is the length of the horizon over 45

which the study is carried out: this is too short to provide information about the 46

steady state. The second one is that learning is based on the whole past evidence 47

(including what turbulence has made obsolete): this makes it too slow to detect 48

shocks, and hence ineffective. 49

This paper sets out to discuss and correct these flaws, revisiting their analysis 50

over the short and the long run. We propose two (nested) learning models that 51

endogenously recognize and shed away stale evidence, and compare their perfor- 52

mance with the original model by Posen and Levinthal [6]. We check several of 53

their conclusions, and show how a few of these need to be qualified. Paraphrasing 54

the title of their paper, our major result demonstrates the importance of packing 55

light (evidence) when chasing a moving target. Shedding away obsolete information 56

is crucial to attain a superior performance as well as making learning resilient to 57

shocks. 58

2 The Model 59

We summarize the model proposed in Posen and Levinthal [6]; then, we present the 60

crucial tweaks we advocate. At each period t , an organization must choose among 61

N D 10 alternatives. Each alternative i D 1; : : : ; 10 has two possible outcomes: 62

C1 (success) or –1 (failure). These are generated as a (Bernoullian) random reward 63

Ri
t in f�1; 1g, with probability pi

t of success. Thus, the state of the environment in 64

period t is summarized by the vector Pt D Œp1
t ; : : : ; p10

t �. 65
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In the standard bandit problem, the environment is stationary and Pt D P for 66

all t . Posen and Levinthal [6]—from now, PL for brevity—relax this assumption 67

and introduce environmental turbulence as follows. Each alternative i is given an 68

initial probability pi
0 randomly drawn from a Beta distribution with ˛ D ˇ D 2. 69

This has a unimodal and symmetric density, with expected value 1=2 and variance 70

1=20. The turbulence in the environment follows from a probabilistic shock that may 71

occur in each period with probability �. When � D 0, the environment is stationary; 72

increasing � raises the level of turbulence. For � > 0, PL assume � D 0:005 � 2k
73

with k being an integer between 0 and 6. When a shock occurs, each of the payoff 74

probabilities is independently reset with probability 1=2 by an independent draw 75

from the same Beta distribution. 76

At each period t , the organization holds a propensity qi
t for each alternative that 77

is formally similar (and proportional to) its subjective probability assessment that 78

the i -th alternative yields success, and thus leads to a reward of 1. At time t , its 79

propensities over the 10 available alternatives are summarized by the vector Qt D 80

Œq1
t ; : : : ; q10

t �. Propensities are updated using a simple rule, akin to similar treatments 81

in reinforcement learning; see Duffy [3]. 82

Let ni
t be the number of successes and the total number of plays for the i -th 83

alternative up to (and including) period t . PL define the propensities recursively by 84

qi
tC1 D

�
ni

t

ni
t C 1

�
qi

t C
�

1

ni
t C 1

�
Ri

t C 1

2
(1)

with the initial condition qi
0 D 1=2 for each i . As ni

t increases, the weight associated 85

to the most recent outcome declines. 86

This paper follows PL’s assumption about propensities to facilitate comparison. 87

However, we notice that Eq. (1), while certainly reasonable, is a reduced form that 88

omits the specification of the relationship between qi
t and the number of successes 89

and failures experienced with the i -th alternative. A more explicit formulation might 90

have been the following. Let si
t and ni

t be respectively the number of successes and 91

the total number of plays for the i -th alternative up to (and including) period t . Let 92

us define the propensities by qi
tC1 D .1 C si

t /=.2 C ni
t /, with the initial condition 93

si
0 D ni

0 D 0 to ensure qi
1 D 1=2 for each i . Then the updating rule for propensities 94

would read 95

qi
tC1 D

�
ni

t C 1

ni
t C 2

�
qi

t C
�

1

ni
t C 2

�
Ri

t C 1

2
96

The choice behavior in each period depends on the distribution of propensities 97

and on the intensity of the search strategy. More precisely, PL assume a version of 98

the softmax algorithm; see f.i. Sutton and Barto [7]. In period t , the organization 99

picks alternative i with probability 100

mi
t D exp

�
10qi

t =�
�

P10
j D1 exp

�
10q

j
t =�

� 101
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where the parameter � in f0:02; 0:25; 0:50; 0:75; 1g directly relates to the intensity 102

of the exploration motive. For � D 0:02, the organization picks with very high 103

probability the alternative with the highest current propensity; this is an exploitative 104

action. As � increases, the choice probability shifts towards other alternatives and 105

exploratory actions become more likely. 106

We argue that the evolution of propensities in (1) is not plausible for dynamic 107

environments, because it is implicitly based on a cumulative accrual of evidence. 108

When � > 0 and a shock displaces alternative i , the past outcomes for i become 109

uninformative about the new value of pi
t . However, Rule (1) keeps cumulating such 110

stale evidence when computing the propensity for i . Moreover, since the weight 111

for a new piece of evidence decreases as 1=.ni
t C 1/, the marginal impact of more 112

recent information is decreasing; that is, the cumulative effect of past history tends 113

to overwhelm fresh evidence. For instance, suppose that alternative i has had a long 114

history of successes; if a negative shock makes pi drop, the firm would take in a 115

substantial streak of failures before its propensity qi
t is brought back in line with the 116

new value of pi . 117

This bias may be partially corrected by a higher � , because increasing exploration 118

speeds up the alignment process between the propensity vector Qt and the actual 119

probabilities in Pt . However, this is inefficient because it takes ever longer streaks 120

of experiments to overturn the cumulated past evidence. One of our goals is to 121

demonstrate the advantages for an organization to shed away stale evidence in a 122

turbulent environment. 123

Formally, the root of the problem in PL’s setup is that the marginal impact of 124

the last observation in Eq. (1) declines as 1=.ni
t C 1/. Among many different ways 125

to correct this problem, an optimal choice should depend on �. However, the exact 126

value of this parameter is unlikely to be known to the organization. Therefore, we 127

opt for a simple rule that is robust to such lack of quantitative information about �. 128

Its robustness comes from a built-in mechanism that modulates the intensity with 129

which past evidence is shed away as a function of the degree � of turbulence in the 130

environment. 131

We advocate two modifications to PL’s learning model. Both refresh evidence 132

endogenously. The first one deals with the possibility that the current choice may 133

have been made unfavorable by a negative shock. When alternative i is chosen and 134

ni
t � Nn, we split its past history into two segments of equal length: the first and the 135

second half. (When ni
t is odd, we include the median event in both histories.) We aim 136

to drop from consideration the initial segment when a shock might have occurred 137

and past evidence turned stale. To do so, we compute the average performances NR1
i 138

and NR2
i over the first and the second segment, respectively. Then, with probability 139

equal to
ˇ̌ NR1

i � NR2
i

ˇ̌
=2, a refresh takes place: we delete the initial segment and 140

recompute qi
t accordingly. Since we only act when ni

t � Nn, the length of the past 141

history after a deletion never goes below Nn=2. For Nn " 1, we recover the model 142

in PL. For demonstration purposes, in this paper we set Nn D 30. 143

The second modification recognizes that alternatives that have not been tried in 144

a long time may have been reset by a shock. In particular, whenever a refresh takes 145
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place, we reset the propensity for each alternative that has never been explored since 146

the previous refresh to 1=2. 147

In short, the first modification reduces the risk of staying with an alternative that 148

has turned into a “false positive”; the second recovers forgone alternatives that might 149

have changed into “false negatives”. We refer to the model dealing only with false 150

positives as M1, and to the full model as M2. We were surprised to discover how 151

much M2 improves over M1 in a dynamic environment. Each of the values reported 152

below is an average based on 5,000 simulations with different seeds. 153

3 The Stationary Environment 154

Our benchmark is the stationary environment, when � D 0. PL consider four 155

indicators. Performance in PL is the cumulated value of rewards; for ease of 156

comparison, we report the average performance .
Pt

�D1 R�
� /=t per period, where R�

t 157

is the reward associated with the choice made at period t . Knowledge embodies the 158

ability of Qt to track Pt and is measured by 1�P
i .p

i
t �qi

t /
2. The Opinion indicator 159P

i .q
i
t � Nqt /

2 is the sample variance of propensities; the higher it is, the more 160

diverse the propensities and therefore the probabilities of choosing each alternative. 161

Finally, the Exploration indicator computes the probability that the choice at time t 162

is different from the choice at time t � 1. 163

PL report the values of these four indicators at t D 500. As it turns out, this 164

horizon is too short to take into account the onset of the steady state and thus PL’s 165

analysis is limited to the short run. (They do not mention a rationale for this choice.) 166

We replicate their short-run analysis at t D 500 and extend it to the long-run at 167

t D 5;000. The short- and long-run values for PL are shown on the left-hand side of 168

Table 1, respectively on the first and second line of each box. With a few exceptions 169

(notably, when � D 0:02), differences in values between short- and long-run hover 170

around 10 %. The working paper provides a visual representation of the data, that 171

we omit for brevity. 172

The left-hand side of Table 1 confirms and extends the short-run results in PL’sAQ2 173

Sect. 3.1. Exploratory behavior is increasing in � , and the optimal level of search 174

intensity � is around 0:5. Except for � D 0:02, the long-run performance is about 175

10 % higher than PL’s short-run estimate: since the search intensity never abates, this 176

increase is not due to “cashing in” from reducing the searching efforts but instead 177

stems from the long-run stationarity. 178

Knowledge and Opinion are similarly higher, as an immediate consequence of 179

the larger cumulated number of experiences. The increase in Exploration is due to 180

a little known property: in the short run, the softmax algorithm tends to ignore an 181

alternative that has failed on the first few attempts, regardless of its actual probability 182

of success. Any of such false negatives contributes towards making the algorithm 183

focus on very few alternatives in its early stages. However, given enough time, the 184

algorithm eventually returns to such alternatives and, if it finds them valuable, puts 185

them back in the explorable basket. To gauge the extent of this effect, Table 2 186

marco
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Table 1 Performance, knowledge, opinions, and choices in the stationary environment

PL M1 M2

t1.1� 0.02 0.25 0.50 0.75 1.0 0.02 0.25 0.50 0.75 1.0 0.02 0.25 0.50 0.75 1.0

t1.2Performance t D 500 0.48 0.52 0.56 0.54 0.50 0.53 0.55 0.56 0.53 0.50 0.54 0.55 0.55 0.51 0.47
t1.3t D 5;000 0.49 0.58 0.61 0.59 0.55 0.59 0.61 0.61 0.59 0.54 0.61 0.61 0.60 0.55 0.50

t1.4Knowledge t D 500 0.55 0.56 0.59 0.65 0.72 0.54 0.56 0.59 0.65 0.71 0.59 0.61 0.64 0.70 0.76
t1.5t D 5;000 0.56 0.57 0.64 0.77 0.89 0.52 0.54 0.61 0.73 0.83 0.61 0.63 0.66 0.73 0.79

t1.6Opinion t D 500 0.16 0.21 0.32 0.44 0.50 0.21 0.23 0.31 0.40 0.46 0.11 0.12 0.16 0.24 0.31
t1.7t D 5;000 0.17 0.23 0.42 0.53 0.55 0.23 0.27 0.37 0.47 0.50 0.11 0.12 0.16 0.23 0.29

t1.8Exploration t D 500 0.00 0.02 0.18 0.39 0.54 0.00 0.02 0.14 0.33 0.48 0.01 0.05 0.17 0.38 0.54
t1.9t D 5;000 0.00 0.04 0.26 0.46 0.60 0.00 0.01 0.13 0.33 0.51 0.02 0.04 0.15 0.37 0.54

Table 2 Percentage of (almost) unexplored alternatives

PL M1 M2

� 0.02 0.25 0.50 0.75 1.0 0.02 0.25 0.50 0.75 1.0 0.02 0.25 0.50 0.75 1.0

t2.1t D 500 0.89 0.86 0.79 0.69 0.60 0.83 0.80 0.74 0.65 0.57 0.81 0.78 0.71 0.62 0.51
t2.2t D 5;000 0.89 0.83 0.67 0.48 0.27 0.75 0.72 0.59 0.41 0.23 0.63 0.54 0.31 0.05 0.00

provides estimates for the percentage of alternatives that are explored less than 187

Nn=2 D 15 times in the whole period. 188

The rest of Table 1 provides data for our models M1 and M2, where old 189

evidence may be discarded. One would expect PL to perform better in a stationary 190

environment, because Pt is constant over time and thus evidence never gets stale. 191

However, by forgetting stale evidence, both M1 and M2 refresh propensities and 192

have an endogenous bias towards more search. Such bias overcomes the “false 193

negatives” trap of the softmax algorithm and makes their performance competitive 194

with (and often marginally better than) PL. In particular, both M1 and M2 195

achieve their superior performance with a lower level for the Exploration indicator: 196

compared to PL, they are less likely to switch the current choice. 197

Instead of PL’s five-points grid, we computed the optimal search intensity over a 198

finer 100-points grid and found the following optimal values: � D 0:56 (0:48) for 199

PL when t D 500 (t D 5;000, respectively); � D 0:45 (0:36) for M1; and � D 0:40 200

(0:24) for M2. The sharp reduction in the optimal search intensity from PL to M1 to 201

M2 stems from their search bias. Within each model, the optimal � decreases when 202

going from the short- to the long-run because steady state learning is more effective. 203

We summarise our comparative evaluation of the three learning rules. The search 204

intensity � is not easy to tune in practice, but our models are more robust: they 205

deliver a tighter range across different values of � . This comes with less switches 206

in choice and tighter opinions (for the same level of �), and an overall comparable 207

performance. Thus, although the three learning models are roughly comparable in a 208

static environment, ours are more robust. 209
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Fig. 1 Optimal exploration strategy across turbulence levels

4 The Dynamic Environment 210

In a dynamic environment, turbulence is represented by the probability � > 0 that in 211

each period a shock resets the actual probabilities in Pt . Following PL, we consider 212

� D 0:005 � 2k for k D 0; 1; : : : ; 6. The main result in PL is that the optimal level 213

of search intensity has an inverse U-shaped form that is right skewed. We found that 214

this statement must be qualified as follows. 215

PL derive the curve by “fitting a third order polynomial to the results” (p. 593), 216

but no details are provided and the available points are just five. Therefore, we opted 217

for a brute force approach and did and extensive search over Œ0:02; 2:00� using a 218

grid with mesh 0:01. Figure 1 illustrates the results, reporting data for t D 500 and 219

t D 5;000 on the left- and right-hand side, respectively. 220

Let us begin with the long run (t D 5;000), as represented on the right-hand 221

side of Fig. 1. For � > 0, the optimal search intensity is actually decreasing in 222

the turbulence level. The inverse U-shaped form is a visual artefact created by 223

the inclusion of the first datapoint (� D 0) corresponding to zero turbulence. In 224

a dynamic environment, an organisation with a sufficiently long horizon has an 225

optimal search intensity that is decreasing in the level of turbulence. 226
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Consider now the short run (t D 500). We find a dip at � D 0:01 for PL, 227

but this might be due to noise. On the other hand, the optimal search intensity 228

for M1 stays pretty flat, and for M2 is decreasing overall. We argue below that 229

M2 is superior to PL; thus, for an organisation with an appropriate learning model 230

and a short run horizon, the optimal search intensity is decreasing in the level of 231

turbulence. We conclude that, under an appropriate model specification, turbulence 232

has a systematic negative effect on the optimal search intensity: the inverse U- 233

shaped form claimed by PL is not an accurate depiction of this result. 234

PL discuss how the value of the second derivative of the performance at 235

the optimal � can be used as a proxy for the intensity of the tradeoff between 236

exploration and exploitation. While generally negative, the closer to zero, the 237

flatter the curve f .�/; and hence the less important pinning down the right 238

� is. Lack of details in PL prevented us from replicating their work, so we 239

decided to compute our approximation to the second derivative in two steps. First, 240

for each point � on our grid, we computed the second-order central difference 241

D.�/ D Œf .� C 0:01/ � 2f .�/ C f .� � 0:01/� =h2. Second, we performed a 242

simple smoothing by replacing D.�/ with the weighted mean 243

D.�/ D D.� � 0:02/ C 2D.� � 0:01/ C 4D.�/ C 2D.� C 0:01/ C D.� C 0:02/

10
244

The graph for the (approximated) second derivative is superimposed as a dashed line 245

on the panels in Fig. 1. After cautioning the reader not to put much weight on the 246

first datapoint (� D 0), we find that in most cases the second derivative is increasing 247

in the turbulence level, confirming PL’s claim that pinpointing the optimal � matters 248

less to performance when turbulence is higher. 249

Coming to performance, we were puzzled by the contrast between PL’s extensive 250

discussion of it for the stationary environment (� D 0) and the complete lack of data 251

for � > 0. A primary element in evaluating the plausibility of the learning rule under 252

turbulence should be its performance. Figure 2 provide a visual representation of the 253

data for � D 0:5. (The working paper provides tables with the numerical values for 254

this figure as well as for the following ones.) Here, as in PL, we leave the search 255
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intensity � constant. Alternatively, one might consider the optimal performance 256

using the best search intensity for each �. We report the outcome of this exercise 257

in the working paper: we found qualitatively similar results that are even more 258

favourable to the claim we advance below. Hence, fixing � D 0:5 avoids biasing 259

the graphs against PL. 260

Except when � D 0, the performance for M1 and M2 is consistently and 261

significantly better than for PL over both horizons. In the long run, the degradation 262

in performance for PL is much stronger and, if one ignores the data point for � D 0, 263

fairly disastrous: PL scores about 20 % when turbulence is minimal (� D 0:005) 264

and drops to virtually 0 %—equivalent to random choice—under intense turbulence 265

(� D 0:32). It is hard to claim that PL’s rule captures effective learning in a turbulent 266

environment. 267

To the contrary, both of our models deal with intense turbulence reasonably 268

well. The decline in performance when � increases is not as abrupt as PL and, 269

even under intense turbulence, they manage to rake up a performance that is small 270

but significantly higher than the 0 % associated with random choice. Moreover, by 271

explicitly dealing with the foregone alternatives that shocks might have turned into 272

false negatives, M2 performs significantly better than M1 in the long run. Therefore, 273

when a shock is deemed to have occurred, one should not only drop evidence 274

about the (potentially) false positive as in M1, but also about the (potentially) false 275

negatives as in M2. This is worth pointing out because many studies about the 276

representativeness heuristic suggest that people are less prone to review evidence 277

about false negatives than about false positives. The main conclusion is that 278

shedding stale evidence makes the search process in a dynamic environment perform 279

better as well as exhibit resilience to turbulence. 280

PL convincingly argue that turbulence erodes performance by two effects: it 281

alters the future value of existing knowledge and reduces the payoff from efforts to 282

generate new knowledge. To disentangle these two effects, they use a differences- 283

in-differences analysis assuming a search intensity � D 0:5. (See PL for details.) 284

Their approach separately estimates the accretion of new knowledge and the erosion 285

of existing knowledge for different levels of turbulence. These two effects jointly 286

determine the net change in knowledge. We replicated their short-run analysis 287

(t D 500), and extended it to the long-run (t D 5;000) using propensities at 288

t D 4;000 and t D 5;000. As before, the choice � D 0:5 fits PL better than our 289

models; but, again, we redrew the graphs using the optimal value of � for each 290

turbulence level, and found no qualitative differences. Using PL’s setting for ease of 291

comparability, the results are shown in Fig. 3. 292

We found again that the details in some of PL’s statements need amendments. 293

Looking at the short-run, all models exhibit the same behaviour; namely, both 294

accretion and erosion have an inverse U-shaped form and the net effect on 295

knowledge is overall positive across all levels of turbulence. The size of the two 296

effects, however, is quite different: in PL none of the two effects brings about a 297

change greater than 8 % in absolute, while in M1 and M2 this can go as high as 298

14 %. The vertical dilation in the graphs as we move downwards from PL to M2 299
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Fig. 3 Knowledge accretion and erosion across turbulence levels .� D 0:5/

on either side of Fig. 3 is apparent. Shedding evidence magnifies both the positive 300

accretion effect and the negative erosion effect. 301

Over the long run, the two effects change shape for all models, after discarding 302

the insignificant datapoint at � D 0. Conforming to intuition, one would expect 303

knowledge accretion and knowledge erosion to be respectively decreasing and 304

increasing in turbulence. This occurs only for M2, while PL and M1 match the 305

pattern for knowledge accretion only partially. PL exhibits knowledge accretion that 306

is increasing in turbulence. M1’s knowledge accretion is decreasing over most of 307

the range, but eventually starts climbing up generating a U-shape. Given that M2 308

is superior in what regards both performance and the net effect on knowledge, it is 309

reassuring to see that the pattern of its knowledge accretion effect matches intuition. 310

Our last batch of work replicates and extends PL’s Fig. 6 reporting the accuracyAQ3 311

of knowledge, the strength of opinions, and the probability of exploration at � D 0:5 312

in Fig. 4. Over the short run, the three models exhibits the same qualitative shapes 313

for the three indicators and these are consistent with intuition. With respect to 314

turbulence levels, knowledge is decreasing, strength of opinions is decreasing, and 315

probability of switching choice is increasing. 316

Moving to the long run reveals a few hidden patterns. First, the knowledge 317

indicator goes almost flat for PL, suggesting that the knowledge generated within 318
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Fig. 4 Knowledge, opinions, and choices across turbulence levels (� D 0:5)

this model in the long run is unaffected by the level of turbulence. (Differently 319

put, once we enter the steady state, the level of turbulence has a negligible effect 320

on knowledge.) With little variation in opinions, PL ends up with very similar 321

propensities across all alternatives and, accordingly, the probability of switching 322

becomes much bigger: in practice, PL ends up being close to (randomly) wandering 323

across alternatives. M1 generates even less knowledge in the long run, but its 324

strength of opinions is bigger: in other words, propensities are more polarised 325

(which helps focusing choice and reduces the probability of switching) but on the 326

wrong alternatives (which adversely affects knowledge). 327

Finally, M2 is very effective in the long run: its knowledge indicator is small 328

and decreasing with respect to turbulence, because in a dynamic environment it 329

is ineffective to strive for high levels of knowledge. Keeping knowledge small 330

(“pack light”) allows opinions to change swiftly and track shocks accurately; hence, 331

their strength resists homogenisation and stays around 0.4 even when turbulence is 332

intense. Finally, the probability of switching choice increases less than PL and more 333

than M1: in other words, the action bias of M2 is intermediate. This is necessary 334

to balance two opposing effects: the risk of wandering choices (as in PL) against 335

the possibility that exploration cannot keep with the flow of incoming shocks. 336

Notably enough, M2 achieves this balance endogenously: our models have not been 337

calibrated for maximum performance. 338
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5 Conclusions 339

We revisit a recent study by Posen and Levinthal [6] about learning under turbu- 340

lence. We claim that their analysis overlooks the long run and posits a learning 341

model that puts too much weight on stale evidence. This leads us to suggest two 342

learning models that incorporate an endogenous mechanism to spot and shed away 343

obsolete evidence. M1 deals only with the possibility that some shock may have 344

made the current choice a false positive, while M2 adds a concern for foregone 345

alternatives that may have become false negatives. PL is nested into M1, and M1 is 346

nested into M2. 347

The comparative analysis shows that M2 offers a significantly superior perfor- 348

mance, making PL an implausible candidate for an effective learning model. Even 349

under intense turbulence, its ability to “pack light evidence” makes it properly 350

responsive to shocks, and allows it to deliver a performance that is both robust and 351

resilient. We believe that clarifying the importance of giving up on obsolete evidence 352

is the major contribution of this paper. 353

Finally, we carry out a comparative analysis for several claims in Posen and 354

Levinthal [6], both over the short and run long run and across the three models. 355

While their main insights survive, we find and point out which qualifications 356

are needed for their validity. In particular, some of the (somewhat unintuitive) 357

non-monotone relationships they discover using PL in the short run disappear when 358

the analysis is carried out in the long run using M2. 359
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