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Abstract
We consider some particular cases of the general problem which consists of stating if

a shift vector of m elements corresponds to a permutation of the same number of objects.
Shifts are defined as the steps each element in a given permutation must perform in order
to reach its natural position, i.e., to its position in the fundamental permutation, (1, 2, . . . ,
m). The problem, never studied at our knowledge, was suggested to us by a paper in which
a certain number of vehicles must be moved from initial to final positions in a grid graph in
such a way that vehicles do not share the same vertex at the same time. The problem can
also be stated in terms of a covering one, i.e. the vertex cover of a particular graph, with
cycle using arcs of defined lengths. Some properties of the shift vector, necessary in order
to guarantee the existence of a corresponding permutation, and a general algorithm to find
the permutations, if they exist, are given.

JEL classification: C61, C63
Keywords: Cycle covering, Permutations

1 Introduction: the problem

Let G = (U, V ;E) be a complete bipartite graph in which U = {x1, x2, . . . , xm} and V =
{y1, y2, . . . , ym} are the nodes sets (note |U | = |V | = m) and E = {eij = (xi, yj)} is the set
of the edges. Associated with each edge eij is a weight, its length, defined as follows

l(eij) = lij = (j − i).

∗ Supported by the Italian Ministry of University and Research, the University of Padua and the Uni-
versity of Venice.



A matching M in G is a set of m disjoint edges, neither of them having nodes in common.
It is a well-known fact that every matching in such a graph corresponds to a permutation
of the elements of the set {1, 2, . . . ,m}: we can think of this permutation dynamically, as a
set of new positions elements in U get travelling into V . In this way, given a matching

M = {e1j1 , e2j2 , . . . , emjm},

the corresponding permutation can be described as

P = (j1, j2, . . . , jm).

The lengths of the edges in M , respectively, (j1 − 1), (j2 − 2), . . . , (jm −m), denote the
number of steps every element yi ∈ V must perform to come back to its ”natural” position
in the fundamental permutation (1, 2, . . . ,m). This number, which will be called ”shift”, is
positive, if the corresponding element in P must move toward right; negative if it moves to
the left. Obviously, it can be zero. The set of shifts (lengths) will be denoted like a vector,
v. In this way, we have

v = (l1j1 , l2j2 , . . . , lmjm),

and the ith element is liji = ji − i. It is easy to verify that the sum of the elements in v is
0: in this way if the elements in v are not all zero, they must be in part positive ones, in
part negative. We must observe that to each permutation corresponds a vector v (no two
permutations share the same v); on the contrary, a generic vector v of m components, all
satisfying −(m− 1) ≤ vi ≤ (m− 1), in which the sum of the components is zero, does not
necessarily correspond to a permutation. Now, re-order elements in v, from the greatest
one to the lesser one. We shall call the vector of such elements w. We ask if, for an assigned
set of ”ordered lengths” (shifts)

w = (w1, w2, . . . , wm)

with

w1 ≥ w2 ≥ . . . ≥ wm

and
m∑
i=1

wi = 0,

there exists a permutation having like its length vector a rearrangement of these values wi.
This will be called Problem A. Besides the intrinsic theoretical interest from the point of
view of permutation combinatorics (i.e. to state under which hypothesis a vector w can
induce a permutation on integers 1 to m), this problem arose in an environment of routing
a fleet of vehicles on grids, analyzed in [1].

Suppose we have a grid-graph with n rows and m columns. Columns correspond to
vertical lanes. Each row corresponds to a horizontal lane and is also called level: the first
level is the lowest one. A certain number of vehicles, at most m vehicles, in t = 0 is located
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on nodes of the first level. Each of them must move to the opposite side (the top) of the
grid (every two different vehicles must reach different positions). During a time unit every
vehicle can move from a node to an adjacent one in the grid: the presence of two vehicles
at the same time in the same node of the grid is forbidden. In [1] Authors shows how to
perform the trip of each vehicle in such a way that the total time spent by vehicles to reach
their destination is minimised. The path depends exclusively on the horizontal distance
from the initial position of the vehicle to its destination: vehicles whose horizontal distance
is larger must be moved first. So, in order to state how many steps are needed to reach
destination points, only the structure of the vector w above introduced is relevant.

If we add some other constraints to the Problem A, the model can be suited for other
problems of practical interest. In particular, if the components of w are constrained to
assume few values, we can ask for the possibility to move every element in U to another
position in V in such a way that the distance origin-destination be in a limited range of
prefixed values: for example a public official could be chosen to be living in a town different
from the one in which he works, but not so much far away for travel purposes (problem B).
In this paper we analyze some particular cases of vectors w in order to give some useful
rules when studying if a permutation having these values as shifts length exists. Another
well known issue regarding bipartite matching, is the correspondence of each matching in
the bipartite graph G with a set of (sub)circuits covering all vertices in a complete graph
G∗ = (N,A) in which the set of nodes can be denoted as N = 1, 2, . . . ,m and the (directed)
arc (i, j) has length (j − i). G∗ is comprehensive of loops. Vector w is a set of lengths
(possibly, with repeated values) and what we want is to find a covering of G∗ which uses
exactly the lengths in w. An obvious representation of G∗ is the one obtained considering
the m nodes as integer coordinate points on an (horizontal) axis, and the arcs have positive
length, if directed in agreement with the orientation of the axis; they have negative weight in
the other case (loops have length 0). In this way the problem can be viewed in two different
ways: as a geometric one considering this last representation; a problem in permutation
combinatorics viewed from an algebraic point of view. The paper is organised as follows. In
the first section we first introduce some other relevant definitions and notations, particularly
the shift table, then we formulate problem A as the search for a solution in a system of
integer linear equalities. In section 2 some relevant properties of vector v and w necessary in
order to give raise to a permutation, are given. In section 3 we analyse classes of vector w for
which we can easily state the existence or not of a corresponding permutation. In section
4 we present an algorithm, similar to the Robert-Flores technique to find Hamiltonian
circuits in graphs, which can solve Problem A at least as far as we have some tenth of nodes
(elements). For what it concerns the complexity, it is nowadays an open question. It is
a challenge for future researches, as well as more general rules capable of handling other
classes of w vectors.

2 Definitions and notations

Given a permutation
P = (j1, j2, . . . , jm)
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of the integers 1, 2, . . . ,m, the shift of the element jk is the quantity

vk = jk − k.

The vector of the shift of the elements in P will be denoted as v(P ). In this way we have

v(P ) = ((j1 − 1) (j2 − 2) . . . (jm −m)).

As seen before, shifts represent the number of steps each element in P must perform in
order to go into its own position in the fundamental permutation (1, 2, . . . ,m): steps are
positive, if the element must be moved toward the right side, otherwise they are negative
[2]. We shall denote with w(P ) or simply, for sake of brevity, w, the vector of ordered shifts,
i.e. the shifts rearranged from the greatest to the smallest one. In this way, by definition,
we have:

w1 ≥ w2 ≥ . . . ≥ wm.

In a cartesian system, consider the m2 points (x, y) with integer coordinates such that
1 ≤ x ≤ m; 1 ≤ y ≤ m. To each point (i, j) of these we associate the value (weight)
d(i, j) = j− i. We shall call grid D this set of points with associated weights. The elements
in D can be thought as elements of a matrix: the only difference lies in the numbering of
rows (also called levels) and columns. In D the first row is the one of the elements with
y = 1; obviously, the first column is the one which corresponds to x = 1.

In D the elements such that x = y (primary diagonal) all have a weight 0. The elements
with the same weight k give raise to the diagonal D(k).

A generic permutation P = (j1, j2, . . . , jm) corresponds in D to a set of m elements,
i.e. the elements (x = i, y = ji), one for each row and one for each column. Moreover, the
weights of the elements in D corresponding to a permutation are their shifts, as defined
above.

With reference to the grid D, Problem A can be stated as it follows:
given a vector

w = (w1 w2 . . . wm)

such that
w1 ≥ w2 ≥ . . . ≥ wm, −(m− 1) ≤ wi ≤ (m− 1),

∑
wi = 0,

find m elements in D, one for each row and one for each column, such that in the
diagonal D(k) there are as many elements as many times the value k is replicated in w. If
this is possible (i.e., if a permutation having w has vector of its rearranged shifts exists),
we call w admissible.

In this way, as in general values in w are not necessarily distinct, suppose we have

w1 = w2 = . . . = wm1 = k1,

wm1+1 = wm1+2 = . . . = wm1+m2 = k2,

wm1+m2+1 = wm1+m2+2 = . . . = wm1+m2+m3 = k3, . . .
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then the permutation we search must have (exactly) m1 elements in diagonal D(k1), m2

elements in diagonal D(k2), m3 elements in diagonal D(k3) and so on. For sake of brevity,
we denote such a vector as

w ((k1)m1 (k2)m2 . . . (kv)mv).

From another point of view, Problem A can be formulated as the one which consists
of solving an integer linear equation system. Given a vector w, of m components, let xij
be a Boolean variable which assume value 1 if and only if a permutation of the elements
(1, 2, . . . ,m) has element j in position i. Let us denote mk the number of times the value
k is contained in w. If vector w corresponds to a permutation, the following system must
have integer solution(s):

m∑
i=1

xij = 1, ∀j, (1)

m∑
j=1

xij = 1, ∀i, (2)

m−k∑
i=1

xi,i+k = mk, k = 0, 1, . . . m, (3)

m∑
i=k+1

xi,i−k = m−k, k = 1, 2, . . . m, (4)

xij ∈ {0, 1}, ∀i, j. (5)

Here, the value mk denotes how many times the element k is replicated in w. The four
sets of equations are, respectively, the usual condition on bipartite matching (equations (1)
and (2)); equations (3) and (4) impose the number of elements that the matching must take
for each of the diagonals of D. Obviously, in the above formulation one can erase all the
variables which have necessarily value 0 (and all the equations which contain only this kind
of unknown).

3 Some properties of vectors v and w

Vector v = v(P ) = (v1 v2 . . . vm) enjoys two properties:
(3.1)

∑m
i=1 vi = 0;

(3.2) vi+k 6= vi − k, ∀k ∈ {−i + 1,−i + 2, . . . ,m− i− 1,m− i}.
The first one is quite immediate. By its own definition, we have:∑

vi =
∑

(xi − i) =
∑

xi −
∑

i = 0

(observe: the two last summations are both the sum of the first m integer numbers).
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To prove the second property, observe that the element vi belongs to the i-th column and
row j = vi + i in D. m elements in the grid D correspond to each permutation P , each on a
different row and column. So row j cannot contain other elements of P . Elements in j have
values (shifts) vi+i−1, (in the first column); vi+i−2, (in the second column),. . . , vi+i−m
(in the last one). The corresponding cells of D are all forbidden and this conclude the proof.
In order vector w be admissible, it must satisfy the following (necessary) conditions:

(3.3)
∑m

i=1wi = 0;

(3.4)
∑h

i=1wi ≤ h(m− h).
The first condition is an obvious consequence of the same condition on vector v. The second
condition gives some upper bounds on the sum of the first highest h elements in w. To prove
it, observe that it is true when h = 1: the element of the grid of maximum value is m− 1.
By direct inspection, it is easy to control the same property when h = 2 or 3. In general, we
must observe that the value of the elements in the grid D is decreasing when moving from
the diagonal D(m − 1) (which consists of one single element) down toward the principal
diagonal (when value is 0) and so on toward the minimal element −(m− 1). The h major
values in w are contained in the North Western diagonals. Partition now D in four blocks:

D =
H Q
R S

with H a sub-grid hXh. Consequently, S is (m−h)X(m−h). We can distinguish two cases:
the h highest values in w are all contained in H or not. In the first case, the sum of the h
values is exactly h(m−h), independently of the rows and columns in which these h highest
elements of w are located. In the second case, generally speaking, we have j < h highest
elements in H (possibly, j = 0) and the other (h − j) ones partitioned between R,S,Q.
Now, erase the rows and columns of D corresponding to this set of j highest elements in H.
Call H∗, R∗, Q∗ the resulting blocks (S remains unchanged). The h− j highest elements,
all outside H, can be compared with the diagonal elements in H∗. It is easy to establish
a 1 − 1 dominance relationship between the diagonal elements in H and the other h − j
highest values in w and so the proof can be concluded.

4 About the admissibility of vectors w (km/2 − km/2)

In this section we analyse vectors w in which components may take only two values, i.e. k
and −k. Obviously, the number of elements in w must be even.

Proposition 1 A necessary and sufficient condition in order w (km/2 − km/2) (m even)
be admissible, is that m/(2k) be an integer number.
Proof
a) The condition is sufficient: if m/(2k) is integer, then w (km/2 − km/2) is admissible.
In fact, consider the simplest case in which m = 2k. In this case, the elements in the two
diagonals D(k) and D(−k) are distributed one for each row and one for each column of D:
so we get a permutation. If m is any integer multiple of 2k, we can partition D in (m/(2k))2

blocks, each of them having dimension 2kX2k. We get a permutation P by choosing in
every block along the principal diagonal the elements equal to k and the ones equal −k.
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b) The condition is necessary: if m is not an integer multiple of (2k), a permutation corre-
sponding to w (km/2 − km/2) does not exist. Suppose m = (2k)j + m, with 0 < m < 2k.
We can partition D in (j + 1)2 blocks as it follows: j2 blocks B of size (2kX2k) surrounded
from: j blocks B1 (mX2k) at the top; j blocks B2 (2kXm) to the right; a block C (mXm)
at the top of the principal diagonal of D. Because in building the permutation P we must
use only elements of value k or −k, we see that: the first k column must be covered with
elements of value k, taken form D(k); the first k rows must be covered form elements of
value −k (taken in D(−k)); this accommodate for the first (lowest) diagonal block; for
each of the remaining diagonal blocks (2kX2k) we repeat this operation. The last block C
cannot be covered with elements of value k or −k, because they lacks, when m ≤ k; on the
other hand, when k < m < 2k, they cannot cover the kth row and the kth column in C. So
the permutation, we are searching for, does not exist.

5 About the admissibility of vectors w ((k + 1)a kb − kc −
(k + 1)d)

When m is even we cannot have a permutation with two shifts alone, k and −k: the shifts
must take at least two different (absolute) values. So, generally speaking, in order to have
shifts in such a way that they be the least different one from another as it is possible, we
must perform our analysis for the following cases:
C1 : w ((k + 1)a − kc) (or, equivalently, w (kb − (k + 1)d);
C2 : w ((k + 1)a kb − (k + 1)d);
C3 : w ((k + 1)a kb − kc);
C4 : w ((k + 1)a kb − kc − (k + 1)d).
Let us begin with class C1.
Observe, first of all, that in order w be admissible, as a consequence of the property (3.4):
- when only two (absolute) values are considered, and m is even, the largest one cannot be
greater than m/2;
- when m is odd, the vector w with the largest (absolute) entries is

w (((m + 1)/2)(m−1)/2 − ((m− 1)/2)(m+1)/2)

which is always admissible, whatever be m. To complete our analysis, with regard to case
C1, one can easily see (i.e., solving a Diophantine equation) that all the vectors w belonging
to this set can be obtained letting a = hk and b = h(k + 1) (obviously, as a consequence, it
must be m = h(2k + 1)). They are all admissible, because a permutation is obtained using
in the grid D, starting from bottom left, alternately, k consecutive elements on the diagonal
D(k + 1); then k + 1 consecutive elements of D(−k) and so on repeating this h times.

Even vectors w belonging to the classes C2, C3 and C4 which have the properties (3.3)
and (3.4) (section 3) can be easily obtained by solving a suitable system of diophantine
equations, (by example, in the case C4, a(k + 1) + bk = ck + d(k + 1), with the constraint
a + b + c + d = m). The results we can establish for these three classes will be formulated
first of all in the case of the class C4 and then extended to the other ones.
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Proposition 1 The inner exchange rule
When m is even, vectors

w ((m/2)(m/2)−1 [(m/2)− 1]1 − [(m/2)− 1]1 − (m/2)(m/2)−1)

and
w ((m/2)(m/2)−2 [(m/2)− 1]2 − [(m/2)− 1]2 − (m/2)(m/2)−2)

are always admissible.
Proof
Vectors w ((m/2)(m/2) − (m/2)(m/2)) are admissible (see analysis in section 4). In the
representation of the permutation by elements on the grid D, these vectors correspond to
the elements in the two diagonals D(m/2) and D(−m/2). Now, let us substitute in the top
row of D the element m/2 with (m/2)−1 and in the bottom row −m/2 with −((m/2)−1).
Each column in the new setting contains only one element and so we obtain once again a
permutation: it corresponds to the vector

w ((m/2)(m/2)−1 [(m/2)− 1]1 − [(m/2)− 1]1 − (m/2)(m/2)−1).

Starting with this vector, we can perform another exchange between elements m/2 and
m/2 − 1 in the first column and symmetrically (between −m/2 and −((m/2) − 1)) in the
last column: in this way we obtain another permutation which corresponds to the vector

w ((m/2)(m/2)−2 [(m/2)− 1]2 − [(m/2)− 1]2 − (m/2)(m/2)−2).

Extensions: generalization of the inner exchange rule
When m = 2kh, the above result can be extended as it follows. All vectors

w (k(m/2h)−j (k − 1)j − (k − 1)j − k(m/2h)−j),

with 1 ≤ j ≤ 2h, are admissible (the above result corresponds to the case in which h = 1).
Proof
It is sufficient to apply the procedure in the proof of Proposition 1 to the h diagonal blocks
resulting form a partition of D in h2 sub-grids, all of them of dimension 2kX2k. Every
diagonal block provides a covering of k rows and k columns, using elements in D(k) and
D(−k). Then, in every diagonal sub-block we can perform 1 or 2 couple of exchanges
(k → k − 1; −k → −(k − 1)) of the same kind already seen in Proposition 1.

The outer exchange rule
Suppose m = (2k)h, k and h integers, h > 1. Then, besides the vectors

w (km/2 − km/2),

are also admissible the following ones:

w ((k + 1)h−1 km/2−h+1 − km/2−h+1 − (k + 1)h−1).
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Proof
Following a procedure analogous to the one in the preceding demonstration, now consider
diagonal block (2kX2k) whose elements of values k and −k are assumed to belong to the
permutation. Exchanges are possible, between adjacent diagonal blocks as it follows. Erase
an element k in the top row of the left most block and an element k in the bottom row of
the right block, and introduce in the permutation two new elements, (k + 1) and −(k− 1),
which are respectively in the first row above the left block and in the first row below the
right block. This procedure can be repeated using the rightmost element −k in the left
block and the left most element k in the right block: also these can be substituted by two
elements, k+ 1 and −(k+ 1). The procedure can be performed for every couple of adjacent
diagonal blocks, and so in total, at most (h− 1) times.
Observation
In section 4, we gave a necessary and sufficient condition in order a vector

w (km/2 − km/2)

be admissible. A weak condition, which we will use in future in order to exclude sets of w
to be admissible, can be based on the concept of column covering. We call a column covered
if, building a permutation P , we choose an element in the column itself. Obviously, to cover
different columns, we must choose elements from different rows of D: as many columns we
wish to cover, so as many different rows we must use.

Now, if we must use exclusively elements on the two diagonals D(k) and D(−k), we saw
that the first k columns (on the left) can be covered only with elements of value k, taken
from the rows from k+ 1 to 2k of D; analogously, the last k columns (on the right) must be
covered with elements −k taken from rows m− 2k + 1 to m− k. A necessary condition in
order a permutation P corresponding to w (km/2 − km/2) exists, is that the two following
sets be disjoint:

Ileft = {k + 1, k + 2, . . . , 2k}

and
Iright = {m− 2k + 1,m− 2k + 2, . . . ,m− k}.

Ileft and Iright contain the indices of the rows which cover the first and the last k
columns, respectively. This happens if and only if

2k ≤ (m− 2k) or m− k + 1 ≤ k + 1.

This condition is equivalent to the following one:

k ≤ m/4 or k ≥ m/2.

We can conclude the following result.

Proposition 2
When m/4 < k < m/2, there is no permutation P corresponding to the vector w (km/2 −
km/2).
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For vectors w ((k + 1)a kb − kc − (k + 1)d) a similar proposition can be stated. In this
case we must take account that diagonals involved are four: D(k + 1), D(k), D(−k) and
D(−k − 1). It is easy to see that the first k column can be covered by the rows k + 1 until
2k + 1 (one more row then in the previous case) and in a similar fashion, the k column in
the right side of D can be covered only by rows m− 2k until m− k. The rows involved are,
in total, 2k + 2. As a consequence, the two sets:

Ileft = {k + 1, k + 2, . . . , 2k + 1}

and
Iright = {m− 2k,m− 2k + 2, . . . ,m− k}

can have at most two common elements. This implies that a necessary condition for possible
coverings is

m− 2k ≥ 2k or k + 1 ≥ m− k − 1.

As ultimate consequence, for values of k such that

m/4 < k < (m− 2)/2

a permutation corresponding to w ((k + 1)a kb − kc − (k + 1)d) does not exist. The
other cases are somewhat similar. For vector w ((k+1)a kb −kc) (case C3) corresponding
permutation does not exist when

m/4 < k < (m− 1)/2;

for vector w ((k+1)a kb − (k+1)d) (case C2) the permutation does not exist provided
that

(m− 2)/4 < k < (m− 2)/2.

Proposition 3 Queue rule Vectors w ((m/2)a ((m/2)− 1)b − ((m/2)− 1)c (m/2)d),
in which b and/or c > 2, are not admissible.
Proof Let us consider the grid D. We must build a 1-1 correspondence between rows
and columns which uses only elements whose weight is m/2 or (m/2) − 1. If in the first
column we choose the element m/2, this compels us to choose the same elements in all of
the following (m/2)−2 columns (i.e., until column (m/2)−1). This can be seen directly on
D, but it is also a consequence of the property 3.2 (section 3). It remains only an element
of value (m/2)−1 which can be chosen (in column (m/2)+1). In turn, now we must choose
the element −((m/2− 1) in the first row and then only elements on the diagonal D(−m/2)
in the rows from the second to the (m/2) − 1th. If, on the contrary, we initially choose in
the first column the element whose value is (m/2)− 1:
- it compels the choice of −((m/2)− 1) in the last column;
- the choice of elements (m/2) in the columns from 2nd to the ((m/2)− 1)th;
- at this point we can choose only one more element of value (m/2)−1 (the same happens
in the last m/2 columns of D).
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6 An algorithm for the general case

In this section we give an algorithm which aims to solve the Problem A for the general
case. The algorithm tries to position the elements in the cells of a matrix in such a way
that the entire row and column controlled by that element can not be further occupied by
other elements. The algorithm uses the technique of backtracking: it tries to locate the
item in the first available cell of the first row in the first column, then the second element
is placed in the first available cell of the second row in the second column, then the third
element so that it does not conflict with the other two, and so on, until all elements are
placed in the matrix. For example, if the fifth element was placed in conflict with others,
the algorithm relocates the fourth in a new cell and starts with the procedure. Pseudocode
for this algorithm is described in the following.

Procedure PutElement(col)
row = 1
for each column
for each row
if cell is available
Mark rows and columns as taken
if columns ¡ MaxElements

PutElement(col+1)
Else
Mark rows and columns as empty

End for //each row
Row = row +1 (next row)

End for //each column
Col = col +1
End procedure

7 Conclusions

The rules of admissibility/non-admissibility we introduced in sections 4 and 5 allow us to
solve, for a fixed m, the problems of existence of a permutation corresponding to vectors
w ((k + 1)a kb − kc − (k + 1)d), in which a + b > 0 and c + d > 0, in about a half of
the possible cases. For k < m/4 general rules appear more difficult to establish, even if
many cases are quite easy to solve, particularly when k = 2 or 3. In certain cases it is more
immediate to rely on the geometric representation (i.e. the covering with sub-circuits),
while in other cases it is the study of the grid D the major tool. The problem is obviously
open, particularly with regard to the classification in terms of computational complexity.
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