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Abstract This paper applies a Bayesian multivariate stochastic correlation
model to the detection of correlation regimes in exchange rates. We follow
a MCMC approach to parameter and latent variable estimation and provide
evidence of significant differences between volatility and correlation dynam-
ics.
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1 Introduction

Modelling and forecasting contagion between financial markets are crucial
and challenging issues in financial management. The time-variations in the
financial return volatilities and in the correlations between returns are two of
the most relevant features of the contagion dynamics. The seminal dynamic
volatility paper of [4] has generated to main streams of literature: GARCH
models and Stochastic Volatility (SV) models (e.g., see [10] and [7]). Ear-
lier contributions in these areas focused on univariate time series modelling.
Subsequently, the attention has shifted to multivariate models with dynamic
covariances (e.g., see [8] and [5] for multivariate GARCH and [6] for multi-
variate SV).
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The aim of this paper is twofold. First, we provide a joint estimation of
the return mean, volatility and correlation of exchange rates. Secondly, we
investigate the presence of independent shifts in the volatility and correlation
dynamics. In this sense we extend the empirical findings for exchange rates
due to [9], [1] and [11].

The structure of the paper is as follows. Section 2 introduces the stochastic
correlation model. Section 3 describes briefly the Bayesian inference approach
used. Section 4 presents the results for three daily exchange rate series. Sec-
tion 5 concludes.

2 A Markov-switching Stochastic Correlation Model

Let yt = (y1t, . . . , ymt)
′ ∈ R

m be a vector-valued time series, representing
the log-differences in the spot exchange rates, ht = (h1t, . . . , hmt)

′ ∈ R
m the

log-volatility process, Σt ∈ R
m×R

m the time-varying covariance matrix, and
s1,t ∈ {0, 1} a two-states Markov chain. We consider here a special case of
the stochastic correlation model (MSSC ) given in [3]

yt = a00 + a01s1,t + (A10 +A11s1,t)yt−1 + εt, εt ∼ Nm(0, Σt) (1)

ht = b00 + b01s1,t + (B10 +B11s1,t)ht−1 + ηt, ηt ∼ Nm(0, Ση) (2)

with εt ⊥ ηs ∀ s, t, and Nm(µ, Σ) the m-variate normal distribution, with
mean µ and covariance matrix Σ, and a00, a01, A10, A11, b00, b01, b10

and b11 parameters to be estimated. The probability law governing s1,t is
s1,t ∼ P(s1,t = j|s1,t−1 = i) = p1,ij , with p1,ij , ij,∈ {0, 1}. As regards the
conditional covariance matrix Σt, we use the decomposition (see [2]):

Σt = ΛtΩtΛt, (3)

with Λt = diag{exp{h1t/2}, . . . , exp{hkt/2}}, a diagonal matrix with the
log-volatilities on the main diagonal and Ωt = Q̃−1

t QtQ̃
−1

t the stochastic

correlation matrix with Q̃t = (diag{vecdQt})
1/2

and Q−1

t ∼ Wm(ν, St−1)
where:

St−1 =
1

ν
Q

−d/2
t−1

Q̄tQ
−d/2
t−1

, Q̄t =
[

λs2,tD̄s1,t + (1− λs2,t)Im
]

,

D̄s1,t =
∑

k=0,1

I{k}(s1,t)D̄k

and D̄k, k ∈ {0, 1}, is a sequence of positive definite matrices, which capture
the long-term dependence structure between series in the different regimes,
and d is a scalar parameter. The correlation-switching process s2,t ∈ {0, 1}
has transition probability: s2,t ∼ P(s2,t = j|s2,t−1 = i) = p2,ij .
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Fig. 1 Simulated trajec-
tory of the MSSC model.
Left: the observable vari-
ables (gray lines, left
axis). Right: square of
the observable variables
(black lines, left axis).
In all plots, the Markov-
switching process, s1t,
(stepwise, right axis).
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Fig. 2 Simulated trajec-
tory of the MSSC model.
In each plot the stochas-
tic correlation process
(gray line, left axis), and
the sequential estimation
of the empirical corre-
lation (black line, left
axis). In all plots, the
Markov-switching process
st = s1,t+2s2,t (stepwise
line, right axis) is gener-
ated by the composition
of s1,t with s2,t.
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A simulated trajectory of this process is given in Fig. 1-2, where we
set b00 = −1.1ι, b01 = 1.06ι, B10 = 0.12I3, B11 = 0.5I3, Ση =
diag((0.03, 0.06, 0.08)′), where ι = (1, 1, 1)′. For the correlation process we
set

D̄0 =





1.01 −0.09 −0.11
−0.09 1.14 −0.08
−0.11 −0.09 1.10



 , D̄1 =





1.01 0.11 −0.01
0.11 1.14 0.02

−0.01 0.02 1.02





λ0 = 1, λ1 = 0.02, ν = 28 and d = 0.9. For the two switching processes
we consider: p1,11 = 0.90, p1,22 = 0.94, p2,11 = 0.97 and p2,22 = 0.97. The
trajectories of the three variables exhibit volatility clustering, and the square
of the observables represents an effective graphical tool to detect the presence
of volatility regimes (see Fig. 1). Fig. 2 shows that a recursive estimation of
the correlation can be useful for detecting correlation changes.
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3 Bayesian Inference

Define y = (y′
1, . . . ,y

′
T )

′, and z = (h,q, s1, s2), with h = (h′
0, . . . ,h

′
T )

′,
sk = (s′k,0, . . . , s

′
k,T )

′, k = 1, 2, and q = (vech(Q0)
′, . . . , vech(QT )

′)′. The
complete-data likelihood function of the MSSC model is:

L(y, z|θ) = (4)
T
∏

t=1

(

1

(2π)m/2|Σt|1/2
e−

1
2ε

′

tΣ
−1
t εt

1

(2π)m/2|Ση|1/2
e−

1
2η

′

tΣ
−1
η ηt

·2−
mν
2 Γm(ν/2)−1|St−1|

− ν
2 e−tr(

1
2S

−1
t−1Q

−1
t )|Q−1

t |
ν−m−1

2

·
∏

k=1,2

(

p
1−sk,t

k,00 (1 − pk,00)
sk,t

)1−sk,t−1
(

p
sk,t

k,01(1 − pk,01)
1−sk,t

)sk,t−1

)

,

where Γm(ν/2) is them-variate gamma function and θ = (a′
00
, a′

01
, vec(A10)

′,
vec(A11)

′, b′
00
, b′

01
, vec(B10)

′, vec(B11)
′, vech(Ση)

′, ν, d, λ1, vech(D̄0),
vech(D̄1), p1,11, p1,22, p2,11, p2,22)

′ is the parameter vector. We arrange θ
in four sub-vectors: θ1 = vec(Ψ), with Ψ = (ψ1, . . . , ψm), which has in the
columns the vectors ψj = (a00,j , a01,j , (A10,j1, . . . , A10,jm), (A11,j1, . . . ,
A11,jm))′, j = 1, . . . ,m; θ2 = (φ′, vech(Ση)

′)′, with φ = vec(Φ), where
Φ = (φ1, . . . , φm) has in the columns the vectors φj = (b00,j , b01,j , (B10,j1,
. . . , B10,jm), (B11,j1, . . . , B11,jm))′, j = 1, . . . ,m; θ3 = (ν, d, λ1, vech(D̄0),
vech(D̄1))

′; θ4 = (p1,00, p1,11, p2,00, p2,11)
′. We specify the following prior

distributions

θ1 ∼ N24 (0, 10I24) , φ|Ση ∼ N24 (0, Ση ⊗ 10I8) , Σ
−1
η ∼ W3 (10, 4I3)

d ∼ U(−1,1), λ1 ∼ U(0,1), ν ∼
1

Γ (10)
(ν − 3)10−1 exp {−(ν − 3)} I(3,+∞)(ν)

D̄
−1
i ∼ W3(10, 0.1I3), pk,ii ∼ U(0,1), k = 1, 2, i = 0, 1

We apply the Gibbs sampler given in [3] for the posterior approximation.

4 Exchange Rates Correlation Dynamics

We consider daily closing values for three exchange rates against the US$,
namely Euro, Yen and Pound. We compute the percentage log-returns of the
exchange rates and denote them as y1,t, y2,t and y3,t for Euro, Yen and Pound,
respectively (see left column of Figure 3). The presence of time-varying condi-
tional volatility is evident from the squared return series (see right column of
Figure 3). We fit the proposed Bayesian MSSC model on the exchanger rate
dataset. The estimation results given in Fig. 4-5 show the presence of signif-
icant shifts in both volatilities and correlations. Moreover, the stepwise line
in Fig. 5 indicates the presence of correlation-specific shifts (i.e., ŝt ∈ {2, 3}),
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Fig. 3 Log-differences
(left) and squared log-
differences (right) of
EUR-USD (y1,t), YEN-
USD (y2,t) and GBP-
USD (y3,t) daily exchange
rates for the period
01/01/1999-03/1/2011.
The vertical dashed lines
correspond to dates of be-
ginning of the 2007 finan-
cial crisis (15/08/2007)
and the beginning of
the Greek’s debt crisis
(31/12/2009).

1000 2000 3000
−4

−2

0

2

4

y 1,
t

1000 2000 3000
0

5

10

15

y 1,
t

2

1000 2000 3000
−4

−2

0

2

4

y 2,
t

1000 2000 3000
0

10

20

y 2,
t

2

1000 2000 3000
−4

−2

0

2

4

y 3,
t

1000 2000 3000
0

10

20

y 3,
t

2

thus suggesting the coexistence of different configurations of risk (volatility)
and contagion level (correlation) in the exchange rate markets analysed in
this paper.

5 Conclusion

We apply a stochastic correlation model to detect changes in the correlations
between exchange rates sampled at a daily frequency. We follow a Bayesian
inference approach to parameter and latent variable estimation and apply
a MCMC algorithm for posterior approximation. Our results document the
coexistence of different volatility and correlation-specific regimes.
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Fig. 4 Posterior means
(solid lines, left axes) and
95% credibility regions
(gray areas, left axes) of
the log-volatility ht. Each
figure of panel includes
ŝ1,t (stepwise, right axes).
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Fig. 5 Posterior means
(solid lines, left axes) and
95% credibility regions
(gray areas, left axes)
of the correlation Ωt.
Each figure includes ŝt =
ŝ1,t + 2ŝ2,t (stepwise,
right axes).
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