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Coexistence of plasmonic and magnetic properties in
Au89Fe11 nanoalloys†

Vincenzo Amendola,*a Moreno Meneghetti,a Osman M. Bakr,b Pietro Riello,c

Stefano Polizzi,c Dalaver H. Anjum,d Stefania Fiameni,e Paolo Arosio,f

Tomas Orlando,g Cesar de Julian Fernandez,h Francesco Pineider,ij

Claudio Sangregorioj and Alessandro Lascialfarifg

We describe an environmentally friendly, top-down approach to the synthesis of Au89Fe11 nanoparticles

(NPs). The plasmonic response of the gold moiety and the magnetism of the iron moiety coexist in the

Au89Fe11 nanoalloy with strong modification compared to single element NPs, revealing a non-linear

surface plasmon resonance dependence on the iron fraction and a transition from paramagnetic to a

spin-glass state at low temperature. These nanoalloys are accessible to conjugation with thiolated

molecules and they are promising contrast agents for magnetic resonance imaging.
Introduction

Extraordinary physical–chemical properties are found in nano-
scale gold1,2 and iron.3–5 Gold nanoparticles (AuNPs) have
surface plasmon resonances in the visible range2,6 and they are
biocompatible,7 chemically inert1 and easily functionalizable
through the formation of sulfur–gold bonds.1,8 Iron nano-
particles (FeNPs) have high saturation magnetization9 and they
are biocompatible,10 although they easily undergo oxidation in
the absence of efficient passivation coatings3 and their surface
functionalization can be complex.10
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Combining the physical–chemical properties of gold and
iron in a single nanostructure would be useful in various
applications,11 such as in nanomedicine,12,13 information tech-
nology14–17 and catalysis.18–20 In particular for what concern Au–
Fe alloys, the high spin–orbit coupling characteristics of Aumay
induce appealing properties for spintronic applications, like
high magnetic anisotropy,21 large magneto-optical responses,22

high magneto-resistance23–25 and spin Hall effects.26,27

Au–Fe alloys with an Fe content exceeding 2.5% are not
thermodynamically stable at room temperature,28 although
kinetically stable bulk AuFe alloys can be obtained by quick
cooling of the melted metals29,30 and thin alloy lms can be
obtained by radiofrequency sputtering.22 At the nanoscale, the
attempts to synthesize gold–iron alloy nanoparticles on
substrates or in solution have been limited so far. AuFe alloy
nanoparticles (AuFeNPs) were obtained by sequential ion
implantation of iron in AuNPs embedded in a silica
matrix,15,31,32 by simultaneous reduction of Au salts and
decomposition of Fe compounds in the presence of capping
molecules dissolved in liquid solutions,33–42 by electrodeposi-
tion on amorphous carbon electrodes from an aqueous solution
of electrolytes,43 in high-vacuum chambers by pulsed laser
deposition44,45 or by evaporation of a bulk alloy on a liquid
hydrocarbon substrate.46

Reports on structure–property relationships of these nano-
particles have produced conicting information, particularly
regarding their plasmonic and magnetic responses. For
instance, both blue-31,45 and red-shied34,35,39,40 plasmon reso-
nances, compared to that of pure gold nanoparticles, were
assigned to AuFe alloys with the same stoichiometry. Indeed,
the characterizations of alloys were not accurate enough to
exclude phase segregation or to conrm homogeneous alloying
at the single nanoparticle level.31,34,35,39,40,45 This is a relevant
Nanoscale, 2013, 5, 5611–5619 | 5611
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point, since bottom-up synthetic approaches oen yield
byproducts such as clustered iron atoms in the gold
matrix,36–40,47 iron–gold core–shell structures11,34,35 or iron oxide–
gold heterostructures and agglomerates,39–41,44 owing to the
unfavorable thermodynamics in the formation of Au–Fe
alloys.28 Moreover, the AuFeNPs obtained by all previous
methods were found to have problems related to surface
accessibility,15,31–46 which is important to catalytic applica-
tions18–20 and for conjugation with functional molecules.11–13

Thus, new low-cost and non-toxic synthetic methods that allow
the synthesis of large amounts of well-dispersed and accessible
nanoparticles avoiding the thermodynamic limitations to alloy
formation are needed.

Here, we describe a new environmentally friendly top-down
approach for the synthesis of AuFeNPs whose surfaces are
accessible to conjugation with thiolated molecules. Our
AuFeNPs are composed of 89% Au and 11% Fe and they display
coexisting plasmonic and magnetic properties, although with
important differences compared to the single element Au or Fe
nanoparticles.
Synthesis and structural characterization

We obtained the AuFeNPs by laser ablation synthesis in solu-
tion (LASiS), focusing 1064 nm laser pulses (9 ns, 10 Hz, 30 mJ
per pulse) on a bulk Au73Fe27 alloy target dipped in a solution of
pure ethanol (Fig. 1A). Using this top-down approach,48–52 we
were able to overcome the thermodynamic limitations to the
room-temperature formation of Au–Fe alloys.48,53 The formation
of nanoparticles was immediately visible from the reddish color
of the solution, which became purple aer a few hours due to
particle aggregation. Aer LASiS, an aqueous solution contain-
ing disodium ethylenediaminetetraacetic acid (EDTA) and
thiolated polyethyleneglycol (PEG) was added to the AuFeNP
Fig. 1 Synthesis and characterization of PEG–AuFeNPs. (A) Water-soluble PEG–Au
ethanol from a Au72Fe28 bulk target by LASiS; (B) in the second step, the NPs were tr
were stable in water. (C) Powder XRD analysis of PEG–AuFeNPs (black line) and Rietve
and after treatment with EDTA and coating with PEG (E). (F) The FTIR spectrum colle
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dispersion in ethanol and the solution was kept at 60 �C for 1
hour (Fig. 1B). A few minutes aer the addition of EDTA–PEG,
the color of the solution changed back from purple to reddish.
The AuFeNP solution was then puried by dialysis and washed
multiple times with deionized water. The nal solution of PEG–
AuFeNPs was indenitely stable in water and air over time.

We used powder X-ray diffraction (XRD) analysis to identify
the crystalline phase of the PEG–AuFeNPs. The diffraction
pattern showed a face-centered cubic structure (fcc) analogous
to pure gold (Fig. 1C). There were no peaks of other iron
compounds like iron oxides or metal iron in the diffraction
pattern of PEG–AuFeNPs. The rened lattice parameter of the
fcc unit cell was 0.4041 nm, smaller than that of pure gold
(0.4079 nm, see ESI†). This is compatible with an alloy of Fe and
Au where iron atoms are present in the Au crystal lattice as
random substitutional impurities28,30 therefore the PEG–
AuFeNPs are a solid solution of Au and Fe. To determine the
iron content in the AuFeNPs, we compared the experimentally
measured rened lattice parameter with those reported for bulk
AuFe in the literature (for details see Materials and methods),
and we found that it corresponds to an alloy with 89% Au and
11% Fe elemental composition. We found exactly the same
elemental composition of Au89Fe11 by inductively coupled
plasma-mass spectrometry (ICP-MS).

The iron content in our PEG–AuFeNPs is lower than in the
bulk Au73Fe27 alloy target used for LASiS, suggesting that iron
was lost during the laser ablation process. In LASiS, a difference
between the stoichiometry of alloy nanoparticles and the orig-
inal alloy target is observed when the two elements in the alloy
have different reactivities or different vaporization heats.48,53,54

Here, the vaporization heats of gold and iron are similar (324
and 340 kJ mol�1, respectively), but iron can react with oxygen
that is dissolved in non-deaerated solvents, as reported for
instance during LASiS of NiFe NPs.55 Transmission electron
FeNPs were obtained in two steps: in the first step, AuFeNPs were produced in
eated with EDTA and conjugated with thiolated PEG to obtain PEG–AuFeNPs that
ld fitting (red line). (D–E) TEM images of AuFeNPs as obtained by LASiS in EtOH (D)
cted from the PEG–AuFeNP powder indicating the vibrational fingerprint of PEG.
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microscopy (TEM) images of the AuFeNP solution just aer
LASiS but prior to the addition of EDTA/PEG indicated the
presence of iron oxide and amorphous phases (Fig. 1D and S1A
in the ESI†), likely due to the reaction of ablated Fe atoms with
the liquid solution. A similar result was reported for laser
ablation of bulk iron in various solvents such as ethanol and
water.56–58 The addition of EDTA and subsequent dialysis were
required for selective removal of iron oxides and hydroxides,56,57

without affecting the phase of alloy AuFeNPs. The TEM images
of the PEG–AuFeNP solution indicate that all the iron oxide and
amorphous phases were effectively removed by the EDTA and
dialysis steps (Fig. 1E and S1B in the ESI†), which is in agree-
ment with the XRD results. Indeed, the surfaces of the AuFeNPs
obtained following this procedure were free from other stabi-
lizing molecules and highly available for conjugation with
thiolated molecules, exploiting the formation of stable Au–S
bonds with gold atoms on the surfaces. Hence, we added thio-
lated PEG simultaneously with EDTA to coat the AuFeNPs with a
shell of hydrophilic polymer. The successful coating of AuFeNPs
with PEG, aer the purication/washing stages, was conrmed
by Fourier transform infrared (FTIR) spectroscopy of a dried
sample (Fig. 1F). This one-pot surface conjugation of AuFeNPs
with the desired thiolated molecules is highly important in
most technological applications11–13 and in the accurate
Fig. 2 Single nanoparticle elemental analysis. (A) EFTEM mapping of an Au
N-edge (83 eV) and a Fe L-edge (708 eV), showing that both elements over-
lapped. The scale bars are 10 nm. (B) STEM analysis carried out on a single AuFeNP
to assess the phase homogeneity and the Au89Fe11 stoichiometry of the nano-
alloy. The scale bar is 10 nm.

This journal is ª The Royal Society of Chemistry 2013
characterization of the magnetic and plasmonic properties of
well-dispersed (i.e., not agglomerated) alloy nanoparticles.

The TEM results indicate that PEG–AuFeNPs have an average
size of 30 nm, with 90% of particles comprised in the 15–40 nm
range (see the size histogram in Fig. S1C in the ESI†) and they
have well-dened crystalline structures. We observed also
stacking faults and twinned crystallites in the nanoalloys
(Fig. S1D and E in the ESI†). Planar defects in fcc metals are
usually associated with internal stresses due to rapid cooling,59

and are typical of LASiS.48,53 We used energy-ltered TEM
(EFTEM) to gather additional information on the elemental
distribution of Au and Fe in individual PEG–AuFeNPs. We
performed elemental mapping on ve nanoparticles with sizes
between 15 and 50 nm by selecting the Au N-edge (83 eV) and
the Fe L-edge (708 eV) respectively (Fig. 2A and S2 in the ESI†).
In all particles analyzed, we observed a complete overlap of the
distribution of gold and iron, suggesting that the particles had a
homogeneous alloy structure. Moreover, we found that the
percentage of Fe in each single nanoparticle oscillated between
15% and 9%, with an average value of 11%, which is in fair
agreement with the XRD and ICP-MS evaluations. We further
conrmed the homogeneous distribution of Fe in the nanoalloy
using X-ray energy dispersive spectroscopy (XEDS) within one
single nanoparticle with a spatial resolution of 1 nm, performed
in the scanning transmission electron microscopy (STEM)
conguration (Fig. 2B).

Remarkably, the results of all structural characterizations
were the same regardless of the different PEG–AuFeNP synthetic
batches and of the amount of time elapsed aer synthesis,
which demonstrates the reproducibility of the synthetic method
and the stability over time of our nanoalloys in air and water.
Optical properties

The UV-visible absorption spectra of AuFeNPs in ethanol (as
obtained from LASiS) and of PEG–AuFeNPs in water both
indicated the presence of surface plasmon resonance (Fig. 3A).
Surface plasmon bands originate from the collective excitation
of conduction electrons in nanoscale metals by annihilation of
Fig. 3 Optical properties of AuFeNPs. (A) UV-vis spectra of AuFeNPs as obtained
by LASiS in ethanol (red line), of PEG–AuFeNPs in water (black line) and of PEG-
coated AuNPs (green line). Inset: PEG–AuFeNPs in water are reddish in color (left),
different from the purple color of pure AuNPs (shown on the right for compar-
ison). (B) The extinction cross-section (sext) calculated using the Mie model for
30 nm Au89Fe11 (black line) and Au (green line) nanospheres in water. The dashed
blue line is the sext calculated using the Mie model for a 30 nm nanosphere with
an optical constant obtained by the linear weighted average of pure Au and Fe
metals (for details, see text).

Nanoscale, 2013, 5, 5611–5619 | 5613
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the incident photons,60 and their resonance energy depends on
the composition, shape and aggregation of the NPs as well as on
their chemical–physical environment.60–62 In the case of
AuFeNPs in ethanol, the plasmon band extended from 500 nm
to 700 nm due to aggregation of particles and consequent
plasmon hybridization (red line in Fig. 3A),62,63 while in the case
of PEG–AuFeNPs, a narrower plasmon resonance was centered
at 510 nm (black line in Fig. 3A), suggesting that the NPs were
well dispersed and isolated in the liquid.63 For comparison, the
plasmon band of pure PEG–AuNPs with the same average size
dispersed in H2O is also shown in Fig. 3A. The plasmon band of
PEG–AuFeNPs is less intense and blue-shied by 10 nm
compared with the plasmon band of PEG–AuNPs. The Mie
model provides a good description of the optical properties of
nanospheres, when the appropriate optical constant is used.60,63

We therefore obtained the optical constant of an Au89Fe11 alloy
by the weighted average of the optical constants of pure gold
and of an alloy with composition as close as possible to our
particles among those available in the literature, i.e. of a bulk
Au84Fe16 alloy (measured by ellipsometry),22 and thus we
calculated the extinction spectrum of a 30 nm metal sphere by
the Mie model. As shown in Fig. 3B, the calculated spectrum
(black line) agrees well with the experimental one, reproducing
both damping and the blue shi of the surface plasmon
resonance. This result also suggests that previous reports on
red-shied plasmon resonance in Au–Fe alloy nano-
particles34,35,39,40,64 are likely due to samples with heterogeneous
composition or to particle aggregation.

As shown in Fig. 3A, the plasmon band is damped by the
presence of Fe atoms in the gold lattice, which was somewhat
expected because metal FeNPs do not have a plasmon resonance
in the visible range.60However, it is worth noting that much lower
plasmon damping is found in the extinction spectrum of 30 nm
Au89Fe11NPs calculated by considering as the optical constant
(3Alloy) the linear average of the optical constants of pure Au (3Au)
and Fe (3Fe), i.e., 3Alloy ¼ 0.893Au + 0.113Fe (dashed line in Fig. 3B),
instead of using the experimental optical constant for the
Au84Fe16 alloy reported in ref. 22. Also the experimentally
observed blue shi of the plasmon resonance is not reproduced
by the blue dashed curve in Fig. 3B. This result indicates that
plasmon damping in AuFe nanoalloys has a non-linear depen-
dence on the iron fraction that can be accounted only by the
appropriate choice of the optical constant in the spectral range of
Fig. 4 Magnetic properties of AuFeNPs. (A) Hysteresis loops measured at 3 K and 3
phase component, c0 , of the AC magnetic susceptibility recorded at frequencies be

5614 | Nanoscale, 2013, 5, 5611–5619
the plasmon resonance. Indeed, the nanoalloy extinction spec-
trum differs from that of pure AuNPs in the range below 450 nm
(Fig. 3A and B). According to previous reports on thin AuFe alloy
lms,22 such differences are due to single electron transitions
from iron d states lying below the Fermi surface of the Au89Fe11
nanoalloy. Low-frequency interband transitions are frequently
observed in alloys of noble metals and transition metals with
partially occupied d states65–67 and they are known to strongly
affect the intensity of the plasmon resonance by introducing an
additional term to the effective free electron relaxation rate,
because plasmon excitations can rapidly decay into electron–hole
pairs.65 The nonlinear dependence of the plasmon damping in
relation to the concentration of Fe is therefore likely related to
the effect of iron d states on the relaxation frequency of the
conduction electrons22,65,67,68 and thisnding further supports the
formation of an alloy in which the Fe is homogeneously
dispersed in the crystal lattice.
Magnetic properties

The magnetic properties of the Au89Fe11 nanoalloy retain the
main features of Au–Fe solid solutions. We measured the
magnetic eld dependence of the magnetization (M) of PEG–
AuFeNPs at two different temperatures. At 300 K, M linearly
increased with the applied eld (blue curve in Fig. 4A) as
expected for a system made of paramagnetic impurities (Fe)
dispersed in a diamagnetic host (gold).69 Conversely, at low
temperature (3 K), the signature of collective magnetic correla-
tions appeared, as suggested by the magnetic irreversibility we
observed on cycling the magnetic eld between �5 T (blue line,
Fig. 4A). At the lowest measuring eld of �5 T, the hysteresis
loop was open with a coercive eld, m0HC ¼ 121 mT, and
reduced remnant magnetization,M0T/M5T ¼ 0.30; at the highest
measuring eld of 5 T,M reached 9.9 A m2 kg�1, a value 5 times
larger than at 300 K, although still far from saturation.

The temperature dependence ofM was measured also using a
smaller probe eld (5 mT) aer the Zero Field Cooled (ZFC) and
Field Cooled (FC) procedures (Fig. 4B), and displayed the thermal
irreversibility typical of a spin freezing process. The ZFC
magnetization exhibited a broadmaximum centred at 75 K, while
the FC magnetization decreased from 3 K to 15 K and then fol-
lowed the same trend of the ZFC curve, approaching T >100 K.We
further investigated the nature of this spin “blocking” by
00 K. (B) Temperature dependence of the ZFC and FC magnetizations. (C) The in-
tween 1 Hz and 1000 Hz.

This journal is ª The Royal Society of Chemistry 2013
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measuring the temperature dependence of the AC magnetic
susceptibility, c ¼ c0 + ic00, in the 1 Hz to 1 kHz frequency range.
Below ca. 130 K, the in-phase component, c0, had a frequency-
dependent signal with a broad maximum, which shied from
70.6 K to 74.6 K when the frequency was increased by three orders
of magnitude (Fig. 4C). The development of the frequency
dependence was accompanied by a non-zero, out-of-phase
component, c0 0, which increased as the temperature decreased to
ca. 50 K (see Fig. S3 in the ESI†). A rough indication of the nature
of the observed magnetic dynamics can be obtained by consid-
ering the shi at which c0 is maximum (Tmax) with a decade
change in frequency and applying the empirical formula
proposed by Mydosh and Barrett.70 In this way, we found that
DTmax/[TmaxDlog(2pn)] � 0.01–0.02, which is in the range expec-
ted for canonical spin-glass systems (10�3 to 10�2).70

Disordered bulk Au1�xFex alloys with their iron content below
the percolation threshold (x ¼ 0.155) exhibit a paramagnetic to
spin-glass transition at a freezing temperature, Tg, which
increases with x up to ca. 50 K.71 The spin-glass behavior origi-
nates from the random distribution of the Fe atoms within the
gold lattice and competing ferromagnetic (FM)–antiferromagnetic
(AFM) exchange interactions between Fe through the conduction
band of Au (the Ruderman–Kittle–Kasuya–Yosida mecha-
nism).72–74 In contrast, by increasing the concentration above the
percolation threshold, Fe atoms start to cluster, and the nearest-
neighbor direct exchange leads to a long-range ferromagnetic
order. When the iron content exceeds 24%, a transition to a
ferromagnetic-ordered state occurs, while in the intermediate
composition range (from 16% to 24%), an additional transition
below the critical temperature from the ferromagnetic to the spin-
glass state is observed (the re-entrant spin-glass state).71

It is noteworthy that the value of the density of magnetiza-
tion (9.9 A m2 kg�1) measured at 5 T, which corresponds to a
magnetic moment of 0.32mB per atom. Assuming that only Fe
atoms contribute to the total magnetization, the net magneti-
zation of Fe is 292 � 30 A m2 kg�1, which corresponds to a
magnetic moment of 2.92 � 0.3mB per Fe atom. This value is
remarkably high if compared to the bulk Fe body-centered cubic
structure (bcc) (2.2mB per Fe atom),3 particularly if we consider
that the system is still far from saturation. However, it is in good
agreement with experimental values75 and theoretical predic-
tions76 reported for the bulk Au–Fe alloy, where the Fe atoms in
the fcc crystalline structure are in the high spin state due to the
Fig. 5 Relaxivity properties of AuFeNP solutions. (A) Longitudinal (r1) and transversa
(B) r2/r1 ratio vs. frequency. (C) Even at a low frequency (8.5 MHz), the phantom cont
ability of the PEG–AuFeNP solution.

This journal is ª The Royal Society of Chemistry 2013
stabilizing effect conferred by the lattice expansion.77 On the
other hand, also the magnetic polarization of Au atoms by
the nearest-neighbor Fe atoms provides an additional contri-
bution to the total magnetic moment,75 but it is usually found to
be lower than 0.03mB per Au atom and, therefore, it does not
produce a signicant variation ofM.78 Both the low-temperature
spin-glass behavior and the large net magnetization of Fe fully
support the observation of the homogenous random distribu-
tion of iron atoms within each nanoalloy particle and exclude
the presence of clustered Fe centres.
Relaxivity properties

Since the PEG–AuFeNPs are paramagnetic at room temperature,
we evaluated their ability to act as contrast agents in magnetic
resonance imaging. The 1H NMR dispersion prole was
measured at room temperature in the frequency range 10 kHz#
n # 60 MHz.79 This range was chosen to cover the typical elds
in MRI tomographs, used in both clinical (H ¼ 0.2, 0.5 and
1.5 T) and research laboratory settings. The relaxivities r1 and r2
weighted by the magnetic center concentration (i.e., the inverse
of transverse 1H nuclear relaxation times T1 and T2, respectively)
as a function of frequency are shown in Fig. 5A. From the r1(n)
behavior, we gather information on the physical mechanisms
affording the shortening of 1H nuclear relaxation times. In
general, two different relaxation mechanisms contribute to the
r1(n) curve.80–82 At low frequencies (#1–5 MHz), the mechanism
driving the nuclear relaxation is the Néel relaxation of the
particle magnetization, giving a correlation time related to the
magnetic anisotropy barrier;80–82 at high frequencies ($1–
10 MHz), the dominant mechanism is the Curie relaxation,
which takes into account the diffusion of water molecules (with
a diffusion correlation time sD ¼ r2/D, where r is the distance of
the closest approach and D the diffusion coefficient of water
molecules) in the presence of magnetic centers.80–82 While
the rst mechanism gives a attening of r1(n) at frequencies n <
1–5 MHz, the second mechanism is responsible for the
maximum in r1(n) at higher frequencies. In addition, for parti-
cles characterized by a distance of <5 nm between the magnetic
core and the hydrogen nuclei of the bulk water, a dispersion at
intermediate frequencies occurs.80–82 In PEG–AuFeNPs, both the
high-frequency maximum and the low-frequency dispersion are
absent in the r1(n) plot (Fig. 5A). This can be attributed to the
l (r2) relaxation rates for PEG–AuFeNPs (red squares and black circles, respectively).
aining a solution of the nanoalloy is darker than pure water, showing the contrast

Nanoscale, 2013, 5, 5611–5619 | 5615
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dominant contribution coming from the high magnetic
anisotropy83,84 due to the diameter of about 30 nm of PEG–
AuFeNPs and to the PEG shell, the thickness of which in water
can be estimated to be 10–15 nm.85

Instead, r2(n) rapidly increases up to 64 s�1 mM�1 for n >
7 MHz (Fig. 5A), i.e., up to a relaxivity comparable to commercial
superparamagnetic contrast agents like Endorem� (99 s�1

mM�1) for a typical clinical eld H ¼ 1.5 T. Therefore, AuFe
nanoalloys are promising negative contrast agents, as also
conrmed by the efficiency parameter r2/r1, reported in Fig. 5B,
that is greater than 5 in all frequency ranges and reaches values
above 102 at high elds, whereas the threshold value is about 2
formost negative contrast agents.82–84 An example for the contrast
ability of the PEG–AuFeNPs is obtained by comparing a phantom
containing the aqueous suspension of PEG–AuFeNPs with a
phantom containing pure water. The T2-weighted image, repor-
ted in Fig. 5C, is obtained with a Spin Echo sequence and it is in
agreement with the measured r2 relaxivities at 8.5 MHz (oper-
ating eld of 0.2 T). As can be seen from the image, the solution
containing the AuFe nanoalloy is darker than water, conrming
the efficacy of our material in contrasting images.
Conclusions

In summary, we found that plasmonic and magnetic properties
coexist in Au89Fe11 nanoalloys obtained by laser ablation
synthesis in solution. LASiS is a top-down “green” technique
capable of overcoming the thermodynamic limitations for the
synthesis of Au–Fe alloys and generating nanoparticles that can
be coated in one-pot with thiolated ligands. The as-obtained
PEG-coated nanoalloys have homogeneous Au89Fe11 composi-
tion and excellent stability in air and in aqueous solutions. The
ability of PEG–AuFeNPs to act as negative contrast agents for
magnetic resonance imaging is also demonstrated. The inves-
tigation of plasmonic properties revealed a nonlinear depen-
dence on the composition. Most importantly, plasmonic and
magnetic properties coexist in the nanoalloy, suggesting the
possibility that novel spin-dependent plasmonic phenomena
might be observed at the nanoscale. Our results mark a step
forward in the development of a new class of multifunctional
nanoalloys with potential applications in nanomedicine,
photonics, spintronics and magneto-plasmonic devices.
Materials and methods
AuFeNP synthesis and PEGylation

AuFeNPs were obtained by laser ablation synthesis in solution
(LASiS). Laser ablation was carried out with Nd:YAG Quantel
YG981E laser pulses at 1064 nm (9 ns) focused with a f 10 cm
lens on a metal plate placed at the bottom of a cell containing
pure ethanol (HPLC grade, Fluka). Pulses of 30 J cm�2 at a 10 Hz
repetition rate and a plate of AuFe alloy (Au 73% atomic, Fe 27%
atomic, 99.9% purity, purchased from MaTecK GmbH) were
used for LASiS of AuFeNPs. Scanning Electron Microscopy-
Energy Dispersive Spectroscopy analysis with a FEI Quanta 200
was performed on the target prior to LASiS to assess the
uniformity of the alloy plate.
5616 | Nanoscale, 2013, 5, 5611–5619
Aer the LASiS, the ethanol solutions of AuFeNPs (0.05 mg
ml�1) were diluted to a ratio of 1 : 2 with an aqueous solution of
5.0 mM disodium ethylenediaminetetraacetate (EDTA >98%,
Sigma Aldrich) and thiolated 0.05 mM polyethylene glycol
(PEG–SH, 5000 Mw, from Lysan Bio). The solution was kept at
60 �C for 1 hour and then washed with dialysis concentration
membranes by multiple washing cycles with deionized water at
2000 rcf (10 000 Da, Vivaspin from Sartorius) and nally
resuspended in deionized water.
AuFeNP structural characterization

UV-vis absorption spectra were recorded with a Varian Cary 5
spectrometer using 2 mm optical path quartz cells. FTIR
measurements were carried out on a dried PEG–AuFeNP powder
on a KBr window with a Nicolet 5700 spectrophotometer.

The inductively coupled plasma-mass spectrometry (ICP-MS)
measurements were carried out with a Thermo Elemental X7
Series instrument equipped with the PlasmaLab soware
package. For instrument calibration, standard Au and Fe solu-
tions were purchased from Spectrascan.

The X-ray diffraction pattern was collected by a Philips
diffractometer constituted by an X'Pert vertical goniometer with
Bragg–Brentano geometry, a focusing graphite monochromator
and a proportional counter with a pulse-height discriminator.
Nickel-ltered Cu Ka radiation and a step-by-step technique
were employed (steps of 2q¼ 0.05�), with collection times of 30 s
per step. A previously published method was used for line
broadening analysis (LBA).86 The quantitative phase analysis by
X-ray diffraction was performed using the Rietveld method
(DBWS9600 computer program written by Sakthivel and Young
and modied by Riello et al.).86 To take into account Au1�xFex
solid solutions with different structures (bcc and fcc), the cali-
bration was obtained by tting the average volume per atom in
the cell. The calibration curve and the equation of the poly-
nomial interpolation are reported in Fig. S4.†

Transmission electron microscopy analysis was performed
with a JEOL JEM 3010 microscope operating at 300 kV and
equipped with a Gatan Multiscan CCD Camera model 794. The
samples for TEM analysis were prepared by evaporating NP
suspensions on a copper grid coated with an amorphous carbon
holey lm.

Additional TEM analysis was carried out with a Titan� TEM
(FEI Company, Hillsboro, OR 97124) operating at 300 keV beam
energy and equipped with a Tridiem� post-column energy lter
(Gatan, Inc., Pleasanton, CA 94588) and an X-ray energy disper-
sive spectroscopy (XEDS) system (EDAX Inc., Mahwah, NJ 07430).
The samples were imaged at a magnication of 500 k� in energy-
ltered TEM (EFTEM) mode with a 14 eV energy slit inserted
around the zero energy-loss electrons for acquiring the high-
resolution TEM (HRTEM) micrographs. The presence of peaks in
the processed Fast Fourier Transforms (FFTs) of each HRTEM
image showed that all of the nanoparticles investigated had a
crystalline structure. The HRTEM images were acquired close to
1–2 Scherzer defocus. Elemental mapping of Au and Fe was
performed by selecting their N-edge (83 eV) and L-edge (708 eV),
respectively, for the three-window mapping method (1 post-edge
This journal is ª The Royal Society of Chemistry 2013
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of 15 eV and 2 pre-edge with 15 eV width). Each elemental map
was then line proled across the diameter of each nanoparticle to
show the amount of elemental signal across the whole nano-
particle. Au and Fe signal counts were then summed and cor-
rected with cross-sections using the experimental collection
angle and energy windows adapted for EFTEM mapping of each
element. Scanning transmission electronmicroscopy (STEM) was
performed with the electron beam at 300 keV to acquire the X-ray
energy dispersive spectra (XEDS) from different locations on the
same nanoparticle with about one nanometer spatial resolution.
An annular dark-eld (HAADF) STEM detector from Fischione
Inc. was employed to generate the STEMmicrographs. Au and Fe
elemental compositions were determined under standardless
and Cliff–Lorimer approximations.

The sample for analysis with the Titan TEM was obtained by
mixing 10 ml of PEG–AuFeNPs solution with 100 ml of a 10 mg
ml�1 polyvinyl alcohol solution in water (PVA, average 200 000
Mw, from Fluka) and depositing one drop on a copper grid
coated with a holey carbon lm. PVA prevented particle
agglomeration aer drying the drop.

Mie model calculations

The extinction cross-section of spherical nanoparticles was
calculated using the Mie model for compact spheres:60

s ¼ 2p���k2
���

XN

L¼1

ð2Lþ 1ÞRe½aL þ bL� (1a)

aL ¼ m$jLðmxÞ$jL
0ðxÞ � jL

0ðmxÞ$jLðxÞ
m$jLðmxÞ$hL

0ðxÞ � jL
0ðmxÞ$hLðxÞ

(1b)

bL ¼ jLðmxÞ$jL
0ðxÞ �mjL

0ðmxÞ$jLðxÞ
jLðmxÞ$hL

0ðxÞ �mjL
0ðmxÞ$hLðxÞ

(1c)

m ¼ nðRÞ
nm

(1d)

x ¼ | �k|R, (1e)

where s is the extinction cross-section of a sphere of radius R, k is
the incident photon wavevector, jL and hL are the spherical Ric-
cati–Bessel functions, nm is the real refraction index of the non-
absorbing surrounding medium, and n(R) is the complex
refractive index of the sphere of radius R. In all calculations, we set
the multipolar order to L ¼ 3 and nm ¼ 1.334 (for water matrix).

Because the optical constants of the Au89Fe11 alloy are not
available in the literature, we use the linear averaging of the
optical constants of pure Au from ref. 87 and for Au84Fe16 from
ref. 22. The optical constants are corrected for size, as reported
previously,60,63 although the corrections have negligible effects
on 30 nm nanoparticles, which fall between the intrinsic and
extrinsic size effect regimes.60

Magnetic characterization

Magnetic measurements were performed using a Quantum
Design MPMS SQUID magnetometer operating in the 1.8–350 K
This journal is ª The Royal Society of Chemistry 2013
temperature range with the applied eld up to 5.0 T. These
measurements were carried out on aqueous solution placed in a
gel-cap and on dried powder obtained by gentle evaporation of a
few drops of the solution on a Teon ribbon. The temperature
dependence of the in-phase (c0) and out-of-phase (c0 0) compo-
nents of the AC susceptibility was measured with the same
apparatus on a powder sample in the 1–1000 Hz frequency
range with a eld amplitude of 240 A m�1. All data were cor-
rected for the diamagnetic contribution of the sample holder
and, when present, of the solvent, which were measured sepa-
rately. Aer subtraction of the diamagnetic contributions, no
noticeable differences among the magnetic behaviors of the
NPs in solution and in dried powder were observed.

Relaxivity measurements

NMR data were collected by using two different pulsed FT-NMR
spectrometers: (i) a Smartracer Stelar relaxometer (with the use
of the Fast-Field-Cycling technique) for frequencies in the
range 10 kHz # n # 10 MHz, and (ii) a Stelar Spinmaster for n >
10 MHz.

Standard radio frequency excitation pulse sequences, CPMG-
(T2) and saturation-recovery (T1), were used. The contrast
ability of PEG–AuFeNPs was investigated by measuring the
longitudinal (r1) and transversal (r2) relaxation rates (Fig. 5A) of
protons (1H) dened as:82

ri ¼ [(1/Ti)meas � (1/Ti)dia]/c, i ¼ 1, 2

where (1/Ti)meas is the value measured for a concentration c of
the magnetic center (in mM�1) and (1/Ti)dia is the nuclear
relaxation rate of the diamagnetic solvent (i.e., ultrapure H2O),
which is of the order of a few seconds.

MRI experiments were performed at 8.5 MHz using an
Artoscan Imager by Esaote SpA (Esaote, Genova, Italy). The
pulse sequence was a high-resolution spin echo sequence with
TR/TE/NEX ¼ 5000 ms/120 ms/2, matrix ¼ 256 � 192, eld of
view ¼ 180 � 180, where TE is the echo time, TR the repetition
time, and NEX is the number of averages.
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