
Type-Based Analysis of Generic Key Management APIs

Pedro Adão
SQIG–Instituto de Telecomunicações

IST, TULisbon, Lisboa, Portugal
Email: pedro.adao@ist.utl.pt

Riccardo Focardi
DAIS, Università Ca’ Foscari

Venezia, Italy
Email: focardi@dsi.unive.it

Flaminia L. Luccio
DAIS, Università Ca’ Foscari

Venezia, Italy
Email: luccio@unive.it

Abstract—In the past few years, cryptographic key manage-
ment APIs have been shown to be subject to tricky attacks
based on the improper use of cryptographic keys. In fact,
real APIs provide mechanisms to declare the intended use of
keys but they are not strong enough to provide key security.
In this paper, we propose a simple imperative programming
language for specifying strongly-typed APIs for the manage-
ment of symmetric, asymmetric and signing keys. The language
requires that type information is stored together with the key
but it is independent of the actual low-level implementation.
We develop a type-based analysis to prove the preservation
of integrity and confidentiality of sensitive keys and we show
that our abstraction is expressive enough to code realistic key
management APIs.

I. INTRODUCTION

In the recent years cryptography is becoming a key
technology to provide security in various settings, and
cryptographic hardware and services are becoming more
and more pervasive in everyday applications. The interfaces
to cryptographic devices and services are implemented as
Security APIs whose main aim is to allow untrusted code
to access resources in a secure way. Typically, these APIs
provide key management operations such as: the creation
or deletion of keys; the encryption/decryption, signing and
verification of data through some keys; the import/export of
sensitive keys, i.e., keys that should never be revealed outside
a smart card or hardware security modules (HSMs). These
last operations are usually implemented by encrypting these
sensitive keys under other keys, operation which is called
key wrapping.

API calls may be executed on untrusted machines, thus a
very important issue is to design secure APIs that enforce
a policy, that is, security properties have to be maintained
no matter what the parameters are, and which sequence of
legal API calls is executed. A key usage policy is defined
by some key attributes stored in the key. Examples are the
wrap attribute that is associated to keys used to encrypt other
keys, or the attribute decrypt associated to decryption keys.
Objects such as cryptographic keys or certificates in tokens,
are referenced via handles, that are pointers to or names
for the objects in the secure memory. These handles do not
reveal any information about the actual values of the objects,
e.g., of a key, thus objects may be used without necessarily
knowing their values but just providing a handle to them.

Although these APIs are very powerful, all the proposed
implementations are not capable of precisely defining the
different roles and uses that objects should have.

In the last decade this has lead to many different attacks
both on HSMs and smart cards (see, e.g., [2], [3], [4],
[8]). Many of these attacks are related to the key wrapping
operation. For example, attacks on the IBM CCA interface
are related to the improper bound, provided by the XOR
function, between the attributes of a wrapping key and the
usage rules [3], and attacks on the PKCS#11 security tokens
can be mounted by assigning particular sets of attributes to
the keys, and by performing particular sequences of (legal)
API calls [4]. In this context some ‘patches’ have been
presented that rely on: imposing a policy on the attributes
so that a key cannot be used for conflicting operations; im-
posing that conflicting attributes are not set at two different
instants by limiting the usage of imported keys to some non-
critical functions [4], or by adding a wrapping format that
binds attributes to wrapped keys [12], [15]. Other attacks on
PIN processing APIs are, e.g., on formats used for message
encryption [10], or on the lack of integrity of user data [7].

In our opinion, formal and general tools to reason about
the security of cryptographic APIs are very important in
order to find attacks to real APIs and to test new patches.

Our contribution: In this paper we present an abstract
and simple imperative programming language for specifying
strongly-typed APIs for the management of symmetric,
asymmetric and signing keys. Starting from the definition
of an abstract key management language which is strongly
typed, i.e., that associates objects to types, we provide a
concrete semantics, in which concrete key properties are
stored in place of types. We then investigate conditions that
allow us to map concrete APIs to the proposed types so that
security results are preserved. In particular, we prove that
if the translation of the concrete API into the typed one is
well-typed then security of keys is guaranteed.

We then study realistic implementations of the APIs.
We consider PKCS#11 v2.20 that allows to specify the at-
tributes of wrapped and unwrapped keys [19]. We show that
PKCS#11 attributes can be mapped into types preserving
the above mentioned conditions, and this allow us to prove
security through the general type-checking.

Published in: 2013 IEEE COMPUTER SECURITY FOUNDATIONS SYMPOSIUM
DOI: 10.1109/CSF.2013.14

Related work: The current literature proposes different
solutions for the designs of new secure token interfaces and
the proofs of their security. In [5] secure token interfaces are
proposed together with security proofs in the cryptographic
model. The security relies on the access to a log of all the
operations, solution that seems to be not very practical when
applied, e.g., to limited memory devices. Moreover, it does
not cover the set of all the possible security properties. In
[11] secure token interfaces are proposed for a distributed
setting, together with security proofs in the symbolic model.
This approach however assumes a limited set of functional-
ities. In [16] the authors introduce a general security model
for cryptographic APIs. They define a new notion of security
for cryptographic APIs, and apply this notion to the security
proofs both in the symbolic and in the computational model.
This new model is able to separate key management from
key usage, thus avoiding some of the previous attacks. It
is also flexible enough to be adapted to some real security
APIs. The main difference with respect to our proposal is
the use that we do of types to statically enforce security
properties on general APIs.

Our type system is partially inspired in the one in [13],
proposed for the different setting of spi-calculus processes
for protocol analysis. Apart from the completely different
setting, there is another important technical difference with
respect to [13]. In our case, we do not assume any integrity
check when performing encryption and decryption. When
we decrypt with a wrong key we still get a valid term. This is
what typically happens in many real world implementations.

In [6] the authors propose a simple language, for the
coding of PKCS#11 APIs, and they develop a type-based
analysis to prove that the secrecy of sensitive keys is
preserved under a certain policy. This solution, is however
limited to PKCS#11 cryptographic APIs and to symmetric
keys, whereas in this paper we propose a new language that
is applicable to general cryptographic APIs, that is, any key
storage that is managed through handles, and that manages
also asymmetric and signing keys, in the style of [16]. As
we will show we will be able to instantiate the PKCS#11
APIs in this new model.

The paper is organized as follows. In Section II we
introduce a simple imperative programming language for
specifying strongly-typed APIs for the management of sym-
metric, asymmetric and signing keys, the attacker model and
the notion of API security; in Section III we present the type
system that enforces API security and the type soundness
results; in Section IV we modify the language in order to
code real API implementations. In Section V we show how
PKCS#11 can be modeled in our framework. We draw some
conclusions in Section VI.

II. A LANGUAGE FOR KEY MANAGEMENT APIS

In this section we first introduce a simple imperative
language suitable to specify key management APIs. We

then formalize the attacker model and define API security.
The API language is inspired in [6] but here we allow
more expressive types that dictate how keys should be used
and what is their security level. Moreover we consider
asymmetric encryption and digital signatures that are not
accounted for in [6].

Values: We let C and G, with C \ G = ;, respectively
be the set of atomic constants and fresh values. The former
is used to model any public data, including non-sensitive
keys, while the latter models the generation of new fresh
values such as sensitive keys. We associate to G an extraction
operator g G, representing the extraction of the first
‘unused’ value g from G. Extracted values are always
different: two, even non-consecutive, extractions g G and
g
0 G are always such that g 6= g

0. We let val range over
the set of all atomic values C [G and we define values v as
follows:

v ::= val | enc(v , v 0) | dec(v , v 0)
| ek(v) | enca(v , v 0) | deca(v , v 0)
| vk(v) | sig(v , v 0)

Intuitively, enc(v , v 0) (resp. enc
a(v , v 0)) and dec(v , v 0)

(resp. deca(v , v 0)) denote value v respectively encrypted and
decrypted under key v 0 in a symmetric (resp. asymmetric) ci-
pher; ek(v) denotes the public encryption key corresponding
to the private decryption key v , and vk(v) is the verification
key corresponding to the signing key v ; finally, sig(v , v 0)
denotes the signature of v using key v 0.

We explicitly represent decrypted values in order to model
situations in which a wrong key is used to decrypt an
encrypted value: for example, the decryption under v 0 of
enc(v , v 0) will give, as expected, value v ; on the other hand,
the decryption under v 0 of enc(v , v 00), with v 00 6= v 0 will
be explicitly represented as dec(enc(v , v 00), v 0). This allow
us to model cryptosystems with no integrity checks as de-
crypting with a wrong key never returns a failure. Signature
verification, instead, only succeeds when the verification key
corresponds to the signing one.

Expressions: Our language is composed of a core set of
expressions for manipulating the above values. Expressions
are based on a set of variables V ranged over by x, and have
the following syntax:

e ::= x | enc(e, x) | dec(e, x)
| ek(x) | enca(e, x) | deca(e, x)
| vk(x) | sig(e, x) | ver(e, x)

A memory M : x 7! v is a partial mapping from vari-
ables to values and e #M v denotes that the evaluation
of the expression e in memory M leads to value v . The
semantics of expressions is defined inductively in Table I.
As already mentioned, the modeled encryption mechanism
does not perform any integrity check on the messages, so
the decryption of a ciphertext under a wrong key gives
dec(v 00

, v 0). Signature verification, instead, evaluates to the

x #M M(x) if M(x) is defined

e(e1, . . . , en) #Me(v1, . . . , vn) if ei #M vi, i 2 [1, n]

enc(v , v 0) #M enc(v , v 0)

dec(enc(v , v 0), v 0) #M v
dec(v 00

, v 0) #M dec(v 00
, v 0) if v 00 6= enc(v , v 0)

enc
a(v , v 0) #M enc

a(v , v 0)

ek(v) #M ek(v)

dec
a(enca(v , ek(v 0)), v 0) #M v

dec
a(v 00

, v 0) #M dec
a(v 00

, v 0) if v 00 6= enc
a(v , ek(v 0))

sig(v , v 0) #M sig(v , v 0)

vk(v) #M vk(v)

ver(sig(v , v 0), vk(v 0)) #M v

Table I
THE SEMANTICS OF EXPRESSIONS

HL

LL

LH

HH

Figure 1. Security lattice

signed message only when the verification key corresponds
to the signing key.

Types: Our language is designed around powerful types
that specify the intended usage and the security level of each
key. A security level is a pair `C`I specifying, separately,
the confidentiality (C) and integrity (I) levels. We consider
two possible levels: High (H) and Low (L). For example,
HH denotes a high confidentiality and high integrity value,
while LH a public (low confidentiality) and high integrity
one. Intuitively, high confidentiality values should never be
read by opponents while high integrity values should not
be modified by opponents, i.e., when high integrity data
is received it is expected to have been originated at some
trusted source.

Figure 1 is a standard security lattice showing that confi-
dentiality and integrity levels are contra-variant [18]. Moving
up is safe while moving down is unsafe, thus it is safe
to consider a public datum as secret, while it is unsafe to
promote low integrity to high integrity. More formally, the
confidentiality and integrity preorders are such that L vC H

and H vI L. We let `C and `I range over {L,H}, while
we let ` range over the pairs `C`I with `

1
C
`
1
I
v `

2
C
`
2
I

if and
only if `1

C
vC `

2
C

and `
1
I
vI `

2
I
.

We define the following types:

T ::= X | ` | µK`[T]
µ ::= Sym | Enc | Dec | Sig | Ver (1)

Intuitively, X is a type variable that will be bounded at
runtime by a map � : X ! T from type variables to ground
types; type ` is used for generic data at security level `;
and type µK

`[T] is used for keys at security level ` that are
used to perform cryptographic operations on terms of type T .
Depending on the label µ, this type may describe symmetric
keys, encryption/decryption asymmetric keys, or signing and
verification keys. We will see that type information is stored,
retrieved and checked at run-time in order to authorize
specific cryptographic operations. Type variables allow for
some degree of polymorphism so that static analysis can
be performed on types that are partially specified. We write
var(T) to note the variables occurring in type T .

We allow symmetric, decryption and verification keys to
have a payload different from LL only if their level is HH ,
i.e., when they can really be trusted.

Definition 1 (Types well-formedness). Let T = µK
`[T] with

µ 2 {Sym,Dec, Sig}. Then ` 6= HH implies T = LL.

Given a type T we will use `C(T) and `I(T) to denote
respectively its confidentiality and integrity levels. Let ` =
`
?

C
`
?

I
. Define `C(`) = `C(µK`[T]) = `

?

C
and `C(X) = H;

similarly `I(`) = `I(µK`[T]) = `
?

I
and `I(X) = L.

We define the notion of subtyping as the least preorder
such that:

(1) `1 `2 whenever `1 v `2;
(2) LL µK

`CL[LL];
(3) µK

`[T] ` for any type T .
Intuitively, (1) states that subtyping extends the security
level preorder; (2) public and low integrity (LL) terms are
regarded as keys performing cryptographic operations on
public and low integrity (LL) terms. For example, it is
allowed to encrypt a LL term under a LL key; (3) keys
can be thought as generic data at the same level. Notice that
the opposite would be unsafe, apart from the special case of
LL stated in item (2).

Lemma 2. Let � : X ! T be a map from type variables to
ground type. Then, T T

0 implies T� T
0
�.

Proof: Conditions (1) and (2) of are on ground types
so T� = T T

0 = T
0
�. Condition (3) we have T =

µK
`[T] ` = T

0. In this case µK
`[T]� = µK

`[T�] ` =
T

0 = T
0
�

Notice that when we have type µK
`[T] everything has to

be ground except T . Even when we have (µK`C(X)L[T]),
the label `C(X)L is ground and so (µK`C(X)L[T])� =
µK

`C(X)L[T�].
APIs and tokens: An API is specified as a set A =

{a1, . . . , an} of functions, each one composed of simple
sequences of assignment commands:

a ::= �x1, . . . , xk.c
c ::= x := e | x := f | return e | c1; c2
f ::= getKey(y, T) | genKey(T) | setKey(y,T)

We will only consider API commands in which return e
can only occur as the last command. Internal functions f

represent operations that can be performed on the underlying
devices. Note that these functions are used to implement the
APIs and are not directly available to the users. Intuitively,
getKey retrieves the plaintext value of a key stored in the
device, given its handle y; if the recorded (ground) type of
the key is unifiable with T , the key is returned; any binding
of type variables in T which is necessary to match the actual
key type is recorded in a special environment �; genKey

generates a key with (ground) type T�; finally, setKey

imports a new key with plaintext value y and (ground) type
T�. The first function fails, i.e., is stuck, if the given handle
does not exist or refers to a key with a non-matching type.
The other functions are stuck if the given type is not ground,
once we apply the environment binding �. A call to an API
a = �x1, . . . , xk.c, written a(v1, . . . , vk), binds x1, . . . , xk to
values v1, . . . , vk, executes c and outputs the value given by
return e .

Example 3 (Symmetric key wrapping). We specify a wrap-
ping API that takes two handles: the wrapped key h key and
the wrapping key h w. If the wrapped key has the expected
type then it is encrypted under the wrapping key and the
ciphertext is returned. For the sake of readability, we will
always write a(x1, . . . , xk) c in place of a = �x1, . . . , xk.c
to specify an API function:

SymWrap(h key, h w)
w := getKey(h w, SymK

HH [X]);
k := getKey(h key,X);
return enc(k, w);

Notice the use of type variable X to allow for any type
from wrapped key. What is important is that X matches
the payload type for the wrapping key, as specified in
SymK

HH [X].

Semantics: Device keys are modeled by an handle-
map H : g 7! (v , T) that is a partial mapping from
the atomic (generated) values to pairs of key values and
ground types. Key values are referred by their handles and
we allow multiple handles to refer to the same value with
eventually different types, for instance, H(g) = (v , T) and
H(g0) = (v , T 0). By allowing this we are able to deal with
multiple devices considering all keys available to the API
as a unique ‘universal’ device. This corresponds to a worst-
case scenario in which attackers can simultaneously access
all the existing hardware.

An API command c working on a memory M, with a
handle-map H and type variable substitution � is denoted
by hM,H,�, ci. Semantics is presented in Table II, where
✏ denotes the empty API. Assignment x := e evaluates ex-
pression e on M and stores the result in variable x , denoted
M[x 7! v]. In case x is not defined in M the domain of M

is extended to include the new variable, otherwise the value

stored in x is overwritten. Internal function getKey(y, T)
takes the (ground) type T

0 of the key referred to by y and
extends the present binding � of type variables with a new
binding �

0 that makes T the same as T
0. Binding �

0 is
minimal, as it only operates on the variables of T�. With]
we denote the union of two disjoint substitutions.

Other rules are similar in spirit. Notice that genKey and
setKey also modify the handle-map. The last rule is for API
calls on an handle-map H: parameter values are assigned to
variables of an empty memory M✏, i.e., a memory with no
variables mapped to values (recall that memories are partial
functions); then, the API commands are executed and the
return value is given as a result of the call. This is noted
a(v1, . . . , vk) ⇡H,H

0
v where H

0 is the resulting handle map.
Notice that at this API level we do not observe memories
that are, in fact, used internally by the device to execute the
function. The only exchanged data are the input parameters
and the return value.

Example 4 (Semantics of symmetric key wrapping). To
illustrate the semantics, we present the transitions of
the symmetric key wrapping command specified in Exam-
ple 3. Suppose that the device associates the handle g to
(v , SymK

HL[LL]) and g
0 to (v 0

, SymK
HH [SymK

HL[LL]]).
We consider a memory M where all the variables are set
to zero except for h key and h w which store respectively
g and g

0, i.e., M = M✏[h key 7! g, h w 7! g
0]. Let also

assume that X 62 dom(�). Then it follows,

hM,H,�,w := getKey(h w, SymK
HH [X]));

k := getKey(h key,X); return enc(k, w)i
! hM[w 7! v 0],H,�] [X 7! SymK

HL[LL]],
k := getKey(h key,X); return enc(k, w)i

! hM[w 7! v 0
, k 7! v],H,�] [X 7! SymK

HL[LL]],
return enc(k, w)i

which gives SymWrap(g, g0) ⇡H,H
enc(v , v 0) meaning that

the value returned invoking the wrap command is thus the
encryption of v under v 0. Notice how X gets bounded to the
type transported by the wrapping key SymK

HL[LL] which
then matches the type of v stored in H.

Attacker Model: We formalize the attacker in a classic
Dolev-Yao style. The attacker knowledge K(V) deducible
from a set of values V is defined as the least superset of V
such that whenever v , v 0 2 K(V) then

(1) enc(v , v 0), enca(v , v 0), sig(v , v 0), ek(v), vk(v) 2
K(V);

(2) if v = enc(v 00
, v 0) or v = enc

a(v 00
, ek(v 0)) then v 00 2

K(V);
(3) if v 6= enc(v 00

, v 0) then dec(v , v 0) 2 K(V);
(4) if v 6= enc

a(v 00
, ek(v 0)) then dec

a(v , v 0) 2 K(V);
(5) if v = sig(v 00

, v 000) and v 0 = vk(v000) then v 00 2
K(V).

e #M v

hM,H,�, x := ei ! hM[x 7! v],H,�, "i

H(M(y)) = (v , T 0) T
0 = (T�)�0 dom(�0) = var(T�)

hM,H,�, x := getKey(y, T)i ! hM[x 7! v],H,�] �0, "i

g, g
0 G T� ground

T� = µK
`[T 0] =) µ 2 {Sym,Dec, Sig} ^ (` = HH _ T

0 = LL)

hM,H,�, x := genKey(T)i ! hM[x 7! g],H[g 7! (g0,T�)],�, "i

g G T� ground
hM,H,�, x := setKey(y,T)i ! hM[x 7! g],H[g 7! (M(y),T�)],�, "i

hM,H,�, c1i ! hM0
,H

0
,�

0
, "i

hM,H,�, c1; c2i ! hM0,H0,�0, c2i
hM,H,�, c1i ! hM0

,H
0
,�

0
, c

0
1i

hM,H,�, c1; c2i ! hM0,H0,�0, c01; c2i

a = �x1, . . . , xk.c hM✏[x1 7! v1 . . . xk 7! vk],H, ;, ci ! hM0
,H

0
,�

0
, return ei e #M0

v

a(v1, . . . , vk) ⇡H,H0 v

Table II
API SEMANTICS

Given a handle map H, representing a token, and an API
A = {a1, . . . , an}, an attacker can invoke any API function
providing any of the known values as a parameter and
the returned value is added to its knowledge. Formally, an
attacker configuration is represented as hH, V i and evolves
as follows:

a 2 A v1, . . . , vk 2 K(V) a(v1, . . . , vk) ⇡H,H
0
v

hH, V i A hH0, V [{v}i
The initially knowledge of the adversary is given by an
arbitrary subset V0 ✓ C and we consider an initial empty
handle map H0. In the following, we use the standard
notation ⇤

A for multi-step reductions.
API security.: We define confidential and secure keys

by inspecting the security levels stored in the handle map.
Recall that the same key value can appear under multiple
handles. A key that is always stored at a high confidential
level should be regarded as confidential, however there is
no guarantee that the key is not known by the attacker.
For example, the attacker might succeed importing a key
as confidential in the device. The device will regard it as
high confidential but the value comes from the attacker.
The situation is different for keys that are stored as high
confidential and high integrity (HH). High integrity means
that the key cannot come from the attacker. Typically these
keys are generated in the device or stored by a security
officer in a secure environment. We expect these keys to
be confidential in their entire life and we refer to them as
secure keys.

Definition 5 (Confidential and secure keys). Let val be an
atomic value and H a handle-map such that val 62 dom(H).
If val is such that H(g) = (val , T) implies `C(T) = H we

say that val is confidential in H. If we additionally have that
T = µK

HH [T ?] we say that val is secure in H.

The definition of API security follows.

Definition 6 (API Security). Let A be an API. We say that
A is secure if for all reductions hH0, V0i ⇤

A hH, V i ⇤
A

hH0
, V

0i and for all atomic values val we have
(1) val 62 K(V) and val is confidential in H implies val 62

K(V 0);
(2) val is secure in H implies val 62 K(V) [K(V 0).

The above property is not enforced by the semantics as
the following example illustrates.

Example 7. Consider the following insecure API that takes
a handle and leaks the corresponding key:

LeakKey(h key)
k := getKey(h key,X);
return k;

The key is copied into k and then returned, independently of
the associated type. For example if the handle is associated
to a secure SymK

HH [HH] key, the key value will be
returned and leaked to the attacker, breaking API security
definition.

In the next section we develop a type system that statically
enforces the API security property.

III. TYPE SYSTEM

Expressions: In order to type expressions and com-
mands we introduce a typing environment � : x 7! T which
maps variables to their respective types. We allow only a
subset of key types in �.

�(x) = T � ` ⇧
� `e x : T

[var]
� `e e : T 0

T
0 T

� `e e : T
[sub]

� `e x : DecK
`C`I [T]

� `e ek(x) : EncKL`I [T]
[ek]

� `e x : SigK`C`I [T]

� `e vk(x) : VerKL`I [T]
[vk]

� `e x : SymK
`C`I [T] � `e e : T

� `e enc(e, x) : L`I
[enc]

� `e x : SymK
`[T] � `e e : T 0

� `e dec(e, x) : T
[dec]

� `e x : EncK`C`I [T] � `e e : T

� `e enc
a(e, x) : L`I

[enca]

� `e x : DecK
`[T] � `e e : T 0

`I(T 0) 6= H =) T = LL

� `e dec
a(e, x) : T

[deca]

� `e x : SigK`C`I [T] � `e e : T

� `e sig(e, x) : `C(T)`I
[sig]

� `e x : VerK`C`I [T] � `e e : T 0
`C(T 0) = H =) `I = H

� `e ver(e, x) : T
[ver]

Table III
TYPING EXPRESSIONS

Definition 8 (Gamma well-formedness). Let � : x 7! T .
We say that � is well-formed, written � ` ⇧, if whenever
�(x) = µK

`[T] it holds:
(1) µ 2 {Sym,Dec, Sig};
(2) ` 6= HH implies T = LL.

With the previous definition we ensure that we only record
in � the private parts of keys, Sym,Dec, Sig, while deriving
the corresponding public parts, Enc,Ver only via the typing
rules. Also, symmetric, decryption and signature keys need
to be kept secret and can be trusted, for what concerns the
transported type, only if they are high integrity. For that, we
require that we only transport keys of type different from
LL under HH keys.

Type judgment for expressions is denoted � `e e : T

meaning that expression e is of type T under �. Typing rules
are presented in Table III. Rules [var] and [sub] are standard
and derive types directly from � (for variables) or via
subtyping. Without loss of generality we assume that [sub]
is never applied uselessly in a derivation, that is, we never
apply it to obtain the same type as we can just remove this
rule from the derivation, nor more than once consecutively
as given the sequence T1 T2 . . . Tn, we can always

�(x) = T � `e e : T

� `c x := e
[assign]

� `c c1 � `c c2

� `c c1; c2
[seq]

�(x) = T � `e y : LL

� `c x := getKey(y,T)
[getkey]

�(x) = LL

� `c x := genKey(T)
[genkey]

�(x) = LL � `e y : T

� `c x := setKey(y,T)
[setkey]

� `e e : LL

� `c return e
[return]

� `e x1 : LL . . . � `e xk : LL � `c c

� `c �x1, . . . , xk.c
[function]

8a 2 A � `c a

� `c A
[API]

Table IV
TYPING APIS

substitute it by a single application of [sub] with T1 Tn.
Rules [ek] and [vk] derive the types for encryption and
verification keys, respectively from decryption and signature
ones, by changing their confidentiality level to L. This
reflects the fact that these keys are public.

Rule [enc] encrypts the result of an expression of type
T , as required by the key type. The integrity level of the
ciphertext is the same as the integrity level of the encryption
key while its confidentiality level becomes L reflecting the
fact that it is going to be sent eventually over an untrusted
channel. Symmetric decryption [dec] gives the original type
T to the plaintext.

Rules [enca] and [deca] are similar but asymmetric de-
cryption gives type LL to the plaintext unless the ciphertext
has high integrity. The rationale behind this is that unless
the ciphertext has high integrity then, since encryption key
is public, the plaintext might have come from the attacker
and so should be typed as LL.

Finally, rules [sig] and [ver] behave similarly but signature
has the same confidentiality level as the signed expression.
This is due to the fact that our verification function recovers
the signed message from the signature and so, in order to
protect its confidentiality, we have to preserve the confiden-
tiality level in the signature.

APIs: We now type API commands via the judgment
� `c c meaning that c is well-typed under �. The judgment
is formalized in Table IV. Rules [assign] and [seq] are
standard, and they amount to recursively type the expres-
sion and the sequential sub-part of a program, respectively.
Rule [getkey] retrieves a key of type T from the device and
assigns it to a variable with the same type as the retrieved
key; rules [genkey] and [setkey] store keys and return a LL

handle that can be safely sent outside the device. Rules

[return] and [function] state that the return value and the
parameter of an API call must be untrusted. In fact they
are the interface to the external, possibly malicious users.
Finally, by rule [API] we have that an API is well-typed if
all of its functions are well-typed.

Example 9. Let us consider again the API in Example 3:

SymWrap(h key, h w)
w := getKey(h w, SymK

HH [X]);
k := getKey(h key,X);
return enc(k, w);

In order to type the API we have to type all parameters
as LL (rule [function]). Thus we let

�(h key) = �(h w) = LL

Now by applying rule [getkey] twice we also set

�(w) = SymK
HH [X]

�(k) = X

Under this � we can apply rule [enc] and type enc(k, w)
as LH , since the encryption key w has high integrity. By
rule [sub] we can type enc(k, w) as LL which allows us to
type-check the return command, completing the typing.

A. Type soundness
We can now state the main theorem of our paper. The

main goal is to be able to show security of APIs via typing.
For that, we need to track the consistency between the
memory cells and the values recorded in it, as well as
the values recorded by the handle-map and their associated
types. Moreover, we need to show that this are preserved by
any execution. Full proofs of the Propositions of this section
can be found in [1].

In order to track the value integrity at run-time we define
a notion of value well-formedness. This judgment is based
on a mapping ⇥ : val 7! T from atomic values to ground
types that satisfies the following conditions:

⇥(val) = µK
`[T] implies µ 2 {Sym,Dec, Sig}

⇥(val) = µK
`[T] and ` 6= HH then T = LL

(2)

Rules are given in Table V and follow closely the ones for
expressions defined in Table III.

With this definition we may now characterize the run-time
types associated with values that represent keys. Similarly
to the requirements for a well-defined �, we can show that
private/symmetric keys are either really trusted, of type HH ,
or can only transport payloads of level LL. For the case of
public-keys their integrity-level needs to be H , meaning that
they were derived from good private keys, of type HH , or
they can only transport LL payloads.

Proposition 10. Let ⇥(val) = T and ⇥ |=v val : T 0. Then
T T

0.

Proposition 11. Suppose that v 6= dec(v 0
, v 00), deca(v 0

, v 00)
and that ⇥ |=v v : µK`[T]. Then

1) if ` = HH then v is atomic and ⇥(v) = µK
HH [T];

2) if µ 2 {Sym,Dec, Sig} then ` = HH or T = LL;
3) if µ 2 {Enc,Ver} then ` = LH or T = LL.

We can now show that the type transported by symmetric,
decryption and signature keys is unique and, when the level
of the key is HH , the key type is also unique.

Proposition 12. Suppose that ⇥ |=v v : µK`[T] and ⇥ |=v

v : µ0
K
`
0
[T 0], and µ, µ

0 2 {Sym,Dec, Sig}.
Then T = T

0 and ` `
0 (or `

0 `). Moreover if v 6=
dec(v1, v2), deca(v1, v2) we also have

1) if ` = HH , then `
0 = HH and µ = µ

0;
2) if ` 6= HH then T = T

0 = LL.

We can now define when a typing-environment �, a well-
formedness function ⇥, and a map � from types to ground-
types are correct with respect to a particular memory M, a
handle-map H, and a set of atomic values V. In short, this
definition requires that memory cells of type T record values
with (a ground) run-time type T�; the handle-map associates
properly the values with their correspondent type; and that
the values in V are recorded in ⇥ with their exact type,
and not a subtype of it. This last property is important in
our main theorem as we want to be sure that the generated
keys are recorded in ⇥ with their appropriated type and not
a subtype of it. This way we will be able to construct a
� that will record the minimum type that a value needs to
have and distinguish well generated keys from arbitrarily
generated ones.

Definition 13 (Well-formedness). �,⇥,� ` M,H,V if
• �,⇥,� `M M, i.e., M(x) = v , �(x) = T implies ⇥ |=v

v : T�; and
• ⇥ |=H H, i.e., H(v 0) = (v , T) implies ⇥ |=v v : T ;
• ⇥ �V H,V, i.e., val 2 V then 9g.H(g) = (val , T) and
⇥(val) = T .

We can easily show that all values typed by ⇥ are ground,
and so it follows from the previous definition that � is such
that all the T� above are ground.

Having defined the properties of run-time values for keys
and the notion of well-formed memory and handle-maps
we can now characterize which values are derivable by an
adversary. We show that with the attacker model defined
in Section II, given an initial set of values of type LL,
the attacker can only derive values of type LL. Intuitively,
having type LL, or LH via subtyping, is a necessary
condition for a well-formed value to be deducible by the
attacker.

Proposition 14. Let ⇥ be a well-formedness mapping and
V be a set of values such that ⇥ |=v v : LL for all v 2 V .

Then, v 2 K(V) implies ⇥ |=v v : LL.

⇥(val) = T

⇥ |=v val : T
[atom]

⇥ |=v v : T 0
T

0 T

⇥ |=v v : T
[sub]

⇥ |=v v : DecK
`C`I [T]

⇥ |=v ek(v) : EncKL`I [T]
[ek]

⇥ |=v v : SigK`C`I [T]

⇥ |=v vk(v) : VerKL`I [T]
[vk]

⇥ |=v v : SymK
`C`I [T] ⇥ |=v v 0 : T

⇥ |=v enc(v 0
, v) : L`I

[enc]
⇥ |=v v : SymK

`[T] ⇥ |=v v 0 : T 0 v 0 6= enc(v 00
, v)

⇥ |=v dec(v 0
, v) : T

[dec]

⇥ |=v v : EncK`C`I [T] ⇥ |=v v 0 : T

⇥ |=v enc
a(v 0

, v) : L`I
[enca]

⇥ |=v v : SigK`C`I [T] ⇥ |=v v 0 : T

⇥ |=v sig(v 0
, v) : `C(T)`I

[sig]

⇥ |=v v : DecK
`[T] ⇥ |=v v 0 : T 0 v 0 6= enc

a(v 00
, ek(v)) `I(T 0) 6= H =) T = LL

⇥ |=v dec
a(v 0

, v) : T
[deca]

Table V
VALUE WELL-FORMEDNESS

It is important that the type of expressions and the type
of their corresponding values are consistent at runtime. The
next Proposition states that when evaluating an expression
with type T in a well-formed memory, the type of the
returned value is T�. Recall that the range of ⇥ are only
the ground types whereas the range of � are all types. We
thus need to have a map � that accounts for this.

Proposition 15. Let � `e e : T , e #M v , ⇥ a well-
formedness function and � a map from types to ground types.

If �,⇥,� `M M then it holds ⇥ |=v v : T�.

We are now ready to prove our subject-reduction The-
orem that states that well-typed programs remain well-
typed at run-time and preserve memory and handle-map
well-formedness. We also have that all the atomic values
associated with new-handles, and that were not already in
memory, are recorded in ⇥ with their exact type.

Theorem 16. Let �,⇥,� ` M,H,V and � `c c . If
hM,H,�, ci ! hM0

,H
0
,�

0
, c

0i then
(i) if c0 6= " then � `c c0;

(ii) 9⇥0 ◆ ⇥ such that �,⇥0
,�

0 ` M
0
,H

0
,V

0, where V
0 =

V[{val | 9g 2 dom(H0)\dom(H).H0(g) = (val , T)}\
ran[M].

Proof: This proof can be found in the Appendix.
We can now show that one can construct a ⇥ that types

all the values known to the adversary as LL while at the
same time typing all the values not known for the adversary
with their exact type.

Let Vok(H, V) = {val | 9g.H(g) = (val , T)} \ K(V).

Lemma 17. Let � `c A and hH0, V0i ⇤
A hH, V i.

Then, there exists ⇥ such that ⇥ |=H H, ⇥ |=v v : LL
for each v 2 V , and ⇥ �V H,Vok(H, V).

Proof: This proof can be found in the Appendix.

Lemma 18. Let � `c A and hH0, V0i ⇤
A hH, V i ⇤

A
hH0

, V
0i. Then, there exists ⇥,⇥0 with ⇥ ✓ ⇥0 such that

• ⇥ |=H H and ⇥ |=v v : LL for each v 2 V , and
• ⇥ �V H,Vok(H, V)

and
• ⇥0 |=H H

0 and ⇥0 |=v v : LL for each v 2 V
0, and

• ⇥0 �V H
0
,Vok(H0

, V
0)

Proof: Direct from the Lemma 17
We can now state the main result of the paper: well-typed

APIs are secure, according to Definition 6.

Theorem 19. Let � `c A. Then A is secure.

Proof: Suppose that hH0, V0i ⇤
A hH, V i ⇤

A hH0
, V

0i
and val is an atomic value confidential in H, that is, for all g
where H(g) = (val , T) then T = H`I or T = µK

H`I [T ?].
By Lemma 18 one has that there exists ⇥ ✓ ⇥0 such that
• ⇥ |=H H and ⇥ |=v v : LL for each v 2 V , and
• ⇥ �V H,Vok(H, V)
• ⇥0 |=H H

0 and ⇥0 |=v v : LL for each v 2 V
0, and

• ⇥0 �V H
0
,Vok(H0

, V
0)

Since val is in the handle-map H and by hypothesis
val /2 K(V) we have that val 2 Vok(H, V). Now since
⇥ �V H,Vok(H, V) we have that 9g.H(g) = (val , T)
and ⇥(val) = T . Since val is confidential we have that
⇥(val) = ⇥0(val) = H`I or µK

H`I [T ?] which imply by
Proposition 10 that ⇥0 6|=v val : LL (otherwise H`I LL

or µK
H`I [T ?] LL). Applying now Proposition 14 one

gets val 62 K(V 0).
Suppose now that val is an atomic value secure in H, that

is, for all g where H(g) = (val , T) then T = µK
HH [T ?].

Then by ⇥ |=H H we have ⇥ |=v val : µK
HH [T ?]. By

Proposition 10 and definition of we have that ⇥(val) =
µK

HH [T ?].
Now, one can see that val /2 K(V) otherwise we would

have by Proposition 14 ⇥ |=v val : LL which is not possible
by Proposition 10.

We now apply the same reasoning as in the first case to
conclude that val /2 K(V 0).

IV. SECURE IMPLEMENTATION

We now modify the language in order to get closer
to realistic implementations of the APIs. So far, we have
assumed that keys are typed and types are stored in the
devices together with the key values. This abstraction allows
to statically prove security but needs to be related to actual
APIs implementation in order to be useful. To this aim, we
give a new semantics in which keys are stored together with
key properties, i.e. concrete data which specify the roles of
the key, its security level, the cryptographic algorithm, the
key length, etc.

We will show that that if we assign types to key properties
in a unique way then the concrete semantics is mimicked by
the typed semantics and so the security results can be carried
over to this new concrete semantics. In this way we are able
to deal with concrete examples while enjoying the properties
of the formalism proposed in the previous sections.

Key properties: Properties of keys have the following
syntax:

P ::= Y | ✏ | p[P]

where Y is a property variable that will be bound at runtime,
✏ means no properties, p[P] represents a key with properties
p which can perform cryptographic operations on keys with
properties P . We use p[✏], also denoted by p, to represent
keys with properties p that do not operate on other keys,
e.g., keys used to encrypt data.

It may happen that different concrete properties are treated
the same when authorizing cryptographic operations. For
example, an encryption key may be allowed to perform
encryption independently of its actual length or of the
algorithm it is bound to. These details are important when
dealing with actual cryptography but should be irrelevant
for our analysis. To encompass this, we assume to have an
equivalence relation ⌘ on concrete properties that relates
properties which make the APIs behave the same way.

Concrete syntax and semantics: We define a new
syntax which stores concrete key properties rather than
types. The only commands that are affected are the internal
functions:

f ::= getKey(y, P) | genKey(P) | setKey(y, P)

The new semantics is presented in Table VI and is close
to the one of Table II. There are however some important
differences: Hp denotes the new concrete handle map that

stores actual key properties instead of types; ⇢ is a sub-
stitution of key property variables into key properties; all
occurrences of types T are replaced by key properties P ;
and in getKey, when we match properties, we also allow
matching of equivalent key properties. Finally, we limit the
properties of newly generated keys to a predefined set G.

Attacker configurations for a concrete API Ap =
{a1, . . . , an} evolves by making calls on the concrete se-
mantics:

a 2 Ap v1, . . . , vk 2 K(V) a(v1, . . . , vk) ⇡
Hp,H

0
p

p v

hHp, V i Ap hH0
p
, V [{v}i

In order to be able to study key properties in our general
formalism, we need to ensure that they satisfy some condi-
tions. We state a few conditions that allow us to “embed”
key properties into types.

Definition 20 (Typed key properties). We say that key
properties are typed if there exists a mapping T from key
properties to types such that

(1) P1 ⌘ P2 implies T (P1) = T (P2);
(2) T (P⇢) = T (P)T (⇢) for all substitutions ⇢, where

T (⇢) is defined as T (⇢)(T (Y)) = T (⇢(Y)) for each
Y 2 dom(⇢);

(3) var(T (P)) = T (var(P)), where T ({Y1, . . . Yn}) =
{T (Y1), . . . , T (Yn)};

(4) whenever P 2 G and T (P) = µK
`[T 0] then µ 2

{Sym,Dec, Sig} ^ (` = HH _ T
0 = LL).

Notice that the definition of T (⇢) implicitly assumes
that T maps different property variables into different type
variables. This also implies that T (⇢] ⇢0) = T (⇢)] T (⇢0).

Typing of key properties is extended to handles and API
commands by simply applying it to all occurrences of key
properties. Formally:

Definition 21 (Connecting concrete and typed semantics).
Given a mapping T from key properties to types we apply
it to handles and API commands as follows:

T (Hp)(v) = (v0, T (P)) whenever Hp(v) = (v0, P)

T ({a1, . . . , an}) = {T (a1), . . . , T (an)}
T (�x1, . . . , xk.c) = �x1, . . . , xk.T (c)

T (x := e) = x := e

T (x := f) = x := T (f)

T (return e) = return e

T (c1; c2) = T (c1); T (c2)

T (✏) = ✏

T (getKey(y, P)) = getKey(y, T (P))

T (genKey(P)) = genKey(T (P))

T (setKey(y, P)) = setKey(y, T (P))

e #M v

hM,Hp, ⇢, x := ei !p hM[x 7! v],Hp, ⇢, "i

Hp(M(y)) = (v , P 0) P
0 ⌘ (P⇢)⇢0 dom(⇢0) = var(P⇢)

hM,Hp, ⇢, x := getKey(y, P)i !p hM[x 7! v],Hp, ⇢] ⇢0, "i

g, g
0 G P⇢ ground P⇢ 2 G

hM,Hp, ⇢, x := genKey(P)i !p hM[x 7! g],Hp[g 7! (g0, P⇢)], ⇢, "i

g G P⇢ ground
hM,Hp, ⇢, x := setKey(y, P)i !p hM[x 7! g],Hp[g 7! (M(y), P⇢)], ⇢, "i

hM,Hp, ⇢, c1i !p hM0
,Hp

0
, ⇢

0
, "i

hM,Hp, ⇢, c1; c2i !p hM0,Hp
0
, ⇢0, c2i

hM,Hp, ⇢, c1i !p hM0
,Hp

0
, ⇢

0
, c

0
1i

hM,Hp, ⇢, c1; c2i !p hM0,Hp
0
, ⇢0, c01; c2i

a = �x1, . . . , xk.c hM✏[x1 7! v1 . . . xk 7! vk],Hp, ;, ci !p hM0
,Hp

0
, ⇢

0
, return ei e #M0

v

a(v1, . . . , vk) ⇡
Hp,Hp

0
p v

Table VI
API CONCRETE SEMANTICS

Notice that expressions e are not affected by T as they
do not contain occurrences of properties. We can now prove
that each step in the concrete semantics is mimicked by the
typed semantics.

Theorem 22 (Semantic correspondence). Let T be a typing
for key properties, and assume that the two semantics use
an identical generator of fresh values G. Then,

hM,Hp, ⇢, ci !p hM0
,H

0
p
, ⇢

0
, c

0i

implies

hM, T (Hp), T (⇢), T (c)i ! hM0
, T (H0

p
), T (⇢0), T (c0)i

Proof: By induction on the length of the derivation of
the reduction, applying Definitions 20 and 21. All assign-
ments are base cases.

Case x := e . Since translation T does not apply to expres-
sions and expressions do not access Hp, this case is trivially
proved. In fact, hM,Hp, ⇢, x := ei !p hM[x 7! v],Hp, ⇢, "i
requires e #M v which in turns implies

hM,H,�, x := ei ! hM[x 7! v],H,�, "i

for all H and �. By Definition 21 we obtain:

hM, T (Hp), T (⇢), T (x := e)i
! hM[x 7! v], T (Hp), T (⇢), T (")i

Case x := getKey(y, P). This case is more interesting as
it accesses Hp and the command can refer to properties.
hM,Hp, ⇢, x := getKey(y, P)i !p hM[x 7! v],Hp, ⇢] ⇢

0
, "i

requires Hp(M(y)) = (v , P 0) , P 0 ⌘ (P⇢)⇢0 and dom(⇢0) =
var(P⇢) which implies T (dom(⇢0)) = T (var(P⇢)).

Let T (P) = T , T (P 0) = T
0, T (⇢) =

� and T (⇢0) = �
0. By Definition 20(2) applied

twice, we have that T ((P⇢)⇢0) = (T�)�0 Then,
T (Hp)(M(y)) = (v , T 0) and, by Definition 20(1) T

0 =
(T�)�0. By Definition 20(2-3) we have T (var(P⇢)) =
var(T (P)T (⇢)) = var(T�). By definition of T (⇢)
we also know that dom(T (⇢0)) = T (dom(⇢0)).
Thus, dom(�0) = dom(T (⇢0)) = T (dom(⇢0)) =
T (var(P⇢)) = var(T (P)T (⇢)) = var(T�). Together with
T (Hp)(M(y)) = (v , T 0) and T

0 = (T�)�0 this is enough to
derive

hM, T (Hp),�, x := getKey(y, T)i
! hM[x 7! v], T (Hp),�] �

0
, "i

which in turn gives

hM, T (Hp), T (⇢), T (x := getKey(y, P))i
! hM[x 7! v], T (Hp), T (⇢] ⇢

0), T (")i

Case x := genKey(P). We have that

hM,Hp, ⇢, x := genKey(P)i
!p hM[x 7! g],Hp[g 7! (g0, P⇢)], ⇢, "i

requires g, g
0 G, P⇢ ground, i.e., var(P⇢) = ;, and

P⇢ 2 G. Since we are assuming to use the same generator
G we will get the same g and g

0 in the typed semantics.
We let T = T (P) and � = T (⇢). By Definition 20(2) we
get T (P⇢) = T (P)T (⇢) = T�. By Definition 20(3) we
now have var(T�) = T (var(P⇢)) = ;, i.e., T� is ground.
Moreover, if T (P⇢) = T� = µK

`[T 0], since P⇢ 2 G

by Definition 20(4) we have µ 2 {Sym,Dec, Sig} ^ (` =
HH _ T

0 = LL). We can thus derive:

hM,H,�, x := genKey(T)i
! hM[x 7! g],H[g 7! (g0,T�)],�, "i

which is
hM,H, T (⇢), T (x := genKey(T))i

! hM[x 7! g],H[g 7! (g0, T (P⇢))], T (⇢), T (")i

for each H. Now notice that by Definition 21 we have
T (Hp[g 7! (g0, P⇢)]) = T (Hp)[g 7! (g0, T (P⇢))]. Thus
we can pick H = T (Hp) and get the thesis:

hM, T (Hp), T (⇢), T (x := genKey(T))i
! hM[x 7! g], T (Hp[g 7! (g0, P⇢)]), T (⇢), T (")i

Case x := setKey(y, P). This case is proved exactly as the
previous one. The only difference is that we have M(y)
in place of g

0. Since the two semantics work on the same
memory M this does not affect the proof.

Inductive cases. We have two rules for sequential compo-
sition.

Rule 1. We have hM,Hp, ⇢, c1; c2i !p hM0
,Hp

0
, ⇢

0
, c2i

because of hM,Hp, ⇢, c1i !p hM0
,Hp

0
, ⇢

0
, "i. By induction

hM, T (Hp), T (⇢), T (c1)i ! hM0
, T (Hp

0), T (⇢0), T (")i

Since T (") = " and T (c1; c2) = T (c1); T (c2) we get

hM, T (Hp), T (⇢), T (c1; c2)i
! hM0

, T (Hp
0), T (⇢0), T (c2)i

Rule 2 is proved analogously.

As a consequence of the previous theorem we have that
all the attacks in the concrete semantics are mimicked in
the typed one. Given Ap = {a1, . . . , an} we let T (Ap) =
{T (a1), . . . , T (an)}.

Theorem 23. Let hHp, V i ⇤
Ap
hH0

p
, V

0i. Then we have
hT (Hp), V i ⇤

T (Ap)
hT (H0

p
), V 0i

Proof: By induction on the number of steps in ⇤
Ap

.
Base case is length 0 with H

0
p
= Hp and V

0 = V , and there
is nothing to prove.

Now let hHp, V i ⇤
Ap
hĤp, V̂ i Ap hH0

p
, V

0i. By
induction we have hT (Hp), V i ⇤

T (Ap)
hT (Ĥp), V̂ i. We

now prove that hT (Ĥp), V̂ i T (Ap) hT (H0
p
), V 0i which

give the thesis hT (Hp), V i ⇤
T (Ap)

hT (H0
p
), V 0i.

We have that hĤp, V̂ i Ap hH0
p
, V

0i requires

a(v1, . . . , vk) ⇡
Ĥp,H

0
p

p v with a 2 Ap and v1, . . . , vk 2
K(V̂). By Table VI we know that a = �x1, . . . , xk.c,
e #M0

v and hM✏[x1 7! v1 . . . xk 7! vk], Ĥp, ;, ci !p

hM0
,H

0
p
, ⇢

0
, return ei. By Theorem 22 we obtain

hM✏[x1 7! v1 . . . xk 7! vk], T (Ĥp), ;, T (c)i
! hM0

, T (H0
p
), T (⇢0), return ei

which gives T (a)(v1, . . . , vk) ⇡T (Ĥp),T (H0
p
) v . Since,

by definition, T (a) 2 T (Ap) we obtain the thesis
hT (Ĥp), V̂ i T (Ap) hT (H0

p
), V [{v}i

We can now define security of concrete APIs through the
type associated to concrete key properties:

Definition 24 (Concrete API Security). Let Ap be a con-
crete API. We say that Ap is secure if for all reductions
hH0, V0i ⇤

Ap
hHp, V i ⇤

Ap
hH0

p
, V

0i and for all atomic
values val we have

(1) val 62 K(V) and val is confidential in T (Hp) implies
val 62 K(V 0);

(2) val is secure in T (Hp) implies val 62 K(V) [K(V 0).

Thus, all security results hold on the concrete semantics
based on actual key properties once an appropriate typing
T is provided.

Theorem 25. Let � `c T (Ap). Then Ap is secure.

Proof: Consider hH0, V0i ⇤
Ap

hHp, V i ⇤
Ap

hH0
p
, V

0i. By Theorem 23 we have hH0, V0i ⇤
T (Ap)

hT (Hp), V i ⇤
T (Ap)

hT (H0
p
), V 0i. Now it is enough to ob-

serve that the requirements of Definition 6 (API Security) on
this latter reduction are exactly the same as the requirements
of Definition 24 (Concrete API Security) on the former
reduction. By Theorem 19 we obtain that such requirements
hold for each reduction, from which we obtain the thesis.

V. CASE STUDY: PKCS#11 V2.20
PKCS#11, also known as Cryptoki, defines a widely

adopted API for cryptographic tokens [19]. It provides
access to cryptographic functionalities while, in principle,
satisfying some security properties. One such property is that
the value of keys stored on a PKCS#11 device and tagged
as sensitive should never be revealed outside the token,
even when connected to a compromised host. Unfortunately,
PKCS#11 is known to be vulnerable to attacks that break
this property [4], [9], [12]. In this section we will see that
we can encode PKCS#11 attributes as key properties and
hence study its security using Theorem 25.

A token may store many different objects such as cryp-
tographic keys and certificates, and these objects are refer-
enced via handles. The value of a key is one of the attributes
of the enclosing object but there are other attributes to
specify the various roles a key can assume: each different
API call can, in fact, require a different role. For example,
decryption keys are required to have attribute CKA DECRYPT

set, while key-encrypting keys, i.e., keys used to encrypt
other keys, must have attribute CKA WRAP set.

PKCS#11 key properties: Properties and capabilities of
keys are described by a set of attributes. When a certain
attribute is contained in the set of key properties p we will
say that the attribute is set, otherwise we say that it is
unset. In our analysis we consider the following subset of
PKCS#11 attributes:
CKA CLASS (C) The object class which can be one among

CKO PUBLIC KEY (PubK) Public keys;

CKO PRIVATE KEY (PrivK) Private keys;
CKO SECRET KEY (SecK) Secret (symmetric) keys;

CKA SENSITIVE (H) The key should never be revealed
outside of the token;

CKA ENCRYPT (E) The key can be used to encrypt data;
CKA DECRYPT (D) The key can be used to decrypt data;
CKA SIGN (S) The key supports signature;
CKA VERIFY RECOVER (V) The key can be used to verify

signatures, recovering data from the signature;
CKA WRAP (W) The key can be used to wrap another key

stored in the token;
CKA UNWRAP (U) The key can be used to unwrap a key and

import it in the token;
CKA WRAP TEMPLATE For wrapping keys (W set) specifies

the attributes of any wrapped key. It is the P component
of p[P];

CKA UNWRAP TEMPLATE For unwrapping keys (U set) spec-
ifies the attributes of unwrapped key. For simplicity, we
will assume that wrap and unwrap templates coincide.

Example 26. The key property p = {PubK , E} represents a
public key that can be used to encrypt data. The key property
p
0 = {H,PrivK , U}[{H,SecK , E}], instead, represents a

private (sensitive) unwrapping key that can be used to import
symmetric (sensitive) encryption keys.

From properties to types: We now define the mapping
Tp11 of PKCS#11 key properties into types. This mapping
follows the informal description of attributes. For example,
whenever E and SecK are in p the key is typed as a
symmetric key for encrypting data. Notice that this will force
us to reduce the possible attribute assignments to sets with no
conflicting attributes. For example, a key with W,D,SecK

set is dangerous as it can be used to wrap a sensitive key and
then decrypt it as if it were simple data, leaking it outside
the token. PKCS#11 is very flexible and allows for insecure
operations, such as encrypting data under symmetric keys
that are not sensitive and thus readable from anyone. We will
discipline this more, by requiring that sensitive is always set.

The formal definition of Tp11 is given in Table VII.
Property ✏ is translated into LL, variables Y are translated
into distinct type variables XY , and properties p[P] are
translated as follows: at each layer we specify the attributes
to inspect in p. For example we first split depending on
sensitive (H); then we inspect the class and so on. If the
set of attributes match exactly one line of the table we have
the corresponding type. If none or more than one match, we
have no type and Tp11 is undefined. Notice that for data keys
like DecK

HL[LL], we only admit cryptographic operations
on terms of type LL, which corresponds to requiring that
P = ;. Thus, in these cases p[P] = p[✏] = p.

Example 27. Consider again the key property p =
{PubK , E} representing a public key that can be used
to encrypt data. It matches ¬H,PubK , E in the table

Tp11(✏) = LL

Tp11(Y) = XY

Tp11(p[P]) =

=

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

H

8
>>>>>>>><

>>>>>>>>:

PrivK

8
<

:

D DecK
HL[LL] with P = ✏

U DecK
HH [Tp11(P)]

S SigK
HH [Tp11(P)]

SecK

⇢
E,D SymK

HL[LL] with P = ✏

W,U SymK
HH [Tp11(P)]

¬C HL with P = ✏

¬H

8
>>><

>>>:

PubK

8
<

:

E EncK
LL[LL] with P = ✏

W EncK
LH [Tp11(P)]

V VerK
LH [Tp11(P)]

¬C LL with P = ✏

Table VII
DEFINITION OF Tp11

giving type EncK
LL[LL], as expected. Key property p

0 =
{H,PrivK , U}[{H,SecK , E}] instead, represents a private
(sensitive) unwrapping key that can be used to import
symmetric (sensitive) encryption keys. From the table we get
type DecK

HH [Tp11(P)] with P = {H,SecK , E} which, in
turns, gives DecK

HH [SymK
HL[LL]].

Proving security: We define the equivalence relation
⌘p11 over key properties by simply equating properties that
are mapped to the same types, i.e.,

P ⌘p11 P
0 iff Tp11(P) = Tp11(P 0)

For example, {H,S} ⌘ {H,PrivK , S}, since H and S

are enough to univocally identify a private signature key.
Moreover, if we consider an extra attribute A that is not
relevant in our analysis we have that its addition does not
affect the semantics, i.e., p [{A} ⌘p11 p since Tp11(p [
{A}) = Tp11(p).

Proposition 28. Let G = {P | T (P) = µK
`[T 0] implies

µ 2 {Sym,Dec, Sig}}. Then, Tp11 respects Definition 20.

Proof: We prove the three items of the definition.

(1) There is nothing to prove as P ⌘p11

P
0 implies Tp11(P) = Tp11(P 0) by definition of ⌘p11.

(2) We prove Tp11(P⇢) = Tp11(P)Tp11(⇢) by induction on
the structure of P .

Base cases. If P is ✏ we have var(P) = ;. Moreover
Tp11(✏) = LL thus, var(Tp11(P)) = ;. Thus, trivially
Tp11(P⇢) = Tp11(P) = Tp11(P)Tp11(⇢).

If P is Y , since Tp11(Y) = XY we directly
have Tp11(P⇢) = Tp11(⇢(Y)) = Tp11(⇢)(XY) =
Tp11(P)Tp11(⇢).

Inductive case. Let P be p[P 0]. Then, by inspect-
ing Table VII we notice that in some cases P

0 is

required to be ✏ and the corresponding types contain
no variables. Thus, we have Tp11(P⇢) = Tp11(P) =
Tp11(P)Tp11(⇢) as for base case ✏. In all the remaining
cases, Tp11(p[P 0]) = µK

`[Tp11(P 0)], where the choice of
µ and ` does not depend on ⇢, only on p. Thus Tp11(P⇢) =
Tp11(p[P 0]⇢) = Tp11(p[P 0

⇢]) = µK
`[Tp11(P 0

⇢)]. By induc-
tive hypothesis, µK`[Tp11(P 0

⇢)] = µK
`[Tp11(P 0)Tp11(⇢)] =

µK
`[Tp11(P 0)]Tp11(⇢) = Tp11(P)Tp11(⇢).

(3) We prove var(Tp11(P)) = Tp11(var(P)) by induction
on the structure of P .

Base cases. If P is ✏ then var(P) = ; = Tp11(var(P))
and var(Tp11(P)) = var(LL) = ;. If P is Y then
var(Tp11(P)) = XY = Tp11(var(P)).

Inductive case. If P is p[P 0] then we notice that
var(P) = var(P 0). For the cases where P

0 is ✏, the
corresponding types have no variables so we trivially
have var(Tp11(P)) = ; = Tp11(var(P)). For the re-
maining cases, var(Tp11(p[P 0])) = var(Tp11(P 0))

ih
=

Tp11(var(P 0)) = Tp11(var(p[P 0])).

(4) Since G = {P | T (P) = µK
`[T 0] implies µ 2

{Sym,Dec, Sig}} it is enough to observe that types in
Table VII with µ 2 {Sym,Dec, Sig} are such that ` =
HH _ T

0 = LL.

We can thus apply Theorem 25 to prove security of
PKCS#11 API specifications.

Example 29. We revise once more the symmetric key wrap-
ping example. We specify it using PKCS#11 attributes as
follows:

SymWrap(h key, h w)
w := getKey(h w, {SecK ,W}[Y]);
k := getKey(h key, Y);
return enc(k,w);

We check that the wrapping key is symmetric (SecK) and is
authorized to wrap (W). The transported key has an unspec-
ified property Y that is matched in the second call to getKey.
We have that Tp11({SecK ,W}[Y]) = SymK

HH [XY] and
Tp11(Y) = XY . The program translated under Tp11 type-
checks as we did in Example 9. Thus, by Theorem 25, this
API is secure.

We have shown that a significant fragment of PKCS#11
key management attributes can be translated into our typed
model so that well-typed translations ensure security of
PKCS#11 API specifications. We only had to prove, in
Proposition 28, that there exists a suitable set G of properties
of the generated keys for which the translation respects
Definition 20. This method is general and can be applied
to other APIs.

VI. CONCLUSIONS

In the past few years, many attacks against cryptographic
key management APIs have been presented and most of

them were based on the improper use of cryptographic keys.
In this paper, we proposed a simple imperative programming
language for specifying strongly-typed APIs for the man-
agement of symmetric, asymmetric and signing keys. The
main idea is to have expressive key types directly stored
in the device, however independent of the implementation,
that are matched at run-time when managing keys. We then
developed a type-based analysis to prove the preservation
of integrity and confidentiality of sensitive keys and have
shown that this abstraction is expressive enough to code
realistic key management APIs.

In order to code realistic key-management API’s in our
framework we defined a more concrete version of the
language that allows for storing real key properties. We then
showed that, under reasonable conditions, if the concrete
properties are mapped into types, the general security results
on typing are preserved.

As a case study we have shown an encoding of PKCS#11
v2.20 by mapping the standard attributes into our types in a
version that can be type-checked and thus proved secure.

Some recent work has focused on strong information flow
guarantees for general-purpose programs with cryptographic
primitives [14], [17]. These techniques have been applied to
a different setting and it would be interesting as future work
to study whether they could be applied to the problem of
type-based analysis of key management APIs.

ACKNOWLEDGEMENTS

This work was partially supported by FCT projects
ComFormCrypt PTDC/EIA-CCO/113033/2009 and PEst-
OE/EEI/LA0008/2011 and by PRIN 2010 Project “Security
Horizons” 2010XSEMLC 007.

REFERENCES

[1] P. Adão, R. Focardi, and F.L. Luccio. Type-Based Analysis
of Generic Key Management APIs (Long Version). IACR
Cryptology ePrint Archive, 2013.

[2] R. Anderson. The correctness of crypto transaction sets
(discussion). In Revised Papers from the 8th International
Workshop on Security Protocols, pages 128–141, London,
UK, 2001. Springer Verlag.

[3] M. Bond. Attacks on cryptoprocessor transaction sets,. In
Proc. of the 3rd International Workshop on Cryptographic
Hardware and Embedded Systems (CHES’01), volume 2162
of LNCS, pages 220–234. Springer Verlag, 2001.

[4] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel.
Attacking and fixing PKCS#11 security tokens. In Proc. of
the 17th ACM Conference on Computer and Communications
Security (CCS’10), pages 260–269. ACM, 2010.

[5] C. Cachin and J. Camenisch. Encrypting keys securely.
IEEE Security & Privacy, 8(4):66–69, 2010. IEEE Computer
Society.

[6] M. Centenaro, R. Focardi, and F.L. Luccio. Type-based
Analysis of PKCS#11 Key Management. In Proc. POST,
volume 7215 of LNCS, pages 349–368. Springer Verlag, 2012.

[7] M. Centenaro, R. Focardi, F.L. Luccio, and G. Steel. Type-
Based Analysis of PIN Processing APIs. In Proc. of the
14th European Symposium on Research in Computer Security
(ESORICS’09), volume 5789 of LNCS, pages 53–68. Springer
Verlag, 2009.

[8] R. Clayton and M. Bond. Experience using a low-cost FPGA
design to crack DES keys. In Cryptographic Hardware and
Embedded System (CHES’02), volume 2523 of LNCS, pages
579–592. Springer Verlag, 2003.

[9] J. Clulow. On the security of PKCS#11. In 5th Interna-
tional Workshop on Cryptographic Hardware and Embedded
Systems (CHES’03), volume 2779 of LNCS, pages 411–425.
Springer Verlag, 2003.

[10] J. Clulow. The design and analysis of cryptographic APIs for
security devices. Master’s thesis, University of Natal, Durban,
2003.

[11] V. Cortier and G. Steel. A generic security API for symmetric
key management on cryptographic devices. In Proc. of the
14th European Symposium on Research in Computer Secu-
rity (ESORICS’09), LNCS, pages 605–620. Springer Verlag,
2009.

[12] S. Delaune, S. Kremer, and G. Steel. Formal analysis of
PKCS#11 and proprietary extensions. Journal of Computer
Security, 18(6):1211–1245, November 2010. IOS Press.

[13] R. Focardi and M. Maffei. Types for security protocols.
Cryptology and Information Security Series, Formal Models
and Techniques for Analyzing Security Protocols, 5:143–181,
2011. IOS Press.

[14] C. Fournet, J. Planul, and T. Rezk. Information-flow types
for homomorphic encryptions. In Proc. of the 18th ACM con-
ference on Computer and communications security (CCS’11),
pages 351–360. ACM, 2011.

[15] S.B. Fröschle and G. Steel. Analysing PKCS#11 key man-
agement APIs with unbounded fresh data. In Joint Workshop
on Automated Reasoning for Security Protocol Analysis and
Issues in the Theory of Security, (ARSPA-WITS’09), volume
5511 of LNCS, pages 92–106, York, UK, 2009. Springer
Verlag.

[16] S. Kremer, G. Steel, and B. Warinschi. Security for key
management interfaces. In Proceedings of the 24th IEEE
Computer Security Foundations Symposium (CSF’11), pages
266–280. IEEE Computer Society Press, June 2011.

[17] R. Küsters, T. Truderung, and J. Graf. A framework for the
cryptographic verification of java-like programs. In Prof. of
the IEEE 25th Computer Security Foundations Symposium
(CSF’12), pages 198–212. IEEE Computer Society, 2012.

[18] A. Myers and A. Sabelfeld. Language-based information-flow
security . IEEE Journal on Selected Areas in Communica-
tions,, 21(1):519, January 2003.

[19] RSA Security Inc., v2.20. PKCS #11: Cryptographic Token
Interface Standard., June 2004.

APPENDIX

In this Appendix we present the proofs referred in the
main body of the paper.

Restatement of Theorem 16. Let �,⇥,� ` M,H,V and
� `c c . If hM,H,�, ci ! hM0

,H
0
,�

0
, c

0i then
(i) if c0 6= " then � `c c0;

(ii) 9⇥0 ◆ ⇥ such that �,⇥0
,�

0 ` M
0
,H

0
,V

0, where V
0 =

V[{val | 9g 2 dom(H0)\dom(H).H0(g) = (val , T)}\
ran[M].

Proof: Suppose that hM,H,�, ci ! hM0
,H

0
,�

0
, c

0i.
We prove (i) by induction on c. We analyze the only two

rules where c
0 6= ".

hM,H,�, c1i ! hM0
,H

0
,�

0
, "i

hM,H,�, c1; c2i ! hM0,H0,�0, c2i

Since by hypothesis � `c c1; c2 we have that � `c c1 and
� `c c2 which automatically implies our result.

hM,H,�, c1i ! hM0
,H

0
,�

0
, c

0
1i

hM,H,�, c1; c2i ! hM0,H0,�0, c01; c2i

In this second case, since by IH � `c c01 and by hypothesis
� `c c2 it follows � `c c01; c2.

Let us now address (ii) analyzing all the possible cases.
We want to show that given

• M(x) = v , �(x) = T implies ⇥ |=v v : T�; and
• H(v 0) = (v , T) implies ⇥ |=v v : T ,
• val 2 V then 9g.H(g) = (val , T) and ⇥(val) = T ,

there is a ⇥0 ◆ ⇥ such that
(a) M

0(x) = v , �(x) = T implies ⇥0 |=v v : T�0; and
(b) H

0(v 0) = (v , T) implies ⇥0 |=v v : T ,
(c) val 2 V

0 then 9g.H0(g) = (val , T) and ⇥0(val) = T ,
(d) ⇥0 is well-defined, namely, it is a function, the image

of ⇥0 only contains ground types, and verify condi-
tions in (2).

(i) Case c = x := e:

e #M v

hM,H,�, x := ei ! hM[x 7! v],H,�, "i

Consider ⇥0 = ⇥. Since by hypothesis � `c x := e
implies �(x) = T and � `e e : T , and e #M v then
by Proposition 15 we have ⇥ |=v v : T�.
Since the only difference from M to M

0 is in x 7! v
and ⇥0 = ⇥ (a) follows.
Since in this case H

0 = H and ⇥0 = ⇥, (b), (c), and
(d) follow immediately from the hypothesis.

(ii) Case c = x := getKey(y, T):

H(M(y)) = (v , T 0) T 0 = (T�)�0 dom(�0) = fv(T�)
hM,H,�, x := getKey(y, T)i ! hM[x 7! v],H,��0, "i

Consider again ⇥0 = ⇥. The only difference from M

to M
0 is in x 7! v .

(a) Since M
0(x) = v and by � `c x := getKey(y, T)

we get �(x) = T , what we want to show is that ⇥0 |=v

v : T��0.
By hypothesis H(M(y)) = (v, T 0) which implies by
well-formedness that ⇥ |=v v : T 0. Since ⇥ = ⇥0 and
by hypothesis T

0 = T��
0, the result follows.

Again, since in this case H
0 = H and ⇥0 = ⇥, (b),

(c), and (d) are immediate from the hypothesis.
(iii) Case c = x := genKey(T):

g, g
0 G T� ground

T� = µK
`[T 0] =) µ 2 {Sym,Dec, Sig} ^ (` = HH _ T

0 = LL)

hM,H,�, x := genKey(T)i ! hM[x 7! g],H[g 7! (g0,T�)],�, "i

Since g, g
0 are a freshly random atomic values, define

⇥0 = ⇥ [{g 7! LL, g
0 7! T�}.

(a) The only difference from M to M
0 is in x 7! g.

Since M
0(x) = g and by � `c x := genKey(T) we

get �(x) = LL, what we want to show is that ⇥0 |=v

g : LL which is true by construction.
(b) Now from H to H

0 the difference is g 7! (g0, T�).
We want to show then that ⇥0 |=v g

0 : T� which is
also true by construction.
(c) Since the difference from H to H

0 is g 7! (g0, T�),
g
0 is atomic, and g

0
/2 ran[M] we have that V

0 =
V [{g0}. By construction 9g.H0(g) = (g0, T�) with
⇥0(g0) = T�.
To prove (d) notice that g, g

0 are fresh, LL and T�

are ground by hypothesis, and by construction and
side-condition of the rule both LL and T� satisfy the
conditions in (2).

(iv) Case c = x := setKey(y,T):

g G T� ground
hM,H,�, x := setKey(y,T)i ! hM[x 7! g],H[g 7! (M(y),T�)],�, "i

Since g is a freshly random atomic value, define ⇥0 =
⇥ [{g 7! LL}.
(a) The only difference from M to M

0 is in x 7! g.
Since M

0(x) = g and by � `c x := setKey(y,T) we
get �(x) = LL and � `e y : T , what we want to show
is that ⇥0 |=v g : LL that is true by construction.
(b) Now from H to H

0 the difference is g 7!
(M(y), T�). We want to show then that ⇥0 |=v M(y) :
T�. By Proposition 15 since � `e y : T by typing,
y #M M(y) by definition, and �,⇥,� ` M,H,V by
hypothesis one has ⇥ |=v M(y) : T�. Since ⇥ ⇢ ⇥0

(b) follows.
(c) The difference from H to H

0 is g 7! (M(y), T�)
but M(y) 2 ran(M) so V

0 = V and the result follows
by hypothesis;

To prove (d) notice that g is fresh, LL is ground, and
LL satisfy the conditions in (2).

(v) Case c = return e has no transition associated.
(vi) Case c = c1; c2: both cases follow directly from IH.

Restatement of Lemma 17. Let � `c A and hH0, V0i ⇤
A

hH, V i.
Then, there exists ⇥ such that ⇥ |=H H, ⇥ |=v v : LL

for each v 2 V , and ⇥ �V H,Vok(H, V).

Proof: We show the result by induction on the length
of the attack.

The base case is when H = ; and V = V0. Given that
H is empty and V = V0 ✓ C, defining ⇥(v) = LL for all
v 2 V0 gives us immediately the result.

Consider now that hH0, V0i ⇤
A hHn, Vni A hH, V i.

By IH 9⇥n such that
• ⇥n |=H Hn,
• ⇥n |=v v : LL for all v 2 Vn, and
• ⇥n �V Hn,Vok(Hn, Vn).

a 2 A v1, . . . , vk 2 K(Vn) a(v1, . . . , vk) ⇡Hn,H v

hHn, Vni A hH, Vn [{v}i
Looking at the last step there was a call to some a 2 A

with v1, . . . , vk 2 K(Vn), a(v1, . . . , vk) ⇡Hn,H v , and V =
Vn [{v}.

Given that by IH ⇥n |=v v : LL for all v 2 Vn and
v1, . . . , vk 2 K(Vn) we get by Proposition 14 that ⇥n |=v

vi : LL.
Unfolding the operation call we get that a = �x1 . . . xk.c,

hM✏[xi 7! vi],Hn, ;, ci ! hM,H,�, return ei and e #M v ,
and consequently from � `c a we get � `c c and � `e xi :
LL.

Now, from M✏[xi 7! vi](xi) = vi, � `e xi : LL, and
⇥n |=v vi : LL we get by definition of well-formedness
�,⇥n, ; `M M✏[xi 7! vi] that together with IH imply
�,⇥n, ; ` M✏[xi 7! vi],Hn,Vok(Hn, Vn).

We can hence apply Theorem 16 to hM✏[xi 7!
vi],Hn, ;, ci ! hM,H,�, return ei and obtain

(i) � `c return e and consequently � `e e : LL;
(ii) 9⇥ ◆ ⇥n such that �,⇥,� ` M,H,V where V =

Vok(Hn,Vn)[{val | 9g 2 dom(H)\dom(Hn).H(g) =
(val , T)} \ ran[M✏[xi 7! vi]]

From (ii) it follows immediately that �,⇥,� `M M, ⇥ |=H

H, and ⇥ �V H,Vok.
Given that � `e e : LL, e #M v , and �,⇥,� `M M, we

apply Proposition 15 to get ⇥ |=v v : LL.
Finally since by IH ⇥n |=v v 0 : LL for all v

0 2 Vn,
⇥n ✓ ⇥ and ⇥ |=v v : LL we get that ⇥ |=v v : LL for all
v 2 Vn [{v} = V .

Since ⇥ �V H,V and Vok(Hn, Vn) ✓ V we have ⇥ �V

H,Vok(Hn, Vn).

