
Submitted to:
LSFA 2012

c© A. Carraro, T. Ehrhard, A. Salibra
This work is licensed under the
Creative Commons Attribution License.

The stack calculus

Alberto Carraro
DAIS, Università Ca’ Foscari Venezia, Italia

acarraro@dsi.unive.it

Thomas Ehrhard
PPS, Université Denis Diderot Paris, France

thomas.ehrhard@pps.univ-paris-diderot.fr

Antonino Salibra
DAIS, Università Ca’ Foscari Venezia, Italia

salibra@dsi.unive.it

We introduce a functional calculus with simple syntax and operational semantics in which the calculi
introduced so far in the Curry–Howard correspondence for Classical Logic can be faithfully encoded.
Our calculus enjoys confluence without any restriction. Its type system enforces strong normalization
of expressions and it is a sound and complete system for full implicational Classical Logic. We
give a very simple denotational semantics which allows easy calculations of the interpretation of
expressions.

1 Introduction

The Curry–Howard correspondence [16] was first designed as the isomorphism between natural deduc-
tion for minimal Intuitionistic Logic [28] and the simply typed λ -calculus, and for a long time no one
thought this isomorphism could be extended to Classical Logic, until Griffin [14] proposed that natural
deduction for Classical Logic could be viewed as a type system for a λ -calculus extended with a con-
trol operator C , introduced by Felleisen in his λC -calculus [10]. There are also other operators that
correspond to logical axioms that, once added to minimal Intuitionistic Logic, give proof systems of
different power, from minimal to full implicational Classical Logic. Felleisen’s C , corresponding to the
Double-Negation Elimination law, gives full implicational Classical Logic; less powerful operators are
K (a.k.a. call/cc), typable with Peirce’s law, and A (a.k.a. abort) typable with the Ex-Falso Quodlibet
law. On the programming side, this classification corresponds to the different expressive power of the
operators as control primitives. Ariola and Herbelin [1] survey and classify these logical systems and
introduce a refinement of λC -calculus which aims at resolving a mismatch between the operational and
proof-theoretical interpretation of Felleisen’s λC -reduction theory.

Another extension of the λ -calculus is Parigot’s λ µ-calculus [27] which introduces a Natural Deduc-
tion with multiple conclusions. This system implements minimal Classical Logic and it is able to encode
the primitive call/cc; Ariola and Herbelin [1] extend it to cover full Classical Logic and compare their
system with Felleisen’s λC -calculus: similar studies are made by De Groote [7]. The correspondence
between classical principles and functional control operators is further stressed by De Groote’s extension
of λ -calculus with raise/handle primitives [8]. While the untyped version of λ µ-calculus enjoys con-
fluence, its extensional version is only confluent on closed terms via the addition of a rewrite rule that
destroys the strong normalization of typable terms [6].

Gentzen’s sequent calculus LK [11] is put in correspondence with a reduction system by Urban [32];
the type system of Curien–Herbelin’s λ̄ µ µ̃-calculus [3] corresponds to its implicational fragment. These
two approaches are compared in detail by Lengrand [24]. These calculi highlight the duality between
call-by-value and call-by-name cut-elimination (or evaluation): confluence is not achievable without

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' Foscari

https://core.ac.uk/display/223163497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 The stack calculus

choosing one of the two strategies. Other computational interpretations of Classical sequent calculus
are Girard’s LC [13] and the translations of Classical Logic in Linear Logic [5], based upon linear dual
decomposition of classical implication.

In this paper we introduce the stack calculus. The idea of this calculus comes from a synthesis of
Krivine’s extension of the λ -calculus with stacks and call/cc [18] with Parigot’s λ µ-calculus. It also
bears similarities with the call-by-name variant of λ̄ µ µ̃-calculus. In Krivine’s Classical Realizability
[18] classical implication is associated to a stack constructor, while in λ µ-calculus (as in λC -calculus)
the arrow-type is introduced by an intuitionistic λ -abstraction: the role of the µ-abstraction is to make it
classical by “merging together” many intuitionistic arrows. The µ-abstraction can then be thought of as a
functional abstraction over lists of inputs, corresponding to a list of consecutive λ -abstractions. This idea
is used in the design of Löw–Streicher’s CPS∞-calculus [25] which is an infinitary version of λ -calculus
that allows only infinite abstractions and infinite applications.

The stack calculus is a finitary functional language in which stacks are first-class entities, and many
of the previously-mentioned calculi can be faithfully translated. The stack calculus enjoys confluence
without any restriction, also in its extensional version. We type the stack calculus with a propositional
language with implication and falsity, to be associated to stack construction and empty stack, respec-
tively. As a consequence one obtains a sound and complete system for full implicational Classical Logic.
In our case the realizability interpretation of types à la Krivine matches perfectly the logical meaning
of the arrow in the type system: proofs of soundness and strong normalization of the calculus are both
given by particular realizability interpretations. The simplicity of the stack calculus, which does not
use at the same time λ - and µ-abstractions allows an easy encoding of control primitives like call/cc,
label/resume, raise/catch.

Many researchers contributed to the study of proof semantics of Classical Logic. From Girard [13], to
Reus and Streicher [29], to Selinger [30] who gives a general presentation in terms of control categories.
It is also very interesting the work by Laurent and Regnier [23] which shows in detail how to extract a
control category out of a categorical model of Multiplicative Additive Linear Logic (MALL).

Inspired by Laurent and Regnier’s work [23] we give a minimal framework in which the stack cal-
culus can be soundly interpreted. The absence of the λ -abstraction, allows us to focus on the minimal
structure required to interpret Laurent’s Polarized Linear Logic [21] and to use it to interpret the stack
calculus. The simplicity of the framework gives an easy calculation of the semantics of expressions.

2 The untyped stack calculus

The stack calculus has three syntactic categories: terms that are in functional position, stacks that are
in argument position and represent streams of arguments, processes that are terms applied to stacks.
The basis for the definition of the stack calculus language is a countably infinite set of stack variables,
ranged over by the initial small letters α,β ,γ, . . . of the greek alphabet. The language is then given by
the following grammar:

π,ϖ ::= α | nil | M�π | cdr(π) stacks
M,N ::= µα.P | car(π) terms
P,Q ::= M ?π processes

We use letters E,E ′ to range over expressions which are either stacks, terms or processes. We denote by
Σp, Σs, Σt, and Σe the sets of all processes, stacks, terms, and expressions respectively. The operator µ is

A. Carraro, T. Ehrhard, A. Salibra 3

a binder. An occurrence of a variable α in an expression E is bound if it is under the scope of a µα ; the
set FV(E) of free variables is made of those variables having a non-bound occurrence in E.
Stacks represent lists of terms: nil is the empty stack. A stack M1� · · ·�Mk�nil, stands for a finite list while
a stack M1� · · ·�Mk �α stands for a non-terminated list that can be further extended.
Terms are entities that wait for a stack to compute. A term µα.P is the µ-abstraction of α in P.
Processes result from the application M ? π of a term M to a stack π . This application, unlike in λ -
calculus, has to be thought as exhaustive and gives rise to an evolving entity that does not have any
outcome.

Application has precedence over µ-abstraction and the stack constructor has precedence over appli-
cation, so that the term µα.M ?N�π unambiguously abbreviates µα .(M ? (N�π)). As usual, the calculus
involves a substitution operator. By E{π/α} we denote the (capture-avoiding) substitution of the stack
π for all free occurrences of α in E. The symbol ‘≡’ stands for syntactic equality, while ‘:=’ stands for
definitional equality.

Lemma 1 (Substitution Lemma). For E ∈ Σe, π,ϖ ∈ Σs, α 6∈ FV(ϖ) and α 6≡ β we have
E{π/α}{ϖ/β} ≡ E{ϖ/β}{π{ϖ/β}/α}.

Definition 2. The reduction rules of the stack calculus are the following ones:

(µ) (µα .P)?π →µ P{π/α}
(car) car(M�π)→car M
(cdr) cdr(M�π)→cdr π

Adding the following rules we obtain the extensional stack calculus:

(η1) µα .M ?α →η1 M if α 6∈ FV(M)
(η2) car(π)� cdr(π)→η2 π

We simply write →s for the contextual closure of the relation (→µ ∪→car ∪→cdr). Moreover we
write →η for the contextual closure of the relation (→η1 ∪→η2) and finally we set →sη= (→s ∪→η).
For example, if I := µα .car(α)? cdr(α), then I? I�nil→s I?nil→s car(nil)? cdr(nil) and the reduction
does not proceed further. If ω := µα .car(α) ?α , then ω ?ω � nil→s ω ?ω � nil; this is an example of a
non-normalizing process. The stack calculus enjoys confluence, even in its extensional version, as the
following theorems state.

Theorem 3. The →s-reduction is Church-Rosser.

Theorem 4. The →sη -reduction is Church-Rosser.

We observe that Theorem 4 holds despite the non left-linearity of the reduction rules of the exten-
sional stack calculus. In other calculi, like the λ -calculus with surjective pairing, the interaction of the
extensionality rule with the projection rules breaks the Church-Rosser property for the calculus [17].

2.1 Translation of lambda-mu-calculus

Many calculi have been introduced so far to extend the Curry–Howard correspondence to classical logic
[14, 27, 8, 32, 3]. Since we cannot attempt to report a comparison with the stack calculus for each one
of them, so we choose probably the best known, i.e. Parigot’s λ µ-calculus. In this section we show how
λ µ-calculus can be faithfully encoded into the stack calculus (in the precise sense of the forthcoming
Theorem 6).

4 The stack calculus

The basis for the definition of the λ µ-calculus language are two (disjoint) sets λVar and µVar of
λ -variables and µ-variables (a.k.a. names), respectively. The names, ranged over by α,β ,γ, . . ., are are
taken from µVar and the usual variables, taken in λVar, are ranged over by x,y,z, The expressions
belonging to the language of λ µ-calculus are often divided into two categories, terms and named terms,
produced by the following grammar:

s, t ::= x | λx.t | st | µα .p terms
p,q ::= [α]t named terms

We use letters e,e′ to range over expressions which are either terms or named terms. We denote by Λt,
Λp, and Λe the sets of all terms, named terms and expressions, respectively.

We briefly recall the operational semantics of λ µ-calculus. In addition to the usual capture-free
substitution e{t/x} of a term t for a variable x in e, λ µ-calculus uses the renaming e{β/α} of α with β
in e and the structural substitution e{s/∗α} that replaces all named subterms [α]t of e with the named
term [α]ts: for example (λy.µβ .[α]z){λx.x/∗α}≡ λy.µβ .[α]z(λx.x) (see [27]). Note that we adopt here
the notations of David and Py [6] instead of Parigot’s original ones. The reduction relation characterizing
the λ µ-calculus is given by the contextual closure of the following rewrite rules:

(β) (λx.t)s →β t{s/x} logical reduction (ρ) [β](µα .p)→ρ p{β/α} renaming
(µ) (µα .p)s →µ µα.p{s/∗α} structural reduction (θ) µα.[α]t →θ t if α 6∈ FN(t)

The reduction →β µρθ was proved to enjoy the Church-Rosser property by Parigot [27]. The extensional
λ µ-calculus is obtained by adding the contextual closure of the following reduction rules:

(η) λx.tx →η t if x 6∈ FV(t)
(ν) µα .p →ν λx.µα .p{x/∗α} if x 6∈ FV(p)

We are now going to translate λ µ-expressions into expressions of the stack calculus (stack-expressions,
for short). A minor technical detail for the translation is the need of regarding all λ -variables and all
names as stack variables.
Definition 5. Define a mapping (·)◦ : Λe → Σe by induction as follows:

x◦ = µβ .car(x)?β
(λx.t)◦ = µx.t◦ ? cdr(x)
(ts)◦ = µβ .t◦ ? s◦�β β 6∈ FV(t◦)∪FV(s◦)
([α]t)◦ = t◦ ?α
(µα .p)◦ = µα.p◦

The translation of Definition 5 preserves the convertibility of expressions and in this sense provides
an embedding of λ µ-calculus into the stack calculus.
Theorem 6. Let e,e′ ∈ Λe.

(i) If e →β µρθ e′, then e◦ and (e′)◦ have a common reduct in the stack calculus.

(ii) If e →β µρθην e′, then e◦ and (e′)◦ have a common reduct in the extensional stack calculus.
Note that the extensional λ µ-calculus does not enjoy a full Church-Rosser theorem, as witnessed by

the following counterexample [6]: [γ]y ηρ � [β]λx.(µα.[γ]y)x →µ [β]λx.µα .[γ]y.
However this kind of situations do not arise in the stack calculus (by Theorem 4): in this case for

example we have ([γ]y)◦ �s car(y)? γ sη � ([β]λx.µα.[γ]y)◦.
For example (λx.x)◦= µx.car(x)?cdr(x) and (call/cc)◦= µα .car(α)?(µβ .car(β)?cdr(α))�cdr(α),

where call/cc≡ λ f .µα .[α](f (λx.µδ .[α]x)).

A. Carraro, T. Ehrhard, A. Salibra 5

3 The typed stack calculus

We are now going to look at the stack calculus in the light of the Curry–Howard isomorphism. Since the
stack calculus can encode calculi with control features (such as λ µ-calculus), it can be given a deductive
system of full classical implicational propositional logic ({→,⊥}-fragment).

The type system has judgements that come in three forms: π : A`∆, `M : A |∆, and `P |∆, where as
usual greek capital letters ∆,∆′ are used to denote contexts, that is sets of assumptions {α1 :A1, . . . ,αn :An}
(also abbreviated by ~α :~A). In a judgement like ` M : A | ∆, the semicolon separates the context ∆ from
the active formula A; Theorem 9 can sharpen its role via a comparison with judgements in typed λ µ-
calculus.

` M : A | ∆ π : B ` ∆
[→ i]

M�π : A → B ` ∆

α :A ∈ ∆
[ax]

α : A ` ∆

π : A → B ` ∆
[→ el]

cdr(π) : B ` ∆
[⊥i]

nil : ⊥ ` ∆

π : A → B ` ∆
[→ er]

` car(π) : A | ∆

` P | ∆,α :A
[µ,α]

` µα .P : A | ∆

` M : A | ∆ π : A ` ∆
[cut]

` M ?π | ∆

Fig 2: Typed stack calculus - propositional {→,⊥}-fragment.

The choice for the forms of the judgements is justified by the forthcoming Theorem 9, where it
will appear that the role of contexts is analogous to that of name contexts (i.e. right contexts) in typed
λ µ-calculus (see Figure 3).

It is very well-known that by restricting Gentzen’s sequent calculus LK [11] to manage at most one
formula on the right-hand side of sequents one gets the intuitionistic sequent calculus. On the other
hand, the symmetric restriction (which, by symmetry, is well behaved with respect to cut elimination) is
not so popular. One can find an explicit study of the induced system in Czermak [4]. In [22] Laurent
studies a slight variation of Czermak’s system, that he calls LD0, and explores the logical duality between
LD0 and its symmetrical calculus LJ0. The existence of these two symmetrical (and equivalent, via
duality) systems has its roots in the dual “decomposition” of LK into Danos et. al’s [5] LKQ and LKT
systems, corresponding to call-by-value and call-by-name evaluation of classical proofs, respectively.
Both systems are as powerful as LK, and LKT can be encoded into LD0, in which the stoup disappears,
since there is at most one formula on the left-hand side of sequents. There is a close relationship between
LD0, LKT and the stack calculus, but indeed while the first two are formulated as a sequent calculus (i.e.,
with introduction rules only) the latter has elimination rules. One can translate both LKT and LD0 into
the stack calculus (and viceversa), somewhat as Gentzen’s LK can be translated into Prawitz’s natural
decuction [28] (and viceversa) but the translations are not mere inclusions.

The judgements in stack calculus have the following intuitive logical interpretation, in terms of the
classical (boolean) notion of semantic entailment “�”. For those of the form π : A ` β1 : B1, . . . ,βn : Bn,
read “¬B1, . . . ,¬Bn � ¬A”; for those of the form ` M : A | β1 : B1, . . . ,βn : Bn, read “¬B1, . . . ,¬Bn � A”;
for those of the form ` P | β1 : B1, . . . ,βn : Bn, read “¬B1, . . . ,¬Bn � ⊥”. The above indications will be
restated and proved precisely in Theorem 17.

We now show that the reduction rules specified in Section 2 are indeed reduction rules for the proofs
of the typed system.

Lemma 7 (Typed substitution lemma). Suppose π : B ` ∆.

(i) If ϖ : A ` β :B,∆, then ϖ{π/β} : A ` ∆

6 The stack calculus

(ii) if ` M : A | β :B,∆, then ` M{π/β} : A | ∆

(iii) if ` P | β :B,∆, then ` P{π/β} | ∆.

Using Lemma 7, we can prove that the reduction of a typed term preserves the type.

Theorem 8. For all π,π ′ ∈ Σs, all P,P′ ∈ Σp and M,M′ ∈ Σt we have that

(i) if ` P | ∆ and P →sη P′, then ` P′ | ∆

(ii) if π : A ` ∆ and π →sη π ′, then π ′ : A ` ∆

(iii) if ` M : A | ∆ and M →sη M′, then ` M′ : A | ∆.

Another way to type the stack calculus is to choose a language with negation, conjunction and falsity,
to be associated to abstraction, stack construction and empty stack, respectively. This approach mirrors
the one used by Lafont et al. [19] to type the λ -calculus with explicit pair constructor and projections.
The result is an intuitionistic proof system that can be seen as the target of a CPS translation that embeds
Classical Logic into a fragment of Intuitionistic Logic via a mapping that transforms the types but not the
proofs; this can be done by two translations (·)+ and (·)− from {→,⊥}-formulas into {∧,¬,⊥}-formulas
as follows: ⊥+ = ¬⊥ and a+ = a, for every atom a; (A → B)+ = A−∧B+; A− = ¬A+. One obtains a
“rule-per-rule” correspondence: under this point of view, the stack calculus is the target-language of a
CPS translation from itself that alters the types but not the proofs, while the translation of Lafont et al.
does change also the terms.

3.1 Translation of typed lambda-mu-calculus

The λ µ-calculus is endowed with a type system that is a sound and complete Natural Deduction system
for purely implicational classical logic.

The type system has judgements that come in two forms: Γ `λ µ t : A | ∆ and Γ `λ µ p | ∆. On the
left-hand side, Γ represents a context~x :~A of assumptions for the free λ -variables, while on the right-and
side, ∆ represents a context ~α :~B of assumptions for the free names.

x :A ∈ Γ
[ax]

Γ `λ µ x : A | ∆

Γ,x :A `λ µ t : B | ∆
[→ i,x]

Γ `λ µ λx.t : A → B | ∆

Γ `λ µ t : A → B | ∆ Γ `λ µ s : A | ∆
[→ e]

Γ `λ µ ts : B | ∆

Γ `λ µ t : A | ∆
[⊥i]

Γ `λ µ [α]t | α :A,∆

Γ `λ µ p | β :B,∆
[⊥e,β]

Γ `λ µ µβ .p : B | ∆

Fig. 3: Typed λ µ-calculus - propositional {→}-fragment.
Given a context Γ = x1 :A1, . . . ,xn :An and a sequence of formulas ~C =C1, . . . ,Cn we write Γ → ~C as

an abbreviation for x1 :A1 →C1, . . . ,xn :An →Cn.

Theorem 9. (i) If Γ `λ µ t : B | ∆, then for all sequences ~C of formulas we have ` t◦ : B | Γ → ~C,∆.

(ii) If Γ `λ µ p | ∆, then for all sequences ~C of formulas we have ` p◦ | Γ → ~C,∆.

From Theorem 9 results clearly that when the λ -variables are looked at as stack variables, they are
endowed with a stream type of which only the type of the head is uniquely determined.

Finally we observe that the empty stack nil does not appear in the translations of λ µ-terms. It is
needed if we want to translate the so-called λ µ-top calculus [1]: in fact one can naturally set ([top]t)◦ =
t◦ ?nil.

A. Carraro, T. Ehrhard, A. Salibra 7

3.2 Realizability interpretation of classical logic via stack calculus

In this section we set up a framework which is the analogue of Krivine’s Classical Realizability [18].
Krivine’s idea is to interpret implicational formulas at the same time as sets of stacks and sets of terms of
his modified λ -calculus obtaining, respectively, falsehood and truth values for the formulas. This method
has many applications, among which the extraction of programs realizing mathematical theorems in the
context of relevant logical theories such as Zermelo–Frenkel Set Theory and Analysis [18]. We will
apply particular instances of realizability interpretation in Sections 4 and 3.3 to prove soundness and
strong normalization of our typed calculus.

Let T ⊆ Σt and 0 ⊆ Σs be given sets of terms and stacks, respectively, such that nil ∈ 0 and
if M ∈ T and π ∈ 0, then M�π ∈ 0 and cdr(π) ∈ 0.

We define three binary relations �s, �t, �p on Σs, Σt and Σp, respectively, as the smallest reflexive
relations satisfying the following conditions:

• �s is transitive;

• if M ∈ T, π ∈ 0 and ϖ �s M�π , then car(ϖ)�t M and cdr(ϖ)�s π;

• if π ∈ 0, then (µα .P)?π �p P{π/α};

• if M′ �t M, then M′ ?π �p M ?π .

Moreover we let �e=�p ∪ �s ∪ �t and we say that a set X ⊆ Σe is saturated if E ∈ X and E ′ �e E
imply E ′ ∈ X . For X ⊆ Σe, we let Ps(X) denote the family of all saturated subsets of X .

Definition 10. A triple (|= ,T,0) of sets is a realizability triple if |= ⊆Σp, T⊆Σt, 0⊆Σs are all saturated.

Definition 11 (Realizability relation). Let (|= ,T,0) be a realizability triple. We define a binary relation
⊆ T×Ps(0) as M X iff ∀π ∈ X . M ?π ∈ |= .

If M X , we say that M realizes X , or that M is a realizer of X ; the set of realizers of X is
rea(X) = {M ∈ T : M X}. We define the following binary operation on P(Σs) as follows:
X ⇒ Y = {ϖ ∈ 0 : ∃M ∈ rea(X).∃π ∈ Y. ϖ �s M�π}.

We indicate by At the set of all atomic formulas, which includes ⊥ and a countable set of atoms.
We indicate by Fm the set of all formulas built from At with the connective →. We use the following
conventions: letters A,B,C, . . . range over Fm, and F,G,H, . . . range over At. We let arrows associate to
the right, so that A → B →C ≡ A → (B →C). Every formula is of the form B1 → ·· · → Bn → G, where
G is atomic. As usual the negation is defined as ¬A := A →⊥.

Let R = (|= ,T,0) be a realizability triple. An atomic R-interpretation is a function I : At→Ps(0)
such that I (⊥) = 0. Then I extends uniquely to a map ‖·‖I : Fm→ P(Σs) by setting ‖A → B‖I =
‖A‖I ⇒ ‖B‖I . The set ‖A‖I is called the falsehood value of the formula A under I . The truth value
|A|I of a formula A under I is given by |A|I = rea(‖A‖I).

Proposition 12. For every formula A, ‖A‖I ∈ Ps(0) and |A|I ∈ Ps(T).

Proof. By induction on the structure of formulas. For falsehood values is suffices to observe that Ps(0)
is closed under the ⇒ operation. For truth values, use the fact that M′ �t M implies M′ ?π �p M ?π and
the saturation of |= .

If ~π = π1, . . . ,πn and ~B = B1, . . . ,Bn are sequences, we write ~π ∈ ‖~B‖I as an abbreviation for
π1 ∈ ‖B1‖I , . . . ,πn ∈ ‖Bn‖I . The next theorem is the stack calculus analogue of Krivine’s Adequacy
Theorem [18], which shows that realizability is compatible with deduction in classical logic. It is an
essential tool that will be used to obtain, in a uniform way, both soundness and strong normalization of
the typed calculus.

8 The stack calculus

Theorem 13 (Adequacy theorem). Let R = (|= ,T,0) be a realizability triple and let I be an R-
interpretation. If ~π ∈ ‖~B‖I then

(i) If ϖ : A ` ~α :~B, then ϖ{~π/~α} ∈ ‖A‖I ;

(ii) If ` M : A | ~α :~B, then M{~π/~α} ∈ |A|I ;

(iii) If ` P | ~α :~B, then P{~π/~α} ∈ |= .

One proves all items simultaneously proceeding by induction on the depth of type derivations.

3.3 Normalization in the typed stack calculus

We are now going to prove that the typed stack calculus is strongly normalizing. We prove this fact by
adapting the reducibility candidates technique to our setting. It becomes a sort of instance of Krivine’s
adequacy theorem in the context of Classical Realizability. We let SNe ⊆ Σe be the set of all strongly
normalizing expressions of the stack calculus (w.r.t. →sη -reduction); SNt, SNp, SNs denote the sets all
strongly normalizing terms, processes and stacks, respectively.

Proposition 14. S = (SNp,SNt,SNs) is a realizability triple.

The proof of Proposition 14 consists in showing that if E ′ �e E and E ∈ SNp (resp. E ∈ SNt,
E ∈ SNs), then also E ′ ∈ SNp (resp. E ′ ∈ SNt, E ′ ∈ SNs). One can proceed by induction on the definition
of �e. The main point of such a proof is when we consider the case in which P ≡ M ? π ∈ SNp and
P′ ≡M′?π with M′ �t M because there there exist ϖ and π ′ such that ϖ �s M�π ′ and M′ ≡ car(ϖ). Here
one can show that if M′ ?π has an infinite reduction path, then M ?π has an infinite reduction path too.
Note that it is crucial that for the terms M′ ≡ µα .(µβ .β [1]?β)?(µγ .α[0]?α)�nil and M ≡ µα .nil[0]?nil
we have M′ 6�t M. In fact, setting π ≡ (µδ .δ [0] ? δ)� nil, we obtain that M ?π is strongly normalizing
but M′ ?π is not strongly normalizing.

Let A be a formula. We define its arity ar(A) by induction setting ar(G) = 0 and
ar(A → B) = 1+ar(B). It is convenient sometimes to use abbreviations π[n) := cdr(· · ·cdr(π) · · ·)
(n times) and π[n] := car(π[n)), in order to make some expressions more readable.

Theorem 15 (Strong normalization). Let M ∈ Σt, π ∈ Σs and P ∈ Σp.

(i) If there exist ∆,A such that π : A ` ∆, then π ∈ SNs;

(ii) If there exist ∆,A such that ` M : A | ∆, then M ∈ SNt;

(iii) If there exist ∆ such that ` P | ∆, then P ∈ SNp.

Proof. Let ∆=~α :~B, where~α =α1, . . . ,αn and ~B=B1, . . . ,Bn. Let I be the S-interpretation sending ev-
ery atom to SNs and set πi := αi[0]� . . .�αi[ar(Bi)−1]�αi[ar(Bi)), for each i = 1, . . . ,n and ~π = π1, . . . ,πn.
An easy induction on the arity of formulas shows that ~π ∈ ‖~B‖I . By Theorem 13 (i),(ii),(iii) respectively
we get that
(i) ϖ{~π/~α} ∈ ‖A‖I ⊆ SNs, (ii) M{~π/~α} ∈ |A|I ⊆ SNt and (iii) P{~π/~α} ∈ SNp.
Finally in each of the above cases we have E{~π/~α}�η E and since E{~π/~α} is strongly normalizing,
then so is E.

A. Carraro, T. Ehrhard, A. Salibra 9

4 Soundness and completeness of typed stack calculus w.r.t. classical se-
mantics

The present section provides soundness and completeness proofs of the stack calculus for the two-valued
semantics of classical propositional logic. We find interesting to report the full completeness proof,
which resembles very much a completeness proof for a tableaux calculus [31]. In fact, as in a tableaux
system there are labeled formulas (with true and false labels), in the stack calculus we have terms and
stacks which play, respectively, the role of proofs and counter-proofs, exactly in the spirit of Krivine’s
Classical Realizability.

It is easy matter to check that B = (/0,Σt,Σs) is a realizability triple. For every formula A and B-
interpretation I we have

|A|I =

{
Σt if ‖A‖I = /0
/0 otherwise

The induced function | · |I maps formulas into elements of the two-element boolean algebra {Σt, /0},
where the ordering is set-inclusion and the operators are ∪, ∩ and complement. In other words Σt

represents “true” and /0 represents “false”. The truth values behave as expected w.r.t. negation: |A|I =
/0 ⇔ |¬A|I = Σt.

Definition 16. Let Φ be a set of formulas and let A be a formula. We say that Φ semantically entails A,
notation Φ � A, if for every atomic B-interpretation I we have that

⋂
B∈Φ |B|I ⊆ |A|I .

Theorem 17 (Soundness).

(i) If ` M : A | ~β :~B is provable (where FV(M)⊆ ~β), then ¬B1, . . . ,¬Bn � A.

(ii) If π : A ` ~β :~B is provable (where FV(π)⊆ ~β), then ¬B1, . . . ,¬Bn � ¬A.

(iii) If ` P | ~β :~B is provable (where FV(P)⊆ ~β), then ¬B1, . . . ,¬Bn �⊥.

Proof. (i) Let I be a B-interpretation. By Theorem 13 (Adequacy) if for all i ∈ [1,n] ‖Bi‖I 6= /0, then
M{~π/~α} ∈ |A|I , i.e., |A|I 6= /0. Since ‖Bi‖I 6= /0 ⇔ |Bi|I = /0 ⇔ |¬Bi|I = Σt, we conclude that every
derivable judgement ` M : A | ~β : ~B has the following property: for every I , if |¬Bi|I = Σt for all
i ∈ [1,n], then |A|I = Σt. This means, by definition, that ¬B1, . . . ,¬Bn � A.
(ii),(iii) Similar to (i), again applying Theorem 13.

The main goal of the rest of the section is to prove that every classical tautology is the type of some
term of the stack-calculus. The proof is supported by some auxiliary definitions and lemmas.

Definition 18. Let A be a formula. We define its terminal tmn(A) by induction setting tmn(G) = G
and tmn(A → B) = tmn(B). We also define its premisses pr(A) by induction setting pr(G) = /0 and
pr(A → B) = {A}∪pr(B).

Definition 19. Let Φ be a set of formulas. We define three sets tmn(Φ) = {tmn(A) : A ∈ Φ},
pr(Φ) =

⋃
A∈Φ pr(A), and prt(Φ) = {A ∈ pr(Φ) : tmn(A) ∈ (tmn(Φ)∪{⊥})}.

Definition 20. A set Φ of formulas is saturated if for every formula A ∈ prt(Φ) we have pr(A)∩Φ 6= /0.

It will turn out that, by applying an iterative process, it is possible to construct saturated sets of
formulas starting from finite sets of formulas which cannot be proved by a sequent of the stack calculus.
The forthcoming Lemmas 21 and 22 are the fundamental ingredients for such construction. We write
0− : A | − :~B to express the fact that there are no variables ~β and no term M such that ` M : A | ~β :~B.

10 The stack calculus

Lemma 21. Let Φ = {B0, . . . ,Bn} be a finite set of formulas and suppose 0 − : B0 | − : B1, . . . ,− : Bn.
Then prt(Φ)∩At= /0.

Proof. We prove the contrapositive statement. Supposing A ∈ prt(Φ)∩At, we distinguish two possible
cases: (1) and (2). We write ~β :~B for the context β1 :B1, . . . ,βn :Bn. Let ε be a fresh variable.

(1) There exist some j,k ∈ [0,n] such that B j =C′
1 → ··· →C′

i → ·· · →C′
m′ → G′,

Bk =C′′
1 → ·· · →C′′

m′′ → G′′, and C′
i = G′′ = A. Then ` µβ0.(µε .β j[i−1]? ε [m′′))?βk : B0 | ~β :~B.

(2) There exist some j ∈ [0,n] such that B j =C′
1 → ·· · →C′

i → ··· →C′
m′ → G′, and C′

i =⊥= A. Then
` µβ0.(µε .β j[i−1]?nil)?βk : B0 | ~β :~B.

Lemma 22. Let Φ = {B0, . . . ,Bn} be a finite set of formulas and suppose 0 − : B0 | − : B1, . . . ,− : Bn.
Then for every A ∈ prt(Φ) there exists a formula C ∈ pr(A) such that 0− : B0 | − :B1, . . . ,− :Bn,− :C.

Proof. We prove the contrapositive statement. To this end, suppose A ∈ prt(Φ) is a formula that is
a counterexample to the conclusion of the statement. First note that pr(A) 6= /0, otherwise A ∈ At, in
contradiction with Lemma 21. Therefore A = C1 → ··· → Cm → G, with m ≥ 1. We write ~β :~B for the
context β1 :B1, . . . ,βn :Bn.

By our assumption for every i = 1, . . . ,m (m ≥ 1) there exist Mi,γi such that ` Mi : B0 | ~β :~B,γi :Ci

and thus we derive ` µγi.Mi ?β0 : Ci | β0 : B0,~β :~B for each i = 1, . . . ,m. Moreover, since A ∈ prt(Φ),
there are two cases:

(1) there exist some k,h ∈ [0,n] such that Bh =C′
1 → ··· →C′

j → ·· · →C′
m′ → G′,

Bk =C′′
1 → ·· · →C′′

m′′ → G′′, A =C′
j, and G = G′′.

(2) G =⊥ and there exist some h ∈ [0,n] such that Bh =C′
1 → ·· · →C′

j → ·· · →C′
m′ → G′ and A =C′

j.

Let ε be a fresh variable. In both cases (1) and (2) there exists a stack π such that π : G ` ε : Bk is
derivable, where π is either nil or ε[ar(Bk)).

Let γ1, . . . ,γm,δ be fresh variables and let ϖ := (µγ1.M1 ?β0)� . . .� (µγm.Mm ?β0)�π . Then we finally
derive ` µβ0.(µδ .(µε .δ [j−1]?ϖ)?βk)?βh : B0 | ~β :~B.

The complexity of a formula A is the total number of implications and atomic sub-formulas occurring
in A. The formulas of complexity one are exactly the atomic ones.

Lemma 23. Let Φ be a saturated set of formulas. Then there exists a B-interpretation I such that
|A|I = /0, for all A ∈ Φ.

Proof. The case in which Φ = /0 is trivial, so for the rest of the proof we assume Φ 6= /0. We define a
B-interpretation I as follows:

I (G) =

{
/0 if G ∈ tmn(Φ)

Σt otherwise

We now prove that |A|I = /0, for all A ∈ Φ. The proof is by induction on the complexity of formulas.
Suppose A ∈ At. If A =⊥ the result is obvious; otherwise, since A ∈ tmn(Φ), we have |A|I = /0.
Suppose A =C1 → ·· · →Cm → G (with m ≥ 1). We now prove that

(1) |C1|I = · · ·= |Cm|I = Σt; (2) |G|I = /0.

A. Carraro, T. Ehrhard, A. Salibra 11

The items (1) and (2) together yield |A|I = /0.

(1) For Ci ∈ pr(A) we distinguish two cases.
Suppose Ci 6∈ prt(Φ). Then tmn(Ci) is not a terminal of a formula in Φ. By definition of I we have
|tmn(Ci)|I = Σt. We conclude observing that |Ci|I ⊇ |tmn(Ci)|I = Σt.
Suppose Ci ∈ prt(Φ). Then, by saturation of Φ, Ci =C′

1 → ··· →C′
m′ → G′ (with m′ ≥ 1) and there

exists j ∈ [1,m′] such that C′
j ∈ Φ. Since C′

j has strictly lower complexity than A, by induction
hypothesis |C′

j|I = /0. This implies |Ci|I = Σt.

(2) Since G ∈ tmn(Φ)∪{⊥}, evidently |G|I = /0 by the definition of the interpretation | · |I .

Next we give the second main theorem of this section, concerning completeness. The idea of its
proof is the counter-model construction, typical of Smullyan’s analytic tableaux [31].

Theorem 24 (Completeness). Let A be a formula and let ~B be a sequence of formulas. If ¬B1, . . . ,¬Bn �
A, then there exist M and ~β such that ` M : A | ~β :~B is provable.

Proof. We proceed to prove the contrapositive statement. Suppose 0− : A | −:~B. Then we can construct
a saturated set Φ of formulas containing {A,B1, . . . ,Bn} as Φ :=

⋃
n≥0 Φn, where the family {Φn}n≥0 is

inductively defined as follows:

• Φ0 := {A,B1, . . . ,Bn};

• If prt(Φn) = /0, then we define Φn+1 := Φn. If prt(Φn) = {C1, . . . ,Ck} 6= /0, by Lemma 22 for
each Ci there exists a formula Di ∈ pr(Ci) such that 0− : A | − :B1, . . . ,− :Bn,− :Di. Let Ψn =
{D1, . . . ,Dk}, where each Di is the leftmost premiss of Ci having the property that 0 − : A | − :
B1, . . . ,− :Bn,− :Di. Then we define Φn+1 := Φn ∪Ψn.

By construction Φ is a saturated set of formulas containing {A,B1, . . . ,Bn}. Finally applying Lemma 23
we obtain some I such that |B1|I = · · ·= |Bn|I = |A|I = /0, meaning that ¬B1, . . . ,¬Bn 2 A.

Of course Theorem 24 implies that every classical propositional tautology (of the {→,⊥}-fragment)
is provable by the type derivation of a term.

5 The Krivine machine for stack calculus

In the present section we sketch the definition of a Krivine machine that executes the terms of stack
calculus. Similar machines have been defined by de Groote [9], Laurent [20], Reus and Streicher [29]
for the λ µ-calculus. Using this machine we show how to encode control mechanisms like label/resume
and raise/handle in the stack calculus.

In order to define the states of the machine, we need the following mutually inductive definitions.
A stack closure is a pair p = (π,e) consisting of a stack π and an environment e; a term closure is a
pair m = (M,e) consisting of a stack π and an environment e; an environment is a partial function (with
finite domain) from the set of stack variables to the set of stack closures. We write e[α 7→p] for the
environment e′ which assumes the same values as e except at most on α , where e′(α) = p.

A state is a pair 〈m, p〉 and the machine consists of the following (deterministic) transitions between
states:

〈(N,e), p〉 −→ 〈(π ′[n],e′), p〉 if α[n] is the �car,cdr -normal form of N and e(α) = (π ′,e′)
〈(N,e), p〉 −→ 〈(M,e′),(π,e′)〉 if µα .M ?π is the �car,cdr -normal form of N and e′ = e[α 7→p]

12 The stack calculus

We let −� be the reflexive and transitive closure of the relation −→. Consider a state 〈(M,e), p〉. The
closure p is the current context of evaluation of M; the next state may discard p and restore a context
appeared in the past. The environment e is the current state of the memory: it takes into account all side
effects caused by the previous stages of computation. The term M is said to be in execution position and
it is the current program acting on p evaluated in e. A computation is a sequence of states sequentially
related by the transition rules.

To explain how stack calculus achieves the control of the execution flow, we define label/resume and
raise/handle instructions and show that the machine soundly executes them. We set

labε{M} := µβ .(µε .M ?β)? (µδ .δ [0]?β)�β with β 6∈ FV(M)
resε{M} := µγ .ε[0]?N � γ with ε ,γ 6∈ FV(M)
throwε{M} := µγ .ε [0]?M�nil with ε ,γ 6∈ FV(M)
tryε{M}catch{N} := µβ .(µε .M ?β)? (µδ .N ?δ [0]�β)�nil with β 6∈ (FV(M)∪FV(N)), δ 6∈ FV(N)

We now discuss briefly and informally how the machine executes the above instructions.
Suppose to start the machine in a state S = 〈(labε{M},e0), p0〉. If no term resε{N} ever reaches the

execution position, then the computation starting at S is equivalent to that starting at S′ = 〈(M,e0), p0〉.
Otherwise S−�n 〈(µγ .ε [0]?N � γ,en), pn〉−�2 〈(N,en+1), pn+2〉, and we notice that the computation
starting at 〈(resε{N},en), pn〉 is equivalent to that starting at 〈(N,en+1), pn+2〉.

Suppose to start the machine in a state S = 〈(tryε{M}catch{N},e0), p0〉. If no term throwε{M′}
ever reaches the execution position, then the computation starting at S is equivalent to that starting at
S′ = 〈(M,e0), p0〉. Otherwise S−�n 〈(µγ .ε [0]?M′�nil,en), pn〉−�3 〈(N,en+2),(δ [0]�β ,en+2)〉 and we
can see that the exception handler N goes on with the computation, and the value M′ returned by the
exception is at use of N, since it is stored in the in the current environment en+2 in a cell that is present
in the current evaluation context.

We conclude remarking that all the above constructions can be typed by derived rules. Informally
one may assert that Theorem 17 and Theorem 8, together, ensure that the execution of well-typed term
always ensures that all the “resume” and “raise” instructions are always handled correctly.

6 Denotational semantics of stack calculus

Girard’s correlation spaces [13] are (one of) the first denotational model of Classical Logic: they refine
coherence spaces [12] with some additional structure. Intuitively, these richer objects come with the
information required to interpret structural rules (weakening and contraction) on the right-hand side of
sequents in classical sequent calculus. Girard’s construction hints that Classical Logic may be encoded
into Linear Logic, a result achieved by Danos et al. [5] via a dual linear decomposition of classical
implication. In [29] the authors interpret the λ µ-calculus in the Cartesian closed category of “negated
domains”, i.e. the full subcategory of CPO determined by the objects of the form RA, where A is a
predomain and R is some fixed domains of “responses”. The category of negated domains is a particular
category of continuations [19] and categories of continuations are complete [15] for the λ µ-calculus, in
the sense that every equational theory for λ µ-calculus is given by the kernel relation of the interpreta-
tion in some category of continuations. Selinger [30] gives a general presentation in terms of control
categories, which are easily seen to subsume categories of continuations. However via a categorical
structure theorem he also shows that every control category is equivalent to a category of continuations.
This structure theorem implies the soundness and completeness of the categorical interpretation of the
λ µ-calculus with respect to a natural CPS semantics.

A. Carraro, T. Ehrhard, A. Salibra 13

In brief, a control category is a Cartesian closed category (C,N,>,⇒) which is also a symmet-
ric premonoidal category (C,O,⊥). The binoidal functor O distributes over N and there is a natural
isomorphism sA,B,C : BAOC → (BOC)A in A,B and C satisfying some coherence conditions. Selinger
distinguishes a subcategory C] of C, called the focus of C, which have the same objects as C but fewer
arrows. On C] the functor O restricts to a coproduct. It is very important to remark that in any control
category C there exists an isomorphism ϕ : C(>,BOA) ∼= C](⊥A,B) natural in central B (see [30] for
the details). If C is a control category we map falsity to the object ⊥ and set |A → B| = ⊥|A|O|B|; a
context ∆ = ~α :~A is mapped to |∆|= |A1|O · · ·O|An|. Then the judgements are interpreted as morphismsJπ : A ` ∆K : |A| → |∆|, J` M : A | ∆K : ⊥|A| → |∆| and J` P | ∆K : > → |∆|, using the coproduct struc-
ture and the isomorphism ϕ . The above intepretation is sound, in the sense that it is invariant under
→sη -reduction of expressions.

Very interesting is the work of Laurent and Regnier [23] which shows in detail how to extract a
control category out of a categorical model of MALL. This constribution gives a general framework
under which falls the correlation spaces model construction by Girard and at the same time constitutes
the categorical counterpart of Danos–Joinet–Schellinx’s [5] call-by-name encoding of Classical logic
into Linear Logic.

A ∗-autonomous category is a symmetric monoidal category with two monoidal structures (C,⊗,1)
and (C,O,⊥) possessing a dualizing endofunctor (·)⊥ which maps f : A → B to f⊥ : B⊥ → A⊥.

Let C be a ∗-autonomous category. When the forgetful functor from the category MonO(C) (of O-
monoids and O-monoid morphisms) to the category C has a right adjoint, then C is a Lafont category.
We recall that the co-Kleisli category KC of a monoidal category C via a comonad (!,δ ,ε) has the
same objects as C and KC(A,B) = C(!A,B); the composition of morphisms is defined using the monad
structure (see [26]).One of the main results of [23] is that if C is a ∗-autonomous Lafont category with
finite products, then then the co-Kleisli category KC′ of the full-subcategory C′ of C whose objects are
the O-monoids is a control category.

6.1 A simple interpretation of stack calculus

Inspired by Laurent and Regnier’s work [23] we give a minimal framework in which the stack calculus
can be soundly interpreted. The absence of the λ -abstraction, allows us to focus on the minimal structure
required to interpret Laurent’s Polarized Linear Logic [21] and to use it to interpret the stack calculus.

Let C be a ∗-autonomous category. We denote by ρA : A → AO⊥, λA : A → ⊥OA, α , γ and τ the
usual natural isomorphisms related to the monoidal structure of (C,O,⊥).

A linear category is a symmetric monoidal category together with a symmetric monoidal comonad
((!,m),δ ,ε) such that there are monoidal natural transformations with components eA : !A → 1 and
dA : !A →!A⊗!A which are coalgebra morphisms and make each free !-coalgebra a commutative ⊗-
comonoid (!A,dA,eA); moreover δA : !A →!!A is a comonoid morphism, for every object A.

In the sequel we let C be a ∗-autonomous linear category, so that by duality we can turn the above
definition in terms of a monad ((?,m),δ ,ε), ?-algebras and O-monoids. In this case there are monoidal
natural transformations with components wA : ⊥ →?A and cA :?AO?A →?A which are ?-algebra mor-
phisms and make each free ?-algebra a commutative O-monoid (?A,cA,wA); δA :??A →?A is a monoid
morphism, for every object A. Under these hypotheses all ?-algebras A, being retract of a the free al-
gebra ?A, have a multiplication cA, and a unit wA (see [26] for further details). The category C? of
Eilenberg-Moore algebras is symmetric monoidal, with (co)tensor product of (A,algA), (B,algB) given
by (AOB,(algAOalgB)◦m2) and unit given by (⊥,m1).

14 The stack calculus

The ∗-autonomous structure of C yields a natural isomorphism Λ : C(1,BOA)→ C(A⊥,B) that we
will use to interpret abstraction (a natural retraction C(1,BOA)/C(A⊥,B) would suffice anyway).

Starting from a valuation that associates ?-algebras to atomic types and the object ⊥ to falsity, the
arrow-types are mapped as follows: |A → B| =?|A|⊥O|B|. Given a context ∆ = ~α :~A we set |∆| =
|A1|O · · ·O|An|. Note that all types are interpreted by ?-algebras. Then the type judgements with assump-
tions ∆ can be easily interpreted as morphisms with target |∆|; for example Jnil : ⊥ ` ∆K : ⊥→ |∆| is the
unit of the monoid |∆|.

We describe such interpretation for the particular case of the untyped stack calculus, for which we
need a ?-algebra U of C together with two ?-algebra morphisms La :?U⊥OU →U and Ap : U →?U⊥OU
satisfying Ap◦La = id?U⊥OU and a ?-algebra morphism ϑ : U →⊥ (needed for the stack nil).

We write Un for the n-fold O-product of U . Such product inherits a ?-algebra structure algUn defined
using the algebra algU and the monoidality of the monad; as a consequence it also inherits a multiplica-

tion cUn and a unit wUn . We also define ι j
n : U ∼=⊥ j−1OUO⊥n− j wU j−1OidU OwUn− j−−−−−−−−−−−→Un.

For all expressions E with FV(E)⊆~α we define the interpretation JMK~α : U⊥ →Un, JπK~α : U →Un

and JPK~α : 1 →Un as follows (n =]~α):

JαiK~α = ι j
n JM�πK~α = [algUn◦?JMK~α ,JπK~α]◦Ap Jcdr(π)K~α = JπK~α ◦La◦ (wU⊥OidU)◦ρU

JnilK~α = wUn ◦ϑ Jcar(π)K~α = JπK~α ◦La◦ (εU⊥OwU)◦λU⊥ Jµβ .PK~α = Λ(JPK~α,β)

JM ?πK~α = [idUn ,JπK~α]◦Λ−1(JMK~α)
Note that the denotations of stacks are ?-algebra morphisms and it is not difficult to verify that

the above interpretation is invariant under →s-reduction. To see that check before that JE{π/β}K~α =
[id~α ,JπK~α]◦ JEK~α,β .

The category Rel of sets and relations is a ∗-autonomous linear category that satisfies all our require-
ments [26]. If S is a set, we denote by Mf(S)(ω) the set of all the N-indexed sequences σ = (a1,a2, . . .)
of multisets over S such that ai = [] holds for all but a finite number of indices i ∈ N. The set Mf(S)(ω)

is a simple example of ?-algebra of Rel. For σ = (a1,a2, . . .) and τ = (b1,b2, . . .), we define σ + τ =
(a1]b1,a2]b2, . . .) and ∗= ([], [], . . .). Then the relations w = {(1,∗)} and c = {((σ ,τ),σ +τ) : σ ,τ ∈
Mf(S)(ω)} make (Mf(S)(ω),c,w) a O-monoid in Rel. The operation + on Mf(S)(ω) can also be ex-
tended componentwise to (Mf(S)(ω))k (whose elements are ranged over by ~σ ,~τ, . . .) transferring thereby
the monoid structure.

In order to model the untyped calculus we need a O-monoid U of together with two relations La ⊆
(Mf(U)×U)×U and Ap ⊆ U × (Mf(U)×U) satisfying Ap ◦ La = idMf(U)×U and a relation ϑ ⊆
U ×{1}. In the category Rel lives one such object D = (D,Ap,La) that has already been encountered
many times in the literature (see for example [2]) as a model of the ordinary λ -calculus (as well as of
some of its extensions). The object is constructed as union D =

⋃
n∈N Dn of a family of sets (Dn)n∈N

defined by D0 = /0 and Dn+1 = Mf(Dn)
(ω). Given σ = (a1,a2,a3, . . .) ∈ D and a ∈ Mf(D), we write

a::σ for the element (a,a1,a2,a3, . . .)∈D. Since D=Mf(D)(ω), as previously observed it has a standard
monoid structure and we can set La = {((a,σ),a ::σ) : a ∈ Mf(D), σ ∈ D} and Ap = {(a ::σ ,(a,σ)) :
a ∈ Mf(D), σ ∈ D} satisfying the desired equation; as a matter of fact also the equation La◦Ap = idU

holds and the interpretation of expressions is invariant under →sη -reduction. Finally ϑ = {(∗,1)}.
The isomorphism Λ : C(1,UOU)→C(U⊥,U) is trivially given by Λ(f) = {(α,β) : (1,(β ,α))∈ f}.

A. Carraro, T. Ehrhard, A. Salibra 15

The interpretation is concretely defined as follows:

JαiK~α = {(σ ,(∗, ..,σ , ..,∗)) : σ ∈ D}; Jcdr(π)K~α = {(σ ,~τ) : ([] ::σ ,~τ) ∈ JπK~α};Jcar(π)K~α = {(σ ,~τ) : ([σ] ::∗,~τ) ∈ JπK~α}; Jµβ .PK~α = {(σ ,~τ) : (1,(~τ ,σ)) ∈ JPK~α,β};JM�πK~α = {([σ1, ..,σk] ::σ ,Σk
i=0~τi) : k ≥ 0,∀i = 1, ..,k. (σi,~τi) ∈ JMK~α , (σ ,~τ0) ∈ JπK~α};JM ?πK~α = {(1,~τ +~τ ′) : ∃σ ∈ D. (σ ,~τ) ∈ JMK~α , (σ ,~τ ′) ∈ JπK~α}; JnilK~α = {(∗,(∗, ..,∗))}.

For example for the stack calculus version of call/cc we haveJµα.α[0]? (µβ .β [0]?α[1))�α[1)K = {[[[σ1] ::∗, .., [σk] ::∗] ::σ0] ::(Σk
i=0σi) : k ≥ 0, σ0, ..,σk ∈ D}.

7 Conclusions

We introduced the stack calculus, a finitary functional calculus with simple syntax and rewrite rules
in which the calculi introduced so far in the Curry–Howard correspondence for classical logic can be
faithfully encoded; instead of exhibiting comparisons with all the existing formalisms, we just showed
how Parigot’s λ µ-calculus can be translated into our calculus.

We proved that the untyped stack calculus enjoys confluence, and that types enforce strong normal-
ization. The typed fragment is a sound and complete system for full implicational Classical Logic. The
type system that Lafont et al. [19] use for the λ -calculus with pairs may be used to type stack expres-
sions within the {∧,¬,⊥}-fragment of Intuitionistic Logic: under this point of view, the stack calculus
is the target-language of a CPS translation from itself that alters the types but not the expressions of
the calculus. In the classically-typed system ({→,⊥}-fragment of Classical Logic) the arrow type cor-
responds to the stack constructor; for this reason the realizability interpretation of types à la Krivine
matches perfectly the logical meaning of the arrow in the type system. The proofs of soundness and
strong normalization of the calculus are both given by particular realizability interpretations.

We defined a Krivine machine that executes the terms of stack calculus. We showed how to encode
control mechanisms like label/resume and raise/handle in the stack calculus which are soundly executed
by our machine. This approach seems to be simpler than the extension of ML with exceptions studied in
De Groote [8].

Inspired by Laurent and Regnier’s work [23], we give a simple categorical framework to interpret the
expressions of both typed and untyped stack calculus. We show how, in the case of a relational semantics,
this famework allows a simple calculation of the interpretation of expressions.

References
[1] Z.M. Ariola & H. Herbelin (2003): Minimal classical logic and control operators. In: ICALP, pp. 871–885.
[2] A. Bucciarelli, T. Ehrhard & G. Manzonetto (2007): Not Enough Points Is Enough. In: CSL, LNCS 4646,

pp. 298–312.
[3] P.-L Curien & H. Herbelin (2000): The duality of computation. In: ACM SIGPLAN International Conference

on Functional Programming, pp. 233–243.
[4] J. Czermak (1977): A Remark on Gentzen’s Calculus of Sequents. Notre Dame Journal of Formal Logic

18(3), pp. 471–474.
[5] V. Danos, J.-B. Joinet & H. Schellinx (1995): LKQ and LKT: Sequent calculi for second order logic based

upon dual linear decompositions of classical implication. In J.-Y. Girard, Y. Lafont & L. Regnier, editors:
Advances in linear logic, London Math. Society Lecture Note Series 222.

[6] R. David & W. Py (2001): λ µ-Calculus and Böhm’s Theorem. J. Symb. Log. 66(1), pp. 407–413.

16 The stack calculus

[7] P. De Groote (1994): On the relation between the λ µ-calculus and the syntactic theory of sequential control.
In: LPAR, pp. 31–43.

[8] P. De Groote (1995): A Simple Calculus of Exception Handling. In: TLCA, pp. 201–215.
[9] P. De Groote (1998): An environment machine for the lambda-mu-calculus. Math. Struct. in Comp. Sci. 8(6),

pp. 637–669.
[10] M. Felleisen & R. Hieb (1992): The Revised Report on the Syntactic Theories of Sequential Control and

State. Theor. Comput. Sci. 103, pp. 235–271.
[11] G. Gentzen (1935): Investigations into logical deduction.
[12] J.-Y. Girard (1986): The system F of variable types, fifteen years later. Theor. Comput. Sci. 45, pp. 159–192.
[13] J.-Y. Girard (1991): A new constructive logic: Classical Logic. Math. Struct. in Comp. Sci. 1(3), pp. 255–296.
[14] T. Griffin (1990): A Formulae-as-Types Notion of Control. In: POPL, pp. 47–58.
[15] M. Hofmann & T. Streicher (1997): Continuation Models are Universal for lambda-mu-Calculus. In: LICS,

pp. 387–395.
[16] W.A. Howard (1980): The formulae-as-types notion of construction. In J.R. Hindley & J.P. Seldin, editors:

To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490.
[17] J.W. Klop & R.C. de Vrijer (1989): Unique normal forms for lambda calculus with surjective pairing. Infor-

mation and Computation 2, pp. 97–113.
[18] J.-L. Krivine (2001): Typed lambda-calculus in classical Zermelo-Frænkel set theory. Arch. Math. Log.

40(3), pp. 189–205.
[19] Y. Lafont, B. Reus & T. Streicher (1993): Continuations Semantics or Expressing Implication by Negation.

Technical Report 9321, Ludwig-Maximilians-Universitat, Munchen. Technical Report.
[20] O. Laurent (2003): Krivine’s abstract machine and the lambda mu-calculus (an overview). Unpublished

note.
[21] O. Laurent (2003): Polarized proof-nets and lambda-mu calculus. Theor. Comput. Sci. 290(1), pp. 161–188.
[22] O. Laurent (2011): Intuitionistic Dual-intuitionistic Nets. J. Log. Comput. 21(4), pp. 561–587.
[23] O. Laurent & L. Regnier (2003): About Translations of Classical Logic into Polarized Linear Logic. In:

LICS, pp. 11–20.
[24] S. Lengrand (2003): Call-by-value, call-by-name, and strong normalization for the classical sequent calcu-

lus. Elec. Notes in Theor. Comp. Sci. 86. WRS.
[25] T. Low & T. Streicher (2006): Universality Results for Models in Locally Boolean Domains. In: CSL, pp.

456–470.
[26] P.-A. Melliès: Categorical semantics of linear logic. Available at http://www.pps.jussieu.fr/

~mellies/papers/panorama.pdf. Panoramas et Synthèses 27, Société Mathématique de France, 2009.
[27] M. Parigot (1992): λ µ-calculus: An Algorithmic Interpretation of Classical Natural Deduction. In: LPAR,

pp. 190–201.
[28] D. Prawitz (1965): Natural Deduction - a proof theoretical study. Almqvist & Wiksell, Stokholm.
[29] B. Reus & T. Streicher (1998): Classical Logic, Continuation Semantics and Abstract Machines. J. Funct.

Program. 8(6), pp. 543–572.
[30] P. Selinger (2001): Control categories and duality: on the categorical semantics of the lambda-mu calculus.

Math. Struct. in Comp. Sci. 11, pp. 207–260.
[31] R. Smullyan (1968): First-order logic. Springer-Verlag, New York.
[32] C. Urban (2000): Classical Logic and Computation. Ph.D. thesis, University of Cambridge Comp. Labora-

tory.

