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Abstract

The advent of cheap consumer level depth-aware
cameras and the steady advances with dense stereo al-
gorithms urge the exploitation of combined photometric
and geometric information to attain a more robust scene
understanding. To this end, segmentation is a funda-
mental task, since it can be used to feed with mean-
ingfully grouped data the following steps in a more
complex pipeline. Color segmentation has been ex-
plored thoroughly in the image processing literature,
as much as geometric-based clustering has been widely
adopted with 3D data. We introduce a novel approach
that mixes both features to overcome the ambiguity that
arises when using only one kind of information. This
idea has already appeared in recent techniques, how-
ever they often work by combining color and depth data
in a common Euclidean space. By contrast, we avoid
any embedding by virtue of a game-theoretic cluster-
ing schema that leverages on specially crafted pairwise
similarities.

1. Introduction
The goal of segmentation is to isolate each single ob-

ject that appears in an image. This can be deemed to
be a somewhat ill-posed problem since it is often dif-
ficult to state at a semantic level if an object should
be split in two segments or kept as a whole. This
kind of ambiguity can be observed when humans are
asked to manually build a ground-truth for evaluation
purposes, as different individuals will provide very dif-
ferent segmentations for the same image. This is il-
lustrated in Fig. 1 where an image is shown along two
manual segmentation selected from the dataset [2]. In
the first segmentation the operator separated the body
of the lizard from the spots on the skin. This is ar-
guably the same kind of output that would be obtained
using one of the many color-based segmentation tech-
niques [5, 7, 6]. However, in most applications that
perform model-based classification, handling the whole

Figure 1. Two manual segmentations

lizard as a single object would be desiderable. In the
second ground-truth this over segmentation does not
happen, nevertheless the foreground and background
leafs have been wrongly merged as their depth level
has not been accounted for. While this kind informa-
tion is not available within standard digital images, it
can be obtained by adopting a proper 3D reconstruction
method like Dense Stereo [12], Structured Light [13]
or even dedicated hardware [8]. Given the increasing
popularity of such techniques it is not surprising that
a number of algorithms that make use of depth infor-
mation to boost the segmentation performance have ap-
peared. Harville and Robinson [9] use stereo data to
augment local appearance features extracted from the
images. In [3] Bleiweiss and Werman use Mean Shift
over a 6D vector that fuses color and depth data ob-
tained with a ZCam and weighted with respect to their
estimated reliability. Wallenberg at al. [14] generate
a probabilistic representation of RGB color and depth
derivatives, with the goal of overcoming the incompati-
bilities between the two measures due to their different
physical units. The same problem is addressed by Dal
Mutto et al. [11], that propose to cast the color compo-
nent in the CIELab space and to append the 3D posi-
tion of each pixel through a weighting constant that is
learned experimentally. Most of these techniques have
in common that the segmentation happens over an ex-
tended Euclidean space built on a base that combines
two sources of information that are disjoint from both a
physical and a semantical point of view. In this paper
we propose a different approach, where pairwise sim-
ilarities are defined between macropixels and a game-
theoretic approach is employed to make them play in an
evolutionary game until stable segmentation emerges.
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Figure 2. Illustration of the proposed pipeline (see text for details)

2. Segmentation through disjoint cues
The proposed pipeline is made up of three main tasks

depicted in Fig. 2. The first step is an oversegmentation
that will build a large number of macropixels. A mea-
sure of compatibility is then computed between each
pair of macropixels, thus materializing a square simi-
larity matrix. Finally, the obtained matrix is used as
the payoff matrix of a non-cooperative game that will
be played between macropixels in order to isolate seg-
ments as clusters of mutually compatible parts.

2.1. Macropixel extraction
Since the pipeline works by assembling macropixels

it is very important to obtain a proper oversegmention of
the objects in the scene. This means that (hopefully) no
part should span over different objects. For this reason
the process starts with a color-based segmentation using
Felzenszwalb and Huttenlocher’s technique [7], subse-
quently, for each segment, mean and variance are com-
puted with respect to the depth of the pixels. Each time
variance exceeds a threshold σt k-means with k = 2 is
applied recursively to obtain two splitted sub-segments.

2.2. Distances and pairwise similarities
To compute a similarity between macropixels we

first need to define distances with respect to both color
and 3D information. The color distance is simply de-
fined as the distance on the u/v plane of the average
of the chroma components of the elements of the mar-
cropixel (luminance is avoided to attain illumination
invariance). That is, given macropixels m1 and m2

respectively with average chroma coordinates [u1v1]T

and [u2v2]T , their color distance is:

dc(m1,m2) =
√

(u2 − u1)2 + (v2 − v1)2 (1)

While the just defined color distance is based on an
Euclidean measure, the depth-aware distance is not.
Specifically, we designed a modified Dijkstra algorithm
where the most convenient step is not the one that short-
ens the total trip to the destination, but the one that per-
forms the smaller plunge along the z axis (assuming x
and y axis aligned with the image plane). The algo-
rithm has been applied between the centroids of each
pair of macropixels on a 4-connected graph built over

the original pixels and a path that contains the sequence
of 3D jumps with the smaller possible maximum drop
has been recorded. Within this scenario we can expect
that if two segment belong to the same uninterrupted
surface the larger jump in the path will be small since
there will always be a way around abrupt discontinu-
ities. This of course could not be the shortest Euclidean
route, albeit optimal according to our measure. This
can be observed in Fig. 3 where the route connecting
the green and blue macropixels goes through the baby to
minimize the maximum jump. More formally, if p is the
sequence of 3D displacements connecting macropixels
m1 and m2 we first find the maximum drop:

[∆xm∆ym∆zm]T = arg max
[∆x∆y∆z]∈p

|∆z| (2)

And then we calculate the distance between m1 and m2

as a function of the angle along the drop:

dz(m1,m2) =
2

π
asin

(
|∆zm|

‖[∆xm∆ym∆zm]T ‖

)
(3)

The rationale of Eq. 3 is that some kind of normaliza-
tion must be applied to the drop along the z axis to avoid
a bias toward foreground objects. Since angles are not
affected by the distance from the image plane this is a
reasonable choice.

Given distances dc and dz we are able to define a
similarity between macropixels. In a sense, our goal is
to merge macropixels that have been produced by the
same phenomenon, that is the same surface that should
exhibit a reasonable level of contiguity and color con-
sistency. To this end, we can deem dc and dz as devia-
tions from an unknown average for the two independent

Figure 3. Behavior of the modified Dijkstra



Figure 4. Exploration of the space of parameters σc and σz.

aspects of the phenomenon and thus we model the sim-
ilarity between m1 and m2 as the density of a mixture
of two orthogonal zero-mean Gaussians:

π(m1,m2) = e−
1
2 (
dc(m1,m2)2

σc
+
dz(m1,m2)2

σz
) (4)

Where σc and σz are two parameters that represent
respectively the expected variance of color and depth
information. This similarity defines a payoff matrix
Π = (πij = π(mi,mj)) between all the macropixels.

2.3. Game-theoretic clustering
Following [1] we use the principles of Evolutionary

Game Theory [15] to cluster macropixels into larger
objects according to the mutual payoff defined with
Eq. 4. Each macropixel is modeled as a strategy. When
strategies i and j are played one against the other both
the players obtain the same payoff (i.e. gain) πij .
The amount of population that plays each strategy at
a given time is expressed through the probability dis-
tribution x = (x1, . . . , xn)T (called mixed strategy)
with x ∈ ∆n = {x ∈ IRn : ∀i xi ≥ 0,

∑n
i=1xi = 1} .

The support σ(x) of a mixed strategy x is defined as
the set of elements chosen with non-zero probability:
σ(x) = {i ∈ O | xi > 0}. A mixed strategy x is said to
be a Nash equilibrium if it is the best reply to itself, i.e.
∀y ∈ ∆, xT Πx ≥ yT Πx . Finally, x is called an evolu-
tionary stable strategy (ESS) if it is a Nash equilibrium
and ∀y ∈ ∆ xT Πx = yT Πx ⇒ xT Πy > yT Πy.
This condition guarantees that any deviation from the
stable strategies does not pay. The search for a stable
state is performed by simulating the evolution of a nat-
ural selection process. Under very loose conditions, any
dynamics that respect the payoffs is guaranteed to con-
verge to Nash equilibria [15] and (hopefully) to ESS’s.
We chose to use the replicator dynamics, governed by
the following equation

xi(t+ 1) = xi(t)
(Πx(t))i

x(t)T Πx(t)
(5)

where xi is the i-th element of the population and Π the
payoff matrix. Once the population has reached a lo-

cal maximum, all the non-extincted pure strategies (i.e.,
σ(x)) can be considered selected by the game and thus
the associated macropixels can be merged into a single
segment. After each game the selected macropixels are
removed from the population and the selection process
is iterated until all the segments have been merged.

3. Experimental evaluation

All the following experiments have been performed
using the Middlebury Stereo Dataset [10], which con-
sists of a large set of stereo pairs associated with a
ground-truth disparity (obtained with a structured light
scanner). A total of 7 subjects were selected to be used
in our tests and, for each subject, a manual segmentation
was performed in order to separate the objects found
in the scene. Macropixel have been produced by using
Felzenszwalb and Huttenlocher’s segmentation with pa-
rameters σ = 0.5, k = 500 and min = 20 while the
value of σt has been set to 3 for all the images.

With the first set of experiments we evaluate the ef-
fect of parameters σc and σz . The quality of the result
is assessed using the Hamming distance (see [4]) with
respect to the manual segmentation. In the middle of
Fig. 4 we show a plot of the segmentation quality over
the σc/σz plane. Two interesting observation can be
done. First, there exists a single large optimal region in
witch the two parameters lead to a small Hamming dis-
tance. Second, once one parameter is optimal and the
other is greater than a certain threshold, the Hamming
distance remains almost stable thus simplifying the pa-
rameter tuning process. In Fig. 4 we also show the qual-
itative effect of σc and σz . When the two parameters are
both too low, the evolutionary game becomes very se-
lective hence producing a lot of erroneous clusters. On
the other hand, if they are too high the process is un-
able to separate each region. In general, if σc is low
with respect of σz , the process care more about color
distance (bottom right figure) and vice versa. When σc
and σz are chosen from the optimal region, the resulting
segmentation is almost identical to the ground-truth.



Figure 5. Comparisons with other methods and influence of the 3D information source.

The aim of the second experimental batch is to eval-
uate the impact of replacing the ground-truth 3D data
with depth maps produced with dense stereo and to
compare the results obtained by our method with other
techniques. In the first histogram of Fig. 5 we compare
the quality obtained for different scenes using the op-
timal values of σc and σz and three different sources
of 3D data (groud-truth, Graph-Cut Stereo and SGBM
Stereo). It can be seen that there are almost half cases
in witch Graph-Cut lead to a better segmentation, and
the residual in witch SGBM is better. This is due to the
fact that, in scenes containing large untextured areas,
a global method like GC is able to better discriminate
depth regions. On the other hand, in scenes with lots of
textures, the depth map produced may be smoother than
local methods, hence hindering the segmentation. In the
second histogram we compare our results with three k-
means based segmentations (using only color, only spa-
tial and a union of color and spatial data) and two meth-
ods recently introduced in [11] and [3]. As expected
k-means, albeit supplied with the ground-truth number
of segments, tends to performs badly with respect to
the other methods. K-means with spatial data performs
better because depth information is more descriptive to
define object boundaries for this dataset. However, the
ability to properly catch the interplay between color and
spatial data is crucial in some cases like Baby2 and
Midd1. Overall, our approach obtains very good results
in most situations. Finally, in the right part of Fig. 5
some qualitative results are shown, respectively ground-
truth (top-left), the proposed method (top-right), Wer-
man (bottom-left) and DalMutto (bottom-right).

4. Conclusions
We proposed a segmentation technique that exploits

both color and depth data by casting the clustering prob-
lem into a non-coperative game defined through pair-
wise similarities over an initial set of macropixels. Our
approach has shown to be quite tolerant with respect to
the choice of parameters and behaves better than other
recent methods that perform the segmentation in a com-
bined Euclidean space.
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